
▲

S O F T W V R E

I ’ I <()1’K S S I(IN A L A S S I JMIJLI3I <

P a g in a B ia n c a
Ready64.org CSOS4)

Copyright Notice

The EDNA software product is Copyright »1985 by VIZA SOFTWARE
LIMITED. All Rights Reserved Worldwide. No part of this manual may be
reproduced, transmitted, transcribed, stored in a retrieval system or
translated into any human or computer language, in any form or means
without the express written permission of VIZA SOFTWARE LIMITED,
CHATHAM, KENT, ENGLAND. U.K.

Disclaimer

VIZA SOFTWARE LIMITED takes no responsibility for any errors or
omissions in the EDNA software program or associated manuals. While
every effort has been taken to ensure that the product is suitable for its
intended purpose, VIZA SOFTWARE LIMITED can take no responsibility for
any loss or damage incurred through use of this product, and disclaims any
implied warranties of suitability or fitness for any purpose.

Conditions Of Use

The EDNA license grants the licensee permission to install and operate the
EDNA software on a single computer owned or used by the licensee. The
EDNA software product shall not be lent, sold, exchanged or
copied to any third party under this licensing agreement.

Credits

EDNA was researched, designed, programmed and documented by Anthony
Robinson. This manual was written and compiled by Anthony Robinson, Jon
Dunn and Kelvin Lacy.

P a g in a B ia n c a
Ready64.org CSOS4)

C o n t e n t s

Getting Started
Welcome 1 -1
How To Start 1-1
Getting To The Editor 1 -2
Getting To BASIC From The Monitor 1 -2

The Editor
Getting To The Editor 2-1
The Memory Scale 2-2
The Editor 2-3
Text Editing Keys 2-4
Editor Command Summary 2-5
Editor Commands

I. Assemble Source File 2-6
2. Copying Source Lines From One Part Of a File to Another 2-8
3. Using Commodore Disk Commands Within The Editor 2-8
4. Finding a Sequence Of Characters 2-9
5. Go To a Specific Label 2-10
6. Set The Current Input/Output Device 2-10
7. Load a Source File from Disk/Cassette 2-11
8. Move Source Lines From One Part Of a File to Another 2-11
9. Delete All Source Lines, To Start a New File 2-12
10 Recover a Source File, After Deleting All Lines 2-12
u . List the Source File To Screen/Printer 2-12
12. Programmer's Calculator 2-13
13. Find and Replace a Sequence of Characters 2-14
14 Save the Source File to Disk/Cassette 2-14
15. Mark the Current Position in the Source File 2-15
16. Go to the Marked Position in the Source File 2-15
17. Append a File from Disk/Cassette to the Source File 2-16
1«. Set the Screen Colour 2-16
19 Set the Screen Background Colour 2-16
20 Set the Screen Border Colour 2-17
21. Reset the Screen Colours 2-17

3. The Assembler

Constants 3-1
Labels 3-2
Expressions 3-3
Low And High Byte Operators 3-4
Source Line Format

1. The Label Field 3-5
2. The Instruction Field 3-5
3. The Operand Field 3-5
4. The Comment Field 3-6

Assembler Directives

1. Directives That Allocate and Initialise Memory
Reserve and Initialise Single Bytes - .BYT 3-6
Reserve and Initialise Pairs of Bytes - .WOR 3-7
Reserve and Initialise Two Bytes - .DBY 3-7

2. Directives That Control Assembly
Equates 3-7
Set the Program Counter 3-7
Allocate a Block of Memory - *-*♦ 3-*
Assemble To Memory 3-8
List Assembly 3-8
Disk Load Address 3-9
Linked Files 3-9
Library Files 3-9
Conditional Assembly 3-10
End Assembly 3-11
After Assembly 3-11

4. The Monitor

Monitor Command Summary 4 -1
The Promenade Cl EPROM Programmer 4-7
Memory Used By The Monitor 4-8
Memory Swapped When Entering Or Leaving BASIC 4-8

5. Using Machine Code Within A BASIC Program

Getting To BASIC From The Monitor 5-1
Zero Page Locations 5-1
Workspace available 5-2
Communication Between Machine Code And BASIC 5-2
How And Where To Store The Machine Code Program

1. Download Machine Code files Within BASIC 5-3
2. Append Machine Code Files to a BASIC Program 5-4

Appendix

A l. 6502 Addressing Modes A -l
A2. Extra Instructions For The 65C02 Microprocessor A-2
A3. Parallel Printer Connections A-4
A4. Memory Used By EDNA A-5
A5. Source File Format A-5
A6. Messages From EDNA A-7
A7. Sample Disk Programs A-8
A7. User Registration A-9

Index

P a g in a B ia n c a
Ready64.org CSOS4)

Chapter 1.

Getting-StaLteii

Welcome

Welcome to EDNA, the first integrated editor, assembler and monitor for
the Commodore 64 and 128. EDNA has been designed to allow the
simultaneous development of both machine code AND BASIC EDNA is
always at hand, the editor is used to enter the machine code program lines,
the assembler collates and translates these into machine instructions, and
the monitor assists in getting the bugs out. EDNA can't write your programs
for you, but it can do practically everything else II

This reference manual details the commands and use of the EDITOR.
ASSEMBLER and MONITOR. We have included definitions o f terms and
explanations o f 6502 addressing modes, and the supplied disk contains
sample source files and a conversion program that translates Commodore
and Mikro source files.

This is a reference manual, but can also be read from cover to cover. EDNA
is very easy to use, the command and control keys are logically allocated,
the functions of EDNA are simple, yet comprehensive. This manual is not
intended to cover the 6502 programming language or Commodore
operating system. There are many publications that cover these areas. For
beginners we have included examples on the supplied disk. Use these to
get some confidence and experience. EDNA has been used to develop and
maintain V1ZAWRITE, VIZASTAR and, of course, EDNA itself II

Writing machine code is easy, getting it to work is the hard part II

How To Start

First switch o ff the computer, disk drive and printer. Insert the cartridge
(label upwards) into the cartridge slot. Turn on the printer, turn on the
disk drive wait a few seconds, finally turn on the computer. The
Commodore 64 w ill power-up' in the machine code monitor.

To switch to the Editor from the Monitor press RUN. This clears all the
available memory, to give an empty source file. Subsequent entries to the
Editor show the last source file used. To return to the Monitor from the
Editor press RUN once again.

Getting To BASIC From The Monitor

Switch On___

[| The M onitor [|

"7 ^

Two different methods of using BASIC are provided:

This mode of operation allows both BASIC and EDNA source files to co-exist
in memory. You can then swap between them at will. The amount of
BASIC memory is reduced to 20223 bytes. The EDNA source file and BASIC
program, plus variables, are preserved when switching. Return to the
monitor with SYS 57000 from BASIC

2...DQNT PROTECT SOURCE - gHIFIX(RjTU.RNJ

The full 38911 bytes of BASIC memory are available in this mode. BASIC
program source and EDNA source files w ill occupy the same memory and
can therefore corrupt each other. Return to the Monitor with STS 57000
from BASIC.

Chapter 2.

The Editor

EDNA powers-up' in its machine code monitor, from where you may enter
the Editor or BASIC. To select the Editor press RUN *. Obviously, at
switch-on there is no source file in memory. However, subsequent entries
to the Editor returns back to the current source file in use. Switch to the
Monitor by pressing RUN from within the Editor.

When you first enter the Bditor you are required to select the storage
device required. The current device will be highlighted in reverse
characters. To change the device: press a D' for disk, or a C' for cassette.
Press RETURN to continue.

You will be then be prompted to select the type o f printer in use. The
options available are:

P - Parallel (Centronics) printers connected via the User Port
S - Commodore printers connected via the serial port.
L - Line Feed (after Carriage Return).

Select the printer type and line feed option and press RETURN. Press -L' to
turn on the Line Feed option, press it again to turn line feeds off.

The line feed option sends a LINE FEED to the printer after each CARRIAGE
RETURN. Commodore printers generate their own line feeds; other printers
can usually be switched for either option. Details of parallel printer
connections are given in the Appendix.

Using a Parallel Printer WUhip.A M Slcifrpgragi

EDNA allows a parallel printer to be used within BASIC. POKE 154,128
(192 i f you need line feeds) switches all output to the printer. POKE 154,3
restores normal output to the screen.

*T o en ter BASIC ty p e V and RETURN (o r SHIFT 'x ') . En try to BASIC i t fu rth er exp la ined in

Chapter I - G etting Started - page 1-2.

