GRUPPO
EDIZIONE RODNAY EDITORIALE

ITALIANA ZAKS JACKSON

GRUPPO
EDITORIALE
JACKSON
Via Rosellini, 12
20124 Milano

Hanno contribuito alla realizzazione dell'edizione italiana:
Copertina: Marcello Longhini. Impaginazione e grafica: Francesca di Fiore e Rosi
Borzole. Coordinamento: ing. Roberio Pancaldi Traduzione: ing. Sergto Zannofi

Coperiina: Daniel Le Noury

Si ¢ cercato per quanto possibile, di fornire infarmezioni complete £ rigorose,
In ogni caso la Sybex non si assume alcuna responsabilita per il loro impiego;
nemmeno al riguardo di infraziom di brevetui e di altri dirinti di terze parti che ne
polrebbero derivare. I costruttori di apparecchiature nan rilasciano alcuna
autorizzazionc su apparecchiature protette da brevetto o diriti di brevetto ¢ si
riservano la facoltd di cambiare, in qualunque momento, la disposizione circui-
tale senza alcun preavviso,

In particolare sono soggetti a frequente cambiamenta le caratteristiche tecni-
che ¢ i prezzi. [confronti ¢ le valutazioni seno preseati solo per il loro valore
educativo ed 1 loro principi informativi. Per le specifiche esatte si nmanda il
lettore ai dati del costruttore.

€ Copytight per l'edizicne oniginale SYBEX [nc. 1978-1979, 2020 Milvia Street
-Berkeley, California 94704,
© Copyright per l'edizione italiana SYBEX Inc. 1981

Tutti i diritti sono riservali - Nessuna parte di questo libro pud essere riprodotta,
posta in sistemi di archiviazions, trasmessa in qualsiasi [orma o mezzo, eletironi-
co, meccanico, fotocopialura etc., senza {*autorizzazione scritta dell'editore.

Siampato in lialia da
S5.p.A. Alberio Matarelli - Milano
Stabilimento Grafico

PREFAZIONE

Questo libro si propone di essere ur Lesto autosufficiente ¢ completo
per insegnarce la programmazioneg, impiegando il 6502

Pué essere atilizzato da chi in precedenza non ha mai programmato
ed & utile anche per coloro che impicgano il 6502.

Alle persone che hanno gia programmato, yuesto libro insegnera
tecniche di programmazione basate sulle caratteristiche specifiche del
6502. 1l testo comprende le tecniche, a livello clementare ed intermedio,
richieste per un cffeitivo inizio alla programmazione.

It libro ha lo scope di lornire un vero livelln i competenza alle
persone che desiderane programmare impiegando guesto microproces-
sore. Naturalmente nessun libro insegnerd effettivamente come pro-
grammuare, finché non si eseguono delle applicaziont pratiche. Tutiavia
questo libro guidera il lettore al punto di poter programmare da sulo ¢
risalvere prablemi semplici, od anche moderatamente complessi, impie-
gando un microcaleolatore.

11 libro si basa sull’esperienza acquisita dell*autore nell'insegnamento
dells programmazione dei microcalcolatori a pid di 1000 persone.

1 letteri che hanno gid imparato la programmazione possono saltare il
capitole di introduziene. Per gli altri che non hanno mai programmato,
la parte finale di qualche capitolo pud richiedere una seconda lettura.
Questo libro é stato progettato per introdurre sistematicamente il lettore
a tutti i concetti base ¢ alle tecniche richieste per la costruzione di
programmi a complessita crescente. Quindi si consigliv vivamente di
sepuire 'ordine dei capitoli. Inolire, per ottenere etfettivi risulati, &
importante che il lettore si sforzi di risolvere pill esercizi possibili. La
difficold contenuta nepli esercizi é stata accuratamentc graduatu. Essi
servono per verificare che il materiale presentato sta realmente com-
preso. Senza 'esecuzione di esercizi di programmazione non sard possi-
bile rapgiunpere pienamentc i} fine didattico che il libre si propone.
Diversi esercizi possono richiedere tempa, ¢ome 'esercizio di moltipli-
cazone, per esempio.

Camunque. cseguendoli. si programmerid elfetlivamente ¢ si fmparerd
eseruende. Quesin ¢ indispensabile.

Per colaro che al vermine di questa libro avranno acquisito *piacere™
per la programmazione, & disponibile un valume ulteriore: “Applica-
rioni del 6502

In questa scrie. esistone altn hbri per la programmazione di altri
microprocessori vtilizzati comuncemenie.

Per colaro che desiderano sviluppare le lore conoscenze hardware si
suggeriscono i libri “Microprocessori™ ¢ "' Teeniche diinterfacciamento
dei Microprocesson®,

I contenuti di questo libro sono stati attentamente controliuti ¢ sono
quindi affidabili. Comungue, inevitabilmente, si troveranno errori di
tipo tipoerafico o di altro tipe,

L'autore surd grato per qualsiasi segnalazione da parte di lettori
attenti costeché le future edizioni possano beneficiare della loro eype-
rienza. Qualunque altro suggenmento destinato a migliorare il libro,
sart apprerzato.