The Memory Scale

W h i t e Y e l l o w j

End o f th e

s o u r c e f i l e

B la ck

P o s i t i o n o f th e

c u r s o r w i t h in

th e s o u r c e f i l e

S t a r t o f th e

s y m b o l t a b le

Batts 2J_U a Meum y Scale

The scale on the second row o f the screen shows how much memory is
available for source and symbol table. The graduations are in Kilobytes up
to a maximum of 38K o f memory. The source file is stored from the bottom
of the file memory working up: the symbol table is stored from the top of
the file memory working down. On the scale are three triangular pointers
which represent:

White the position o f the cursor within the source file
Yellow the end o f the source file
Black the start o f the symbol table (after assembly)

The separation of the Yellow and Black pointers on the scale shows the
amount o f spare memory available. Initially, with no file in memory, the
yellow pointer w ill not be visible, the white pointer w ill be on the far left
o f the scale and the black pointer on the far right.

As a rough guide, the source file w ill usually be about four to six times the
size o f the object file, depending upon the number o f comments used and
the length o f labels. The symbol table w ill usually be about half the size of
the object file. So, it possible to assemble files o f approximately 8K from a
single source file in memory. Larger programs w ill need to use one o f the
disk file linking options (see the Assemble Command description in Chapter
3).

FIND, GOTO, REPLACE, LIST and ASSEMBLE commands show their progress
through the source file by moving the white triangle. Note that DISK and
serial PRINTER operations turn the triangles off.

Editing could not be simpler. There are no line numbers to contend with.
Just type your source line on the screen. The cursor can be moved onto a
character anywhere on the screen using the normal cursor control keys.
Characters can be typed-over, deleted or inserted. The Editor commands
allow whole ranges o f lines to be copied, moved or deleted. The FIND and
GOTO commands are used to instantly locate sections o f source.

A line of text enters the source file as the cursor is moved to another line.
The source file can be scrolled through, by moving the cursor past the top
or bottom of the screen.

Lines may be up to 80 characters long, the line scrolls sideways as the
cursor is moved to the edge o f the screen.

As the line is entered into the source file checks are performed on the
syntax o f the line:

i) Labels must start in the left margin with an upper or lower case
letter of the alphabet and be no more than six characters long.

ii) The op-code must be a recognised 6502 instruction or EDNA
directive. For example:

LDA *'E'
-BYT 0

iii) Any ASCII text in the operand must have both preceding and
closing quotation marks. For example:

CMP * 'A '
.BYT 'apostrophies'

iv) A space between a label and an For example:

START -$2000

lr the syntax is incorrect a 'beep' is sounded and the cursor positioned over
the error for correction.

Text Editing Keys

CRSR keys Move the cursor in the indicated direction.
RUN Exit to the machine code monitor.
STOP Cancel the current line entry, restore any previous

entry, or cancel the current command.
CLR Erase everything to the right o f the cursor on the

current line.
HOME Move the current line to the centre o f the screen.
INST Insert a space at the cursor position.
DEL Delete the character to the left o f the cursor.
RETURN Place the cursor at the start o f the neit line, or tab to

the op-code field.
SHIFT RETURN Next Find/Replaoe.
CTRL Pauses listing when held down.

FI Go to the end o f the file.
F2 Go to the start o f the file.
F3 Next screen.
F4 Previous screen.
F5 Place the cursor at the start o f the next field.
F6 Place the cursor at the end of the text on the current

line.
F7 Inserts a blank line above the cursor. Holding this

key down produces a block o f blank lines, allowing
entry o f a number o f source lines.

FS Deletes a line or several lines starting rrom the
current cursor position. Use the CRSR keys to
highlight the lines to be deleted, the F3 and F4 keys
will cause whole screenfulls o f information to be
highlighted. Press the RETURN key to delete the
lines from memory or STOP to cancel the command.

Use the STOP key to abandon a ll active commands. Also use this
key to cancel changes made to the current line o f text before they are
entered into the source file (changes are stored in memory when the cursor
is moved o ff the line). The STOP key also cancels all FIND and REPLACE
modes.

Editor Command Summary

Keystroke Description Paae/ref.

CBM A Assemble Source File 2-6

CBM C Copy Source Lines 2-8

CBM 0 Disk Commands 2-8

CBM F Find a Sequence Of Characters 2-9

CBM G Go to Label 2-10

CBM I Set Default input/output device 2-10

CBM L Load Source File 2-11

CBM M Move Source Lines 2-11

CBM N New file - clear file & symbol table memory 2-12

CBM 0 Old file - restore file erased by CBM N 2-12

CBM P List file to screen/printer 2-12

CBM 0 Query. Programmer's Calculator. 2-13

CBM R Replace text 2-14

CBM S Save file 2-14

CBM X Mark Source File Position 2-15

CBM Y Go to Marked Source File Position 2-15

CBM Z Append Source File 2-16

CBM 1 Set foreground colour 2-16

CBM 2 Set background colour 2-16

CBM 3 Set border colour 2-17

CBM 4 Set default screen colours 2-17

Editor Commands

1. Assem ble

Purpose:

Command:

Sequence:

Notes:

Assemble the current source file.

CBM A

Hold dovn the CBM key and press 'A'. Enable any required
assembly option by pressing its first letter key, press the
key again to disable the option. Press RETURN to start
assembly. After assembly, press any key to clear the
display and return to the source file editor. Press STOP to
terminate assembly.

The options available are:

(defau lt)- Errors Only.
This is the default assembly option. The assembler then
lists only lines containing errors. A descriptive message
accompanies each line listed. After assembly - pressing
any key returns back to the source file display.

P - Printer.
Enable this option and L IS T to print the assembled
program. All 80 columns of each source line are printed,
as opposed to just 40 columns shown on the screen
display. EDNA assumes a 66-line page, and performs
page skips automatically, unless instructed by a PAGE
directive.

Full Assembly Listing.
The Assembler directives .BYT, .WOR and .DBY often
cause more object code to be generated than can be
listed on one line. This option lists ail the machine code
generated by the directive. Normally, just the first line
o f machine oode is listed. Lines containing errors are
automatically listed in full.

L - List Assembled Source Lines
Two extra Yields' of information are added to the source
code listing on the left, detailing the memory address
and object code o f the current instruction. These are
the hexadecimal values of the machine code program.
These values take up 14 columns on the printer, making
it necessary to restrict source lines to 66 columns
where an 80 column printer is in use. I f this is not
done, the printer automatically carriage return's at the
end o f a long line, splitting it into two and causing
EDNA’S internal line count to be incorrect. This causes
the listing to 'slip' down over the paper perforations.

S - Symbol Table.
This option lists all symbols and values at the end o f an
assembly. Symbols which have been defined but are
not referenced will w ill be marked with an asterisk ('• ’).
This information can be used to draw attention to any
redundant sections o f code.

I I - Machine Code To Memory.
This option places the machine code directly into
memory as it is assembled starting from the address
defined in the source file. Take Care I If this option is
used carelessly, it w ill corrupt the source file or symbol
table. The recommended area is the spare 4k block
from $C000 to $CFFF. This area is not used for BASIC
programs, so routines at this address may be used with
BASIC SYS calls. The 8k areas o f memory from $A000
to IBFFF (under the BASIC ROM) and rrom $E000 to
IFFFF (under the Kernal ROM) may be used if BASIC
files are not being PROTECTED (See X command -
Chapter 1 - Getting Started - page 1-4).

2. Copy

Purpose:

Command:

Sequence:

Notes:

3. Disk Co

Purpose:

Command:

Sequence:

D - Machine Code To Disk.
Use this option to write the assembled machine code
directly out to a disk file. The disk filename is taken
from the source filename, and is then prefixed by a
full-stop. The file automatically replaces any other file
o f the same name on the disk. The load address o f the
file may be changed by using the directive (see
Chapter 3 - Assembler Directives).

To highlight a range o f source lines in one part of the source
file and copy them to another location anywhere in the same
source file. Both parts o f the source file w ill then contain the
same source lines.

CBM C

Place the cursor on the first line o f the range to be copied,
hold down the CBM key and press 'C'. Highlight the lines to
be copied and press RETURN. Move the cursor to the
beginning o f the new location and press RETURN.

Source lines are highlighted with the CRSR up, CRSR down, F3
and F4 keys. Hold them down to repeat.

•a n d

To allow access to the CBM Disk Operating System (DOS)
commands. These commands are fully detailed in the CBM
disk manual.

CBM D

Hold down the CBM key and press D‘, press RETURN to
display the disk directory, or type a disk command in the
correct format and press RETURN.

Notes:

4. Fiad

Purpose:

Command:

Sequence:

Notes:

The default command is 10', this displays the disk directory.
Press the CTRL key to pause display o f a long directory list.
To exit the disk command mode press the STOP key.

To repeat a disk command press RETURN again.