PREFAZIONE
ALLA SECONDA EDIZIONE

Questa seconda edizione ha consentito di aumentare il libro di circa
100 pagine, con la maggior parte del nuovo materiale aggiunto ai Capi-
toli 1 ¢ 9, cioé agli estremi; infatti il Capitolo 1 & quello di introduzione
menire it Capitolo 9 & dedicato alle ultime informazioni sulle strutture
dei dati.

Nel corso del libro sono stati introdotti dei miglioramenti aggiuntivi:
in particolare 'autore desidery ringraziare i numerosi lettori dell*edizio-
ne precedente che hanno contribuito ad importanti suggerimenti mi-
gliorativi,

Un ringraziamento particolare ¢ rivolto a Eric Martinot ¢ Chris
Williams per i loro contributi agli esempi complessi di programmazione
del Capitolo 9 ed a Daniel J. David per i numerosi miglioramenti
suggeritt. Numerose vartazioni e miglioramenti sano dovuti alle analisi
ed ai commenti proposti da Philip K. Hooper, John Smith, Ronald
Long, Charles Curley, N. Hams, John McClenon, Douglas Trusty e
Fletcher Carson.

1¥

SOMMARIO

PREFAZIONE

.. I11
CAPITOLO 1 - CONCETTI DI BASE
Introduzioneo i e e |
Cos't la programmazionecoeveinnieaennn.. i
Diagrammi di flusso . u oo 2
Rappresentazione delVinformazione,ovviinnnnan 4
CAPITOLO 2 - ORGANIZZAZIONE HARDWARE DEL 6502
IMroduzionE ., ... et e i e 31
Architettura del sistema 31
Organizzazione interna del 6502 4
Il ciclo di esecuzione di un'istruzione 36
Lo stack (ovnii i i i e 40
Il concelte di IMpaginazionec.ocvviunnerans 4]
THChiP 6502 © .\ i e e e e et rearans 42
Sommario Bardware e, 44
CAPITOLO 3 - TECNICHE DI PROGRAMMAZIONE DI BASE
Programmi aritmetici .. oouvvriiarriervaraianaaaa, 45
Aritmetica BCD ... e 55
AUto-1esE IMPOTLANTEivivrinii e s ianrsrrane, 69
Operazieni logichec.oiiiiiiiii i, 79
SUBTOULINE & vvenrreiee s iiarsarssaannrasasinsarans 81
b a4 11+ 714 1 2 89
CAPITOLO 4 - SET D1 ISTRUZIONI DEL 6502
PARTE | - DESCRIZIONE GLOBALE
INEOdUZIONE. .ottt et i i e i e 9l
Classidiistruzioneciviiivrneirnnnnareanns 21
Istruzioni disponibili sul 6502 94
PARTE 11 - LE ISTRUZIONI
Abbreviazioni...........o i i i i 103
Descrizione completa di ogni istruzione 104

CAPITOLO 5 - TECNICHE DI INDIRIZZAMENTO

[£ 7o 7S T F A T30 -3 179
Modi di indirizzamentoiicirainriiiiiai i |79
Modi di indirizzamento del 6502 el 185
Utilizzazione dei modi di indirizzamento del 6502 190
BT 10 1+ 11 1 1 S 199

CAPITOLO 6 - TECNICHE INGRESSQ/USCITA

TNETOdUZIONE . . e i et aane it itinaien rseansnass 201
Ingresso/Uscita . o.viinie i it iiie s 201
Trasterimento parallelodiparola..coivan 207
Trasferimento seriale dibit ool 21
Sommario /O dibase Ceaerieinan e, 217
Comunicazione con i dispositivi 170 217
Sommario sulle perifericheol 20
Scheduling d'Ingresso/Useitacoc0iviviinnis 228
Sommario........oiviviiiarean e raeiar ey 241
Esercizi v.oovvvevnnns e et e 241

CAPITOLO 7 - DISPOSITIVI INGRESSO/USCITA

IntroduZione . c ot e i e 243
Il PIO convenzionale 6520,coiviienanaianas 243
1l registro di controllo internoovviiiiiiiiian 246
L BS30 . et ar e aaeiasaaaeas 247
Programmazione diun PIO.oiiiiiiinis, 247
0 247
B33 . i it et et ar e 250
R4 1137+ o T 250

CAPITOLO 8 - ESEMPI D] APPLICAZIONE

InlrodUZIONe . . e it ettt e 251
Azzeramento di una sczione delfa memoria 251
Polling dei dispositividi 170oooviiiiiiiinnass 252
Accettazione dei caratteri all'ingresse ..., il nn 252
Verifica di UN CaralIeIe. oo vrer i rearrrarvarsorvinnnns 253
Verifica di parentesi «vve v iinsanis i i 254
Generazione diparitd ooiiieiin e, 255
Conversione di codice: da ASCI1aBCD 256
Ricerca dell'elemento maggiore diuna tabella........... 256
SommadiNelementi, o oottt iae i iirannnns 258
Uncalcolochecksum ..., vt ii it it i iivanas 258