The following are most likely to be o f use:

$0: na* Selective directory.
NO: name,id Format and header whole disk
NO: name Rename disk and clear directory
SO: name Scratch file from directory
SO: na* Scratch fam ily o f files, take care !!
VO Validate disk
RO: newname-oldname Rename file (not to be confused

with N)

To search through the source file for a sequence of
characters.

CBM F

Hold down the CBM key and press T'. Enter the sequence of
characters to be found and press RETURN.

The search starts from the the current cursor location.
When a match is found - the cursor marks the start o f the
found character sequence. The Editor may be used as
normal from this point. The FIND:' prompt continues to be
displayed at the top o f the screen to allow repeated searches
for the specified sequence. Press F2 function key to repeat
the search from the start o f the file.

To resume the search for the neit occurrence: Press SHIFT
and RETURN together. The triangle on the memory scale
indicates the progress o f the search through the file.

To change the search character sequence: issue the FIND
command again.

The FIND command can be abandoned by entering one o f the
other search modes, GOTO or REPLACE, or by pressing the
STOP key. The STOP key will first cancel the current line
entry; if the current line has been changed move the
cursor o ff the line before abandoning the command.

S. Goto

Purpose:

Command:

Sequence:

Notes:

To search the source file for a specific label, at the start o f a
source line.

CBMG

Hold down the CBM key and press 'G', enter the label name
and press RETURN.

The search is made for the occurrence o f a label in the ‘label
field' o f a line (Le. its definition), a match is not be made
where the label occurs in the operand field, or elsewhere.

6. Input/Output Device

Purpose: To select the current Input/Output device to disk or cassette.
To select serial or parallel printer output.

Command: CBM I

Sequence: Hold down the CBM key and press T , type 'C' (for cassette)
or U' (for disk) and press RET1IRN. Type ? ' or S' to change
to a parallel or serial printer. Type V to switch the line feed
option on or off. Press RETURN.

Purpose:

Command:

Sequence:

Notes:

8. Move

Purpose:

Command:

Sequence:

Notes:

To recall a source file from disk or cassette into the editor.

CBM L

Hold dovn the CBM key and press X', type the name o f the
file to be recalled and press RETURN.

The source file currently held in memory will be lost if it has
not been previously saved, a warning message will be
displayed if the rite has not been saved in its present form.

Cassette users should reply to the FOUND' message by
pressing the CBM (or CTRL) key.

Disk users may use the pattern matching symbol when
loading a file into the editor (e.g. to load a file called
'document', type 'doc*' onto the command line, and the first
file on the disk starting with ’doc' w ill be loaded into
memory). However, an attempt to save the file with the
same abbreviation wiU not be permitted.

To highlight a range o f lines in one part o f the source file and
move it to another location in the same source file.

CBM M

Position the cursor on the first line o f the range to be moved,
hold down the Commodore key and press 'M'. Highlight the
source lines to be moved and press RETURN. Now move the
cursor to the beginning o f the new location where the
highlighted source is to be moved to, and press RETURN.

Lines are highlighted with the CRSR up, CRSR down, F3 and
F4 keys. The move w ill not take place i f there is insufficient
memory for a duplicate copy o f the highlighted lines to be
kept during the move. Move the source lines in smaller
sections if short o f memory.

Purpose: To delete all source file lines and symbol table from
memory, to allow a new file to be started.

Command: CBM N

Sequence: Hold down the CBM key and press 'N'. type a Y to clear the
memory, or press the STOP key to cancel the command.

10. Old Pile

Purpose: To restore the source file just cleared from memory by a
New File (CBM N) command.

Command: CBM 0

Sequence: Hold down the CBM key and press O'.

11. Priat/List

Purpose: To list the source file to the screen and, optionally, out to a
printer.

Command: CBM P

Sequence: Hold down the CBM key and press P\ To list to the printer
press 'F once again. To start the listing, press RETURN. To
halt the listing press STOP.

Notes: The listing starts at the current cursor location and continues
to the end of the source file.

The Assembler directives .LIST, .NOLIST, and .PAGE, that

The progress o f the listing may be seen from the position of
the white triangle along the memory scale.

12. Query

Purpose:

Command:

Sequence:

Notes:

EDNA automatically skips over paper perforations, assuming
that the paper length is 11 inches, with ! /6" line spacing. A
blank line in the last five lines o f a page initiates a page skip.
This is designed to improve the presentation o f the printed
source file, as it w ill reduce the number o f routines that are
split over two different pages. Page skips can be forced by
putting extra blank lines into the source file.

P r o g r ia a e r 'i Calculator

To evaluate and display an expression in its decimal and
heiadecimal equivalents. To show the address o f a label,
after assembly.

CBM Q

Position the cursor on the expression in the source file that is
to be evaluated. Hold down the CBM key and press ‘O'.
Characters from the cursor position up to the next space are
then automatically placed on the command line. To enter
your own expression or calculation - type over these
characters. Press RETURN to display the result o f the
expression Press STOP to abandon the query command.

Labels may be included in expressions, but only after the
source file has been asseaibled.

The expression may include any o f the forms permitted for
an operand: decimal; heiadecimal; binary; ASCII (text in
quotations); program counter; labels; arithmetic operators

(♦.-.V).

For example:

3*190
END-START
'A'

Purpose:

Command:

Sequence:

14. Save

Purpose:

Command:

Sequence:

Notes:

To search Tor a sequence of characters within the source file
and to, selectively, replace it with another sequence.

CBM R

Place the cursor on the first line to be searched, hold down
the CBM key and press R -, type the sequence o f characters to
be searched for and press RETURN. Type the new sequence
o f characters, and press RETURN.

When a match is made: the line is displayed in amended
form. Press STOP to restore the original line. The amended
line enters the source file as the cursor is moved o ff the line,
Resume the search by pressing SHIFT and RETURN together.

I f the modified line no longer conforms to the correct editor
syntai you should correct the line before proceeding with
the REPLACE command or further editing operations. Press
STOP twice to abandon the command.

To save the source file held in memory to either cassette or
disk (as selected upon entering the editor for the first time,
or by using the CBM 1 command).

CBM S

Hold down the CBM key and press 'S', type the filename and
press RETURN.

I f you have previously loaded or saved a source file the
known filename is prompted.

To REPLACE a file already on the disk, insert > 0 : ' before the
filename. The Load command ignores this prefix.

Press STOP instead o f RETURN to abandon the SAVE
command.

I f you wish to change the name o f the source file in memory,
issue the LOAD or SAVE command, type the new filename,
then press the STOP key.

IS . Mark Position

Purpose: To mark the current position in the source file. I t can then
be 'jumped-to' at any time using the 'Go To Marked Position'
command.

Command: CBM X

Sequence: Position the cursor to the source line where the ‘mark’ is to
be set, hold down the CBM key and press T .

Notes: This command, together with the CBM Y (Go To Marked
Position) command, allows a quick return to the working
location, after browsing through other parts o f the source
file.

16. Go To Marked Position

Purpose: Moves the cursor to the position in the source file as set by
the CBM X command.

Command: CBM Y

Sequence: Hold down the CBM key and press Y'.

Purpose: To delete all source file lines starting From the current cursor
location, and to then append a source file from disk or
cassette.

Command: CBM Z

Sequence: Place the cursor after the last line to be retained in the
current source file. Hold down the CBM key and press the T
key, type the name o f the file to be appended and press
RETURN.

Notes: It is recommended that you SAVE your source file before
using the APPEND command.

18. Set Foreground Colour

Purpose: To change the colour o f the text and the cursor on the screen.

CBM 1Command:

Sequence: Hold down the CBM key and press '1'; repeat this process
until the required colour is selected.

19. Set Background Colour

Purpose: To change the background colour o f the screen.

Command: CBM 2

Sequence: Hold down the CBM key and press ‘2'; repeat this process
until the required colour is selected.

20. Set Border Colour

Purpose: To change the colour o f the border around the screen.

Command: CBM 3

Sequence: Hold down the CBM key and press '3‘; repeat this process
until the required colour is selected.

21. Default Colours

Purpose: To change the screen colours back to the default startup
colours.

Command: CBM 4

Command: Hold down the CBM key and press '4'.

Chapter 3.

The Assembler

This Chapter details the program syntax used by the Assembler, and the
special assembler directives that cause certain actions to be taken at
assembly time. The syntax o f instructions adheres closely to the
MOS-Technology specification, already familiar to users o f the Commodore
assembler.

Constants

Constants are fixed numerical values. They may be expressed in the
fallowing forms:

Decimal (base 10) A number without any prefix w ill be interpreted
as decimal. Bytes may hold values 0 to 255, two
bytes (a word), the values 0 to 65535.

Hexadecimal (base 16) Prefixed by a 1 ' sign, a byte may hold a value of
$00 to IFF and a word the value $0000 to $FFFF.
Unlike decimal each hex digit relates to 4 specific
bits (a nybble) o f a byte, so the binary pattern is
easily obtained.

Binary (base 2) Prefixed by a '** sign, a byte may hold the value
100000000 to % 11111111. Although a word may
be expressed in binary, the hexadecimal form is
usually more convenient

Ascii or Text The Assembler evaluates any character enclosed
by single quotes as the ASCII code for the
character. For example: 'A', ’a', $', etc. Use two
single quotes to denote the ASCII code for a single
quote.

The following, expressed in each o f the above forms, w ill have the same
assembled value:-

141 'J l

Labels

Labels are names typed at the start o f a line in the source file. A label can
be used to represent a program address, variable or constant. A label
should offer some description o f its purpose, to make the program more
easily understood. The use o f labels, rather than absolute addresses, adds
substantial flexibility when altering the program.

Labels may be up to 6 characters long and should start v ith a letter o f the
alphabet in upper or lover case. A label aauat not contain commas,
brackets, spaces or arithmetic operators, such as V , o r

Some examples o f labels:

LABEL -$2000
label STA CHAR

A 1000 ADC *<1000
ST.RBG STX LOW
c io ir r JMP IFFD2
CHAR .BYT 0
LOW -$32

Expressions

Constants and labels can be expressed in a variety o f ways using the
following arithmetic operators:

* addition
subtraction

* multiplication
/ division

Unlike BASIC, where multiplication takes precedence over addition, and
brackets may be used to alter the order o f precedence, the Assembler
evaluates expressions strictly from left to right. The result and any
intermediate calculation w ill be rounded down to a 16-bit integer. When
in doubt, use the query command (see Chapter 2 - The Editor - page 2-10)
to try out an expression.

Some example expressions:

2+1
LABEL/2
LABEL 1-LABEL2
•-LABEL
*♦1

Remember that the expression is evaluated at ASSEMBLY TIME, and that
the calculations use the addresa of a label, not the contents o f memory
addressed by that labeL

Low And High Byte Operators

As the 6502 microprocessor uses 8-bit registers, it is often necessary to
break down 16-bit values into their constituent high and low bytes. The
operators for this are:

< low byte

> high byte

For example, to place the address o f the screen video RAM in a zero page
address pair":

P I -$02
SCREEN = $0400

LDA »<SCREEN ; $00-LOW BYTE
STA PI

LDA #>SCREEN ; $0-4 - HIGH BYTE
STA Pl+1
RTS

Note: These operators may be used with an expression, and w ill operate

on its result. For example, >$1234-1 - $12, <$1234-1 - $33.

Source Line Format

Each source line must conform to the following format:

. . 8 . 1 2 1 6 . . 2 0 . . 2 4 . . 2 8 3 2 5 6

j S T A R T JSR M IT i ; S e t p ro g ra m c o n s ta n ts 1
!

!

J M P PROG
.. . . ,

i i

(T E X T .B YT I

|...........

L a b e l F ie ld O perand F ie ld C om m en t F ie ld

In s t ru c t io n F ie ld

Egm s.il. .Sauces UafcM aiL

1. THE LABEL FIELD

This is the area from the first coluatn of a row of text up to the
instruction rield. Labels should appear in this field once only, to define a
particular aeaaory address. Labels are optional and are only required
where there are references made to it.

2. INSTRUCTION FIELD

The instruction field contains the three character instruction op code
mnemonic or an assembler directive. When typing in a line without a
label type a space or press RETURN (to tab), before typing in the
instruction.

3. OPERAND FIELD

The operand specifies the addressing mode and the register, data or
address to which the instruction applies. Where the addressing mode is
implied in the instruction no operand is required (e.g. PHA). The operand
should be separated from the instruction by one space.

Type a semi-colon followed by the comment. Comments may also be
entered as headings across the whole line. We recommend the use of
comments at the start o f each routine to summarise its function, detailing
entry and exit conditions. Within a routine comments should point out
each process and conditions for branching. Comments should be added to
specific instructions where their use is not self evident, such as forced
(unconditional) branches, ingenious use o f the flags, etc. Comments are
ignored at assembly time, but appear in assembly listings.

Appendix t gives examples o f valid 6502 addressing modes recognised by
this assembler.

Assembler Directives

An a ia e a b le r directive is an instruction to tha assembler to perform
a specific task when assembling a program. Directives fa ll into two
categories, those that generate object code and those that control
assembly.

1. DIRECTIVES THAT GENERATE OBJECT CODE

There are three directives that generate object code:

. B I T
This directive generates bytes o f data within a program. Any attempt
to assign a value greater than IFF (255) w ill produce an error at
assembly time. Several bytes may be defined on one line by
separating them with commas.

eg . .BYT $20,100,2+1,LABEL,<$1234,>$1234 - 6 Bytes.

Place single quotes around text to define a string' of ASCII data.

e.g. .BYT Text terminated by zero ',0 - 24 Bytes.
.BYT Text terminated by setting bit ',7'+$80 - 31 Bytes.

W O i
This directive generates 2 byte words in low, high byte order.

e.g. .WOR $FFFF,| 1234,12345,LABEL - 8 Bytes.

.DBT
This directive generates 2 byte words in high, low byte order. This is
rarely used.

2. DIRECTIVES THAT CONTROL ASSEMBLY

Equates

LABEL - VALUE (o r EXPRESSION)

Labels may be equated to constants, other labels or expressions. A
label can only be equated in terms oT another label iT it has already
been defined in the p ro g raa For example:

LABEL1 -10000
LABEL2 - * 1010101O+'z'-l +LABEL 1*3/2
CHROUT -IFFD2

Set Program Counter

* = address

This directive is used to set the address at which the program should
start. The Assembler will increment its program counter' from this
point as it assembles the object code.

Allocate lle a o ry

* - * ♦ constant

This directive increments the 'program counter' by the constant value.
This is normally used to allocate memory for variable storage. For
example:-

*-102
TEMPI •-•+1
TEMP2 *-•♦1

P I *- '*2

This memory has an initial value o f IFF in each byte allocated.

A aseab le To l le a o ry

MEM
source code

NOMEM
source code

During assembly, these directives can be used to store selective
sections o f assembled machine code directly into memory.

List A sseab ly

LIST
source code

NOLI ST
source code

During assembly, these directives can be used to selectively print
parts o f an assembly listing.

Disk Load Address

• - address

This directive allows the program load address to be independently
set. Normally the assembled program w ill be loaded back at its
original program counter address (‘ -address). The program load
address is stored in the first two bytes o f the assembled machine code
file.

Linked Files (Disk o r Cassette)

F IL n ex t filen am e
.END f ir s t filen am e

Files may be 'linked' together to effectively form one large source file
at assembly time. The last line of each source file contains the call to
the next (.FIL filename). The last file must contain a .END directive
that specifies the name o f the first file in the list (.END filename).
Assembly therefore starts and ends with the first file loaded in
memory. Each file is loaded into memory twice during assembly: oace
for pass 1 and again for pass 2.

Library Files (Diak on ly)

.LIB filename

Unlike linked files, library files are not loaded into memory but are
read directly from the disk. At the end o f the library file control is
returned to the file in memory. The file in memory need only be a
series o f .L IB calls in an extreme case. Very large programs may be
assembled in this way, the only limit being when the entire memory is
taken up by the symbol table (very unlikely!). Library files must not
contain the .F IL or .END directives.

Library files are just ordinary EDNA source files. One o f the most
practical uses for a library file is a complete definition o f all 'operating
system' addresses. This 'library file ' can then be .L lB bed into the
front of any source file. This saves considerable time, effort and
errors I

Conditional Assembly

.IF expression
source code

[.ELSE]
source code

.ENDIF

Where several different versions o f a program are required, perhaps
to run on different computers, the assembler can be made to 'skip'
over sections of the source file and assemble alternative sections
determined by an equated value at the start o f the program. The
equated value will be judged true if it is not zero (<>0), raise i f it is
equal to zero (-0).

If, at assembly time, the label or expression after the .IF directive is
found to be true the source lines following will be assembled: i f it is
false they will be ignored until the next .ELSE or .ENDIF directive.

The .ELSE directive is an optional part o f the conditional assembly
directive, and is used after the source lines that rollow a .IF

The .ENDIF directive turns conditional assembly ofT and assembly
continues as normal.

Some examples of conditional assembly:

C64 • 1

SCREEN
SW1DTH

.IFC64
-$0400
-40
*-$C000

; Is C64 true (Le. C64-1) ?
; Yes - so compile

SCREEN
SW1DTH

ELSE
=$8000
=80
'=$7000

; Is C64 raise (C64-0) ?
; No - so don't compile

.ENDIF ; End conditional assembly - compile
; everything after this

The above example details how values for the screen memory, screen
width and program memory might be set up for a Commodore 64 as
opposed to a Commodore 8000.

End Assem bly

END

This directive ends the assembly o f the source file. It can be placed
anywhere in the source file and may therefore be used to produce a
partial assembly o f a much larger source Tile.

After Assem bly

One o f the most useful commands is QUERY. After an assembly, QUERY
will show the assembled address, or value, o f any label: both equated
Labels and labels within program source routines.

Chapter 4.

The Monitor

The machine code monitor makes machine code programs easier to test and
get working! When you first switch on your computer with the cartridge
inserted, EDNA 'power's up' in the Monitor. Exit to BASIC by typing 'x' and
RETURN, press RUN to enter the Editor.

Monitor Command Summary

"filename" Name o f the file up to 16 characters in
length. Quotes may be omitted iT
there are no embedded spaces in the
filename.

I 1 Square brackets indicate optional
sections o f a command.

xxxx Start address in hexadecimal.

y y y y End address in hexadecimal.
Commands honour this end address,
unlike many other monitors.

zzzz Offset address in hexadecimal.

In] Device number. ’ I ' for cassette, '8' for
disk. Defaults to '8' if omitted.

[printer) Printer type. S' for serial Commodore
printers. P ' for centronics parallel, 'PL'
for parallel printers with requiring
linefeeds. Defaults to screen output.

All command parameters can be separated by either a space or a comma.
Type the command, plus parameters and press RETURN to execute it.

Remember, the display commands, such as Disassemble and Memory are
flban.dfi.ned by pressing SHlfT and BETURfc

Copn m ds:

C xxxx yyyy zzzz [printer] Compares the block o f memory from
xxxx to y yyy with the block of
memory starting at zzzz. Byte
mismatches are shown, along with
their addresses, on separate screen
lines.

Dxxxx

D xixx y yyy [printer]

F xxxx yyyy aa

G xxxx

I f the alternate character set is
selected (SHIFT CBM): the first block is
taken from all RAM and the second
block from the normal memory map.
This allows RAM and ROM at the same
addresses to be compared. STOP
cancels the compare.

Disassembles one line at this address.
Move the cursor up and down the left
margin to scroll the disassembly
through memory.

Disassembles memory from xxxx to
yyyy. Press CTRL to pause.

Fills the block o f memory from xxxx to
y yyy with the byte o f data aa.

Executes the machine code program
starting at address xxxx. This
command is used as a 'subroutine'
from within the monitor. EDNA
initialises the stack pointer to $FD,
with the top two bytes o f the stack
containing a return address back to
the Monitor.

H xxxx yyyy "text" (printer)

L "filename" In] (xxxx]

M xxxx

M xxix yyyy lprinter]

R

S "filename" In) m i yyyy (czzz]

Hunts memory between x m and
yyyy for all occurrences of aa bb
(etc.). The address and following 8
bytes o f data are displayed for each
occurrence of the specified data. STOP
cancels the hunt.

As above, but hunts for "ten".

Loads the named file into memory. If
a load address is not specified the file
loads at the address specified at the
start o f the file. Cassette riles
originating from other programs may
contain an ID byte that prevents them
from being loaded to the supplied
i i x i address.

Displays one line o f memory at ix x i .
Move the cursor up and down the left
margin to scroll through memory.

Displays memory from ix x i to yyyy.
Press CTRL to pause.

Register display. These registers are
displayed automatically when a BRK'
instruction is encountered or during
■Walk' operation. The registers are
shown in heiadecimal, with the
eiception of the flag register, which
shows the binary value o f individual
flags.

Saves memory contents from i n i to
y y y y as a program file (add 1 to the
end address for cassette). A different
'reload' address zzzz (disk only) may
be specified. If the alternate
character set is selected (upper/lower
case) the file w ill be saved from the
RAM underneath ROM (disk only).

V "filename" (a] U rn)

Transfers a block of memory starting
at xxix and ending at y y y y to the
memory location starting at address
zzzz Memory transfer can be from all
RAM if the alternate character set is
selected.

Verifies a file on disk or cassette with
the file in memory. A 7 ' is displayed
if the two differ. Closer inspection of
differences may be made by loading
the file to an offset address and using
the com pare (C) command.

W xxxx yyyy zzzz Valles through code. This command
can be used to trace through a
program starting at xxxx. The
parameters y y y y to zzzz are used to
specify a range o f addresses where
EDNA should 'single-step' each
instruction. Outside this range the
program will run continuously, though
at considerably reduced speed. When
the program passes through the
specified range the registers are
displayed, the next instruction to be
executed is disassembled and listed to
the screen.

CRSR down Continues the trace.

SHIFT-W Resumes the trace mode.

SH1FT-C Cancels trace mode and
resumes the program at normal speed.

No method o f tracing is infallible, here are a few don'ts:

1. Don't attempt to single-step through any part o f the operating
system used by the trace routine itself.

2. Don't trace through any routines where time is a critical factor,
such as disk 1/0.

3. Don't trace through any programs that redefine the screen modes
or location

4. Don't single-step through routines reading input data from the
screen.

5. Don't trace through routines which 'page out' the operating system.

X Exits to BASIC (protect file - see page
1- 2)

SHIFT X

>IS0:F1LE* etc.)

Exits to BASIC (don't protect - see
page 1-2)

Displays disk status.

Sends disk commands. See also the
disk command in Chapter 2 - The
Editor.

$10:FILP etc.) Displays a disk directory, selective
directory etc.

PGC .A .X .Y SP NV. BDIZC
*FFFF FF FF FF FF 00100000 The displayed registers may be edited

on the screen.

:xxix aa bb cc dd letc.J

j ix x aa bb cc (etc.)

Write data aa to address xxxx, bb to
xxxx+l.etc.

Write data as above and disassemble
the instruction.

BRK instruction A BRK" instruction within ■
program returns control to the
Monitor regardless of the value of
the slack pointer. The value o f the
program counter. A, X, Y, the stack
pointer and status registers are
displayed.

Unless the program running resets the
stack pointer, an RTS instruction will
return control to the machine code
Monitor. The Register command can
be used to show A, X, Y, the stack
pointer and status registers.

The 'M' and 'D' commands produce a listing compatible with the ':' and 7

data entry commands. This allows inspection and modification o f memory.

RTS instruction

The Promenade Cl Eprom Programmer

Commands have been included to enable the Promenade Eprom
Programmer to be used within the Monitor. This unit w ill program all
types o f Eprom, using various programming methods as selected. The
commands included follow the same format as in the Promos software
included with the unit with the exception that the commands are in
h a i i d e d a t l rather than decimal. The error light stays on steadily after
an error has occurred rather than flashing.

Z Initialise the system.

tJ xxxx y yyy zzzz ICW)IPMW) Program the memory from xxxx to
yyyy into the Eprom at address zzzz.
CW controls the Eprom type, PMW
defines the programming method. I f
the alternate character set is selected
the Eprom is programmed from all
RAM. Note that the CW and PMW
must be entered in hexadecimal.

£ xxxx yyyy zzzz [CWI Read Eprom into memory.

SHIFTed E Erase 48016P Earom.

Memory Used By The Monitor

Zero page addresses $02 - $2E

$0100-$01 IF

$0120 - $012A

$02FF

Workspace used by the Monitor.
Machine code programs may also also
use any o f this area as no long term
data is stored here. This area is
pushed onto the stack during
single-step tracing, so that its use
remains transparent to the program
being traced.

Workspace.

Pseudo-registers.

Flag to indicate memory mode -
protect or don't protect files.

$0300, $0301 Vector for BASIC.

Memory Swapped When Entering Or Leaving
BASIC

$02 - $8F
$OBOO - $26FF
$2700 - $56FF

with $A072 - $A0FF
with $A100 - $BFFF
with $D000 - $FFFF

Chapter 5.

Code Within A BASIC

EDNA allows you to develop both machine code and BASIC programs in
memory at the same time. Two different methods o f using BASIC are
provided: PROTECT SOURCE (press X and RETURN) and DON'T PROTECT
SOURCE (hold down the SHIFT key and press X. then RETURN).

PROTECT SOURCE allows both BASIC and Assembler files to be protected in
memory at the same time. You can then swap between them at will. The
amount o f memory available is restricted to 20223 bytes from BASIC.
BASIC program source and variables are preserved when using the Editor,
similarly Editor source is preserved when using BASIC. Get back to the
monitor with a SYS 57000 call from BASIC

DONT PROTECT SOURCE allows the Tull 38911 bytes of BASIC memory to be
used. BASIC and Editor source files are not preserved when switching
between the Editor and BASIC Get back to the Monitor with a SYS 57000
call from BASIC

To get to the machine code Editor from the Monitor, press the RUN key.

This chapter gives details o f how to make the best use o f the available
memory when developing a program in both BASIC and machine code.

Zero Page Locations

BASIC uses all the zero page locations from $02 to $8F at some time or
another, and the operating system uses most o f the rest. Although there
are a few locations it is safe to use. the safest solution is to push an area of
zero page used by BASIC onto the stack at the start o f a machine code call
and replace it on e i it from the routine.

Workspace Available

A section o f filespace may be reserved as workspace. In addition the
following locations are available:

Communication between BASIC And Machine Code

Parameters POKEd into memory within BASIC can be read by a machine
code program, modified where necessary and subsequently PEE&ed back
from BASIC. BASIC also loads the processor registers from stored locations
at the start o f a SYS call and stores the return values back at the end o f the
call. These locations are:

A S030C (780)
X I030D (781)
Y J030E (782)
STATUS J030F (783)

Except when set to zero at switch-on, these locations are otherwise
untouched. Note, that i f $030F (status register storage) becomes corrupted
it is possible for the processor to be set in its decimal mode, with
unpredictable results.

S02A7 - I02FB
*0334 - J033B
I033C - J03FB
I03FC - I03FF
S07E8 - J07F7

(The Monitor uses S02FF)

(Except when using a cassette)

(The screen only uses 40 * 25 bytes)

How And Where To Store The Machine Code
Program

During development o f a program that incorporates both machine code and
BASIC it is probably easiest to assemble the machine code to the 4k
memory block starting at $C000. This area is not used by BASIC or the
Assembler /Editor and it is accessible at all times from both

For, the finished product, the following two alternatives are suggested to
save the user from the need to load several files:

1. Download machine code files within the program.
2. Append machine code to the end of a BASIC file.

1. Download Machine Code Files V i thin BASIC

Files may be loaded into memory and called as required during the
program, in which case they may all share the same memory, or
alternatively, all the files may be loaded when the program is first run and
called whenever necessary. The SC000 area o f memory remains the first
choice o f position for machine code in memory.

As an alternative, you may change the top o f memory pointer to allow
extra room at the top of the filespace from $9FFF downwards (the pointer
normally points to SA000). I f BASIC is entered via the Monitor using the X
command (share memory between the Editor and BASIC) this limit is
lowered to S56FF. Where you change the top o f memory pointer, POKE the
pointer down at the start of a program, otherwise strings are liable to
overwrite the machine code. Call CLK and BASIC w ill initialise the string
pointers to the new top of memory address. In the example on the next
page, the following line would be inserted after line 10.

20 POKE 55, Jow -byie : POKE 56, b igb -b y te : CLR

One snag with downloading Tiles is that it causes BASIC to return to the
start o f the program. Fortunately, the variables remain intact - so you can
produce a program of the form:

10 ON A GOTO 1010,2020 etc.
30 REM initially A -0 so the program
40 REM will drop through to here
SO REM after executing line 1000
60 REM the program w ill return
70 REM to line 1010 etc.

1000 A - l : LOAD file-r.8 .1
1005 REM program never reaches this line
1010 REM it returns to this line

2000 A-2: LOAD file -2 ’,8.1
2010 SYS s U rt Mddress

2 . Append Machine Code To A BASIC Program

This method allows machine code to be saved and loaded as part o f a
BASIC program.

As an indication o f the end o f the program the BASIC command interpreter
detects two NULLs forming what would otherwise be the pointer to the
next line. The BASIC text editor maintains a separate pointer which is set
during a cold start (switch on machine or SHIFT X Monitor command) to the
first free byte after the NULLs. This pointer is used as the end o f file
pointer when the program is saved, and the starting point for variable
storage which accumulates above the program while it running. In normal
use the pointer and NULLs are moved up and down memory together as
the program is edited. I f machine code is placed after the end of the BASIC
program, and the end of file pointer is moved up to accomodate, the
program will run quite normally. However, the BASIC p r o g r ia should
not be edited in this fo ra , the machine code would be relocated as it
was moved about in memory by the BASIC editor.

To append a file in this way:

a) Enter BASIC from the Monitor (X command) and load the
BASIC file. It is likely that the program already contains
SYS calls to the area in memory where the program was
developed. Change all o f these calls to SYS 45640, the
new addresses are not yet known. Using a five digit
'dummy' call ensures that the program does not increase
in size when the final values are substituted; it does not
matter if it shrinks by a few bytes. The address 45640 is
the ?ILLEGAL QUANTITY ERROR call, in case you forget to
change them later.

b) Note the end address o f the program using the statement
directly (without a line number) from BASIC:

?PEtt(45) ♦256*PEEK(46)

c) Exit BASIC (SYS 57000) and enter the Editor (RUN key).
Load the assembly code source file, if it is not already
present.

d) Change the start address to be greater than or equal to
the end o f BASIC address obtained in step b) (with the '*
-start-address' directive). It is advisable to leave a small
gap between the two to allow small changes to be made
to the BASIC program without the need for reassembly.
Do not edit the BASIC program once the machine code is
incorporated.

e) For disk users: assemble the program to the disk with
the new start address. Note the filename.

For cassette users (or as a short cut): I f the end o f the
machine code falls below I26FF it is possible U> assemble
the object code directly into the area o f memory where
the BASIC file is stored while within the Monitor or
Editor. The memory from $0800 to S26FF is swapped
with RAM at SA100 to SBFFF (nearly 8k). The remainder
o f the swapped file space is from JD000 to $FFFF.
The object code is assembled to memory using the offset
» -**$ 9 9 0 0 placed on the line after the
*-atarl-addresa directive.

f) Use the Q rn ry command to note the decimal value o f all
entry addresses used by SYS calls. Note also the high and
low byte values o f the end address by querying:

<• Jow-byie
>* b igb -b y te

g) Exit the Editor using the RUN key and enter BASIC (X
command). Substitute the real values into the SYS calls
noted above. I f the object code was assembled to disk,
load it back into memory:

LOAD " filenam e ",8,1

Update the end o f file pointer to include the machine
code section obtained from the values obtained in f)
above.

POKE 45, h v -b y te : POKE 46, b igb -by te

From now on you should not edit the program.

h) Save the file to cassette or disk.

SAVE “ filenam e ' (cassette)
SAVE" filenam e ”,8 (disk)

i) RUN the program to test it.

The Monitor X command allocates a BASIC file area from $0800 to $56FF.
I f your files are too large for this mode the SHIFT X command may be used.
This allocates the full file area to BASIC from $0800 to $9FFF, overwriting
assembler source files. Similarly, assembler files overwrite BASIC files. If
this mode is used files may not be assembled to memory as described
in section e), but must loaded from disk as required.

A 1. 6502 Addressing Modes

The following are some examples of valid 6502 addressing modes. An
address may be a constant, label or expression.

Implied addressing, 1 byte

CLC
PHA

Accumulator Addressing, 1 byte

ASL A
ROR A

Immediate Addressing, 2 bytes

LDA *value
ORA **01010101

Relative Addressing, 2 bytes

Forward and backward branches of up to half a page are allowed. The
assembler w ill calculate the relative address and reject any out o f range
values as errors.

BNE address
BEQ address
BCC address
BCS address

Zero Page * * d Absolute Addressing, 2 and 3 bytes

The Assembler w ill choose the zero page mode where possible.

LDA address
JSR address (absolute mode only)
JMP address (absolute mode only)

Zero Pag* n d Absolute Indexed Addressing, 2 and 3 bytes

LDA address,X
LDA address,Y

A2. Extra Instructions For The 65C02
Microprocessor

Push and Pull Index Registers

DA PHX
5A PHY
FA PLX
7 A PLY

Increment and Decrement Accumulator

1A INC A
3A DEC A

Unconditional Branch

8002 BRA • * !

Store Zero In M eao ry

64FF STZ IFF
9CFFFF STZ IFFFF
74FF STZ IFF, X
9EFFFF STZ IFFFF. X

04FF TSB IFF
OCFFFF TSB IFFFF
14FF TRB IFF
1CFFFF TRB IFFFF

Note: N and V flags are not affected during immediate instruction

89FF BIT “ IFF
34FF BIT IFF, X
3CFFFF BIT IFFFF, X

Indexed Indirect Jump

7CFFFF JMP (IFFFF,X)

Indirect Addressing (not indexed)

72FF ADC (IFF)
32FF AND (IFF)
D2FF CMP (IFF)
52FF EOR (IFF)
B2FF LDA (IFF)
12FF ORA (IFF)
F2FF SBC (IFF)
92FF STA (IFF)

A3. Parallel Printer Connections

Printer User Pori
Pin Function Pin Nam?

1 Strobe M PA2
2 DataO C PBO
3 Data 1 D PB2
4 Data 2 E PB3
5 Data 3 F PB4
6 Data 4 H PB4
7 Data 5 J PB5
8 Data 6 1C PB6
9 Data 7 L PB7
10 Acknowledge B FLAG

Pina 11-18 unused.

19 Ground 1 Ground
20 Ground 1 Ground
21 Ground 1 Ground
22 Ground A Ground
23 Ground A Ground
24 Ground A Ground
25 Ground N Ground
26 Ground N Ground
27 Ground N Ground
28 Ground 12 Ground
29 Ground 12 Ground

Pins 30-36 unused.

You may purchase a cable in this configuration by contacting VIZA
SOFTWARE at the address given below.

A4. Memory Used By EDNA

$0901-$AQ00

J08F6,7
$08F8, 9
$08FA, B
$0900

J02-I8F

S02A8-S02FE
$0800-
$08CC-
J08EE.F
$08F0, 1
$08F2, 3
$08F4, 5

Zero page scratchpad. Initialised on entry to EDNA
so it may be used freely from outside.
Assembly buffer (also freely useable).
Buffer space.
Filename store.
Old end of file pointer after NEW.
ftointer to start of source file.
Pointer to end of source file.
Pointer to the absolute limit o f the symbol table
(normally equal to end o f source pointer, but holds
value o f largest source file in a linked file
assembly).
Pointer A, end of current symbol table.
Pointer B, start o f symbol table for Pass 1.
Pointer C, start o f symbol table for Pass 2 ($A000).
Zero byte
Source file extends upwards, symbol table extends
downwards.

Suggestion: it is possible to 'carry over' a symbol table from one assembly
to another by copying pointer A into pointer B. using the Monitor. Do this
after each assembly, and all symbol tables will then be appended. Use (or
don't use !) the NEW command to reset these pointers back to their usual
value.

A ll lines terminate in a zero byte, a blank line is just a zero byte. All 6502
mnemonics and EDNA directives are tokenised. All tokens have their top
bit set. So it can be assumed that if the first byte in a line has its top bit
set then the line has no label. I f the top bit is clear, then the byte is the
first character o f a label.

Comments are compressed by omitting single spaces and setting the top bit
o f the next character. Double spaces are stored as one space with the top
bit set. All other characters are stored in ASCII.

Source lines can be inspected using the Monitor. Source lines are normally
stored starting at location $0901.

A5- Source File Format

List o f tokens

$80 ADC $81 AND $82 ASL
$83 BCC $8-4 BCS $85 BEQ
$86 BIT $87 BM1 $88 BNE
$89 BPL $8A BRA* $8B BRK
$8C BVC $8D BVS $8E CLC
$8F a D $90 a i $91 CLV
$92 CMP $93 CPX $94 CPY
$95 DEC $96 DEX $97 DEY
$98 EOR $99 INC $9A INX
$9B 1NY $9C JMP $9D JSR
$9E LDA $9F LDX $A0 LDY
$A1 LSR $A2 NOP $A3 ORA
$A4 PHA $A5 PHP $A6 PHX*
$A7 PHY* $A8 PLA $A9 PLP
$AA PLX* $AB PLY* $AC ROL
$AD ROR $AE RTI $AF RTS
$B0 SBC $Bl SEC $B2 SED
$B3 SEI $B4 STA $B5 STX
$B6 STY $B7 STZ* $B8 TAX
$B9 TAY $BA TRB* $BB TSB*
$BC TSX $BD TXA $BE TXS
$BF TYA $C0 $C1 m*

$C2 > * ’ $C3 .BYT ' $C4 ‘.WOT
$C5 ‘.DBY ' $C6 ’.F1L ’ tC7 •.END '
$C8 .LIB ’ $C9 MF ‘ $CA .ELSE
$CB .ENDIF ‘ $CC •.END' $CD .MEM
$CE .NOM' $CF ‘.LIS' $DO "-NOL-
$D1 '.PAG' $FF V (start o f comment)

* 65C02 instructions.

A 6. Messages From EDNA

As EDNA assembles the source file, it builds a list o f defined labels. This list
o f labels is known as the symbol table and is stored in the unused part of
memory. I f the source file is particularly large there will be insufficient
room to hold the complete symbol table. The source file should be split into
two separate, smaller files. The second source file can then be L IB 'ed at
the end o f the first file. Alternatively, use the F IL directive to chain from
the first file to the second.

A forward reference, that itself contains a forward reference cannot be
evaluated correctly. Check the use of the label.

Unresolved Expression

The expression has an incorrect syntax and cannot be fully evaluated.

U b s U fo t Def in e d

A referenced label has not been defined anywhere in the source file.

3yattt.Ecr.ox

The 6502 instruction or assembler directive is incorrect.

The result o f an expression has a value larger than the 6502 instruction
can process.

The combination o f memory location, registers and 6502 instruction is not
supported by the 6502 or 65C02 processors.

EDNA has detected a Tor mat error in the source file. This can be caused by
the user's program writing to the RAM area that EDNA uses to hold the
source file. Take care, save the program source before testing the program.

Program Counter Error

The internal program counter' used by the assembler has been set
'backwards' during assembly.
This is due to incorrect use o f the directives.

E alfif. Assembly

EDNA has completed its assembly o f the source file into executable 6502
machine code. I f error messages have been displayed, correct the errors
and re-assemble. Only execute the assembled program when it is error
free.

A7. Sample Disk Programs

On the supplied disk we have included a conversion program that will
convert Commodore assembler source riles and Mikro Assembler source
files to EDNA format. This program is called CONVERT TO EDNA’ and should
be loaded and run from BASIC Full instructions are given when running
the program. Note that long labels used in a Mikro source rile are
truncated. Any source that cannot be converted is turned into a comment.

For beginners, and in case or difriculty, w e have included several sample
source files. These cover the Commodore Kemai routines, zero page use,
screen handling, printing and disk file operations. By using these examples,
you should soon be 'off and running'.

If you create source files that you think would be or benefit to other
beginners, we would be pleased to put them on this disk. The sample Tiles
provide are called ZEROED. SCREEN ED'. DISK ED' and PRINTER.ED'. The Tile
called KERNAL' is a list oT the Commodore Kernal routine addresses. This
can be .LIB'ed into your own source riles.

A8. User Registration Service

Please register now I Registered users are notified o f updates to the
product, this includes additional features as v e i l as detailing any
deficiencies in the version purchased by the registered user. This is also
the medium for any suggestions you may have.

To become a registered user just complete and return the registration slip
enclosed. Please enclose your name, address and cartridge serial number
(on the back o f the cartridge). Send to:

EDNA Registration,
V1ZA SOFT WARE Ltd.
CHATHAM HOUSE,
14. NEW ROAD,
CHATHAM
KENT. ME4 4QR ENGLAND.

Please let us know if you have any suggestions for improving this product.
I f you have any problems using EDNA you should first contact your dealer.
I f your dealer is not able, or is unwilling to help, then please WRITE to us
detailing the exact nature o f the problem. Enclose your full name, address
and telephone number. We will endeavour to answer your problem as
quickly as possible. We are not able to enter into discussions about your
use of 6502 machine code.

Index.

Addressing modes A -l
After assembly 3-11
Append file (CBM Z) command 2-16
Append machine code 5-4
ASCII data 3-1
Assembler

- directives 3-6 to 3-11
- the 3-1 to 3-11
- source tine format 3-5

Assemble (CBM A) command 2-6
Assembly options

- disk 2-8
■ listing 2-6,2-7
- printer 2-6
- memory 2-7
- symbol table 2-7

BASIC
- communication with machine code 5-2
- getting to 1-2, 5-1
- using 1-2

Binary data 3-1
Breakpoints, set 4-6
BRK instruction 4-6
Bytes

- define 3-6
- high/low operators 3-4

BYT directive 3-6

c

Calculator 2-13
Cancel command/line entry 2-4
Chain file - see Append
Clear source file memory 2-12
Colour

- background 2-16
- border 2-17
- default 2-17
- text 2-16

Commands
- editor 2-6 to 2-17
- monitor 4-2 to 4-6

Compare memory 4-2
Constants: ascii, binary, decimal and hexadecimal 3-1
COpy source line(s) (CBM C) command 2-8
Cursor, move to

- end o f file 2-4
- end o f line 2-4
- next field 2-4
- next screen 2-4
- previous screen 2-4
- start o f file 2-4

Decimal data 3-1
Delete source lines 2-4
Disk commands

- CBM D, issuing from the Editor 2-8
- commonly used 2-9
- issuing from the Monitor 4-6

Disk status, display 4-6
Disassemble memory 4-2

Directives
- allocate memory ('*-*♦ ') 3-8
- assemble to memory ('.MEM', '.NOMEM') 3-8
- conditional assembly ('.IF', '.ELSE', '.ENDIF') 3-10
- define byte ('.BYT') 3-6
- define word C.WOR) 3-7
- define word in high/low order C.DBY) 3-7
- disk load address (> - ') 3-9
- end assembly ('.END') 3-11
- equates ('- ') 3-7
- library files (.LIB) 3-9
- linked files C.FIL', '.END') 3-9
- list assembly ('.LIST', '.NOLIST') 3-8
- program Counter Set ('* - ') 3-7

Display
- memory 4-3
- registers 4-3

Don't protect source (SHIFT Y command) 1 -3
Download machine code 5-3

E

Editor
- command summary 2-5
- commands 2-6 to 2-17
-getting to 1-2,2-1
- text editing keys 2-4
- the 2-3

End of file, go to 2-4
EPROM programmer, use of 4-7
Erase source lines 2-4
Execute program 4-2
Expressions

- construct 3-3
-evaluate 2-13

Extra instructions for 65C02 microprocessor A-2

- comment 3-6
- instruction 3-5
- Ubei 3-5
- operand 3-5

File
- format A-5
- go to start 2-4
- go to end 2-4

Fill memory 4-2
Find characters (CBM F) command 2-9
Format, source line 3-5
Function keys 2-4

Getting started 1-1
Goto

- label (CBM G) command 2-10
- marked position (CBM Y) command 2-15

Hexadecimal data 3-1
High byte operator 3-4
Hunt memory 4-3

Input/Ouput device
- set current (CBM 1) command 2-10
-s e t start 2-1

Insert blank source lines 2-4

- g o to 2-10
- use 3-2
- field 3-5

Line feed printer option 2-1,2-10
List source file (CBM P) command

- to the screen 2-12
- to the printer 2-12

Load source file (CBM L) command
- from cassette 2-11
- from disk 2-11

Load machine code file 4-3
Low byte operator 3-4

Mark Position
- set (CBM X command) 2-15
- go to (CBM Y command) 2-15

Memory
- display 4-2
- swapped for BASIC 4-8
- used by Monitor 4-8
- used by EDNA A-5
- workspace available 5-2

Memory scale, the 2-2
Memory pointers 2-2
Microprocessor, e itra instructions for 65C02 A-2
Monitor

-commands 4-2 to 4-6
- getting to BASIC 1 -2, 5-1
- memory swapped 4-8
- memory used 4-8
- tracing 4-5

Move source line(s) (CBM M) command 2-11

New rile (CBM N) com maod 2-12
Next screen o f source file, display 2-4

Old file (CBM 0) command 2-12
Output device - see Input/Output

Parallel printer
-BASIC use 2-1
- connections A -4
-selection 2-1,2-10

Previous screen o f source file, display 2-4
Printing

- assembly listing 2-6
- from the editor 2-12
- from the monitor 4-1

Promenade EPROM programmer 4-7
Protect source (X command) 1-2

Query (CBM Q) command 2-13,3-11

Recover a deleted file 2 -12
Registers, display 4-3
Replace characters (CBM K) command 2 -14
Route map 1-2
Run program 4-2

- source file (CBM S) command 2-14
- machine code 4-3

Serial (Commodore) printer selection 2-1,2-10
Set marker 2-15
Source

- file format A -5
- line format 3-5

Start
- of file. 80 to 2-4
-h o w to 1-2

Store machine code, where to 5-3
Syntax checking 2-3

Tracing' 4-5

User registration service A-9

Values, use o f 3-1
Verify file 4-4

Walk code
Welcome
Words define
WOR directive
Workspace available

X

X command
- editor
- monitor

T

Y command

Z

Z command
Zero page locations

4-5
1-1
3-7
3-7
5-2

2-15
1-2, 4-6

2-15

2-16
5-1

Monitor Commands

Afcfe£gflaagos-asg&
filename" Name of the file up to 16 characters in length.

I 1 Sections of a command that may be omitted,
xxxx Start address in hexadecimal,
yyyy End address in hexadecimal,
zzzz Offset address in hexadecimal.
[n] Device number. T for cassette, 6' for disk,
[printerl Printer type. "S' for serial, V for parallel, PL'

for parallel with line feeds.

Eage&fiL

C xxxx yyyy iprinterl Compare memory 4-2
D xxxx Disassemble one line 4-2
D xxxx yyyy [printer] Disassemble memory 4-2
F xxxx yyyy aa Fill memory with data aa 4-2
G xxxx Execute program from xxxx 4-2
H xxxx yyyy aa bb Iprinterl Hunt memory for aa bb (etc.) 4-3
H xxxx yyyy "text” [printerl Hunt memory for text 4-3
L "filename" (n) [xxxx] Load file into memory at xxxx 4-3
M xxxx Display one line of memory 4-3
M xxxx yyyy [printerl Display memory from xxxx to yyyy 4-3
R Display registers 4-3
S "filename" [nl xxxx yyyy [zzzzl Save program file from xxxx to

yyyy, with zzzz offset load address
4-3

T xxxx yyyy zzzz Transfer block from xxxx to yyyy
to block at zzzz

4-4

V "filename" [n]‘ [xxxx] Verify file 4-4
W xxxx yyyy zzzz Walk code 4-5
X Exit to BASIC (protect file) 4-6
SHIFT X Exit to BASIC (don't protect) 4-6
/ Display disk status 4-6
>[SO:FILE* etc.] Disk commands 4-6
$[0:FILE* etc.] Disk directory 4-6
xxxx aa bb cc dd [etc.] Write data to address 4-6
xxxx aa bb cc [etc.] Write data to address and

disassemble
4-6

------------------------------ -----------------ll

BTT
WOR
DBT

A s s e m b le r D ir e c t iv e s

Define Bytes(s)
Define Word(s)
Define Word(s) in high, low order

Page ref
3-6
3-7
3-7

LABEL -VALUE Equate value
(o r EXPRESSION)

3-7

• = address Set program counter 3-7
•=• ♦ constant Allocate memory 3-6

MEM
source code
NOMEM
source code

Assemble to memory 3-fi

LIST
source code
.NOLIST
source code

List assembly 3-6

9 =address Disk load address 3-9

FIL
END

Linked Files (Disk or Cassette) 3-9

LIB filenam e Library files (Disk only) 3-9

IF expression
source code
[ELSE)
source code
ENDIF

Conditional assembly 3-10

END End assembly 3-11

T e x t E d i t i n g - K s x s

CRSR keys Move the cursor in the indicated direction
RUN Exit to the machine code monitor
STOP Cancel line entry/com m and
CLR Erase to the righ t of the. cursor on the curren t line
HOME Move cu rren t line to the centre of the screen
INST Insert a space a t the cursor
DEL Delete character to the left of the cursor
RETURN Next line/field
SHIFT RETURN Next Find/Replace
CTRL Pause listing

[F I 1 Go to the end of the file

f F2 i Go to the s ta r t of the file

\ F3 i Next screen

f F4 I Previous screen

[.11___ 1 Place the cursor a t the s ta rt of the nex t field

[F6 i Place the cursor a t the end of toe curren t line

[F7 1 In se rt blank line(s) above the cursor

\ F « 1 Highlight and delete line(s)

Command

c=

£ .

c=

S L
c=

c=
c=

c=
~

c>

“

S 3
H3
Z3

n
S3
N
0

Q

S
~S~1

in

Description Eagg. re i .

Assemble the Source File 2-6

Copy Source Line(s) 2 -6

Disk Commands 2 -8

Find Sequence of Characters 2 -9

Go To Label 2 - 1 0

Set Input/O utput Device 2-10

Load File 2-.11

Move Source Line(s) 2-11

New File - Clear File & Symbol Table Memory 2-12

Old File - Restore File Erased by New File Command 2-12

List File to Screen/Printer 2-12

Query - Program m er's Calculator 2-13

Find & Replace Sequence of Characters 2-14

Save File 2-14

M ark Position 2-15

Go To Marked Position 2-15

Append File from Disk or Cassette 2-16

Set Foreground Colour 2-16

Set Background Colour 2-16

Set Border Colour 2-17

Set Default Screen Colours 2-17

P a g in a B ia n c a
Ready64.org CSOS4)