Conteggio dh 200 o v v v vt iie i iiarsin st iienteisansns 259
Ricecrca di una SIRmBa, ..o iii s iaiirasas e nnnss 260
SOMIMATIO 1 et ettt aaaarantar st ratrarnaanas 261

CAPITOLO 9 - STRUTTURE DEI DATI
PARTE I: CONCETT] DI PROGETTO

INtroduzione. . ..ot i e ittt c e e ... 203
2 V01 121 o TS ...203
1 3 264
Ricerca e classificazionecvviiiireviirninvareraraase 270
Yo% 111111 Lo L A 271

PARTE 11: ESEMP] DI PROGETTO

Introduzione. ...t e e 273
Rappresentazione dei datidiuna lista.................. 273
Una lista sempliceo 275
Lista alfabetica it 279
Linked HSt ..o or ittt anr s iaan s 288
Albero binario v vt e nm
Un algoritmo hashing.oiviiiiiii i ivianas 308
Bubble-sor ... e e e e 39
Un algoritmo merge . oo vee i iiieahiaas 328
0T)1 1o T 1 4 T 2 330

CAPITOLO 10 - SYILUPFO DEL PROGRAMMA

Introduzione. ..ottt e i i 331
Scelte di basc della programmazione ... 331
Supporto software.o i 334
La sequenza di sviluppo del programma................ 336
Le alternative hardwaret iiriivrernness 139
Sommario delle risorse hardware34}
Dlassemblalone . .o e it i i st i ise i i s, 33
L 2T TN 351
Assembly condizionale o iaiiai .. 354
S OMMANIO . .o i it i i e e 355

CAPITOLO 11 - CONCLUSIONI
Sviluppo teCnolOBICO. vt h v e 157
La [as€ SUCCOSSIVE v vv v iniievirenvernissnncntvaasen 359

APPENDICE A - TABELLA DI CONVERSIONE
ESADECIMALEoiiiiiant Jal

APPENDICE B - ISTRUZIONI IN ORDINE ALFABETICO

DEL 6502 ...t i i 362
APPENDICE C -LISTING BINARIO DELLE ISTRUZIONI

DELGS02....... ..ot 363
APPENDICE D -SET DI ISTRUZIONI DEL 6502;

ESADECIMALE E TIMING. kl.7)
APPENDICE E - TABELLA DI CONVERSIONE ASCIL........ 366

Isimboli ASCIL........... b, 366

APPENDICE F - TABELLA DELLE DIRAMAZIONI

RELATIVE........... .ot ciiianias 67

APPENDICE G -LISTING DEL CODICE OPERATIVO

ESADECIMALEc..o ool 368

APPENDICE H -CONVERSIONE DA DECIMALE A BCD..... 369

¥l

CAPITOLO |

CONCETTI DI BASE

INTRODUZIONE

Questo capitolo introdurrd i concetti di base ¢ le defimzioni refative
alla programmazione di calcolatori, 1l lettore gid familiare con questi
concetti pud scorver velocemente i contenuti di questo capitolo ¢ poi
passare al secondo capitolo. Comunque ¢ consigliabile che anche i tettori
esperti osservino i contenuti di questo capitolo di introduzione: qui sono
compresi, molti concetti significativi comprendendo, per esempio il
complemento a due, BCD, cd altre rappresentazioni.

COS’E' LA PROGRAMMAZIONE?

Dato un problema occorre innanzi tutto escogitare un metodo di
soluzione. Questa soluzione ¢ espressa come una procedura di fasi
successive chiamala afgeritme. Un algoritmo & quindi una specificazione
fase-per-fase della soluzione da dare ad un problema. E necessario
inoltre terminare la soluzione di un numera finito di fasi. Questo algo-
ritmo pubd essere espresso in qualsiasi linguaggio.

Un algoritmo Lipico pud essere per esempio:

1 - inserire la chiave nella toppa

2 - girare la chiave a sinistra per un giro completa
3 - impugnare fa maniglia

4 - girare la manigha a sinistra e spingere la porta

A questo punte, se questo algoritmo & corretto per il tipo di serratura
considerato, la porta si aprird. Questa procedura formata da 5 fasi, viene
considerata come un algoritmo per I'apertura della porta,

Una velta che la soluzione del problema ¢ stata esprassa sotto forma di
un algoritmo occorre che questo algoritmo venga eseguito dal calcola-
tore. Sfortunatamentc ¢ ora ben noto il fatto che i calcolatori non
possono capire, ¢d eseguire, il linguaggio comunemente impiegato. Que-
sto a causa dell’ambiguitd sintartica di tutti i comuni linguaggi umani.
Solo una parte ben definita del linguaggio naturale pud essere “‘capita”
dal calcclatore. Questa parte ¢ chiamata linguaggio di programmazione.

La conversione di un algoritmo in una sequenza di istruzioni in
linguaggio di programmazione ¢ detta programmazione. Per essere pii
specifici, I'attuale fase di traduzione dell’algoritmo in linguaggio di
programmazione, ¢ chiamalo codifica.

In realtd la programmazione fa riferimento non solo alla codifica ma
comprende il progetto globale dei progeammi € le “'strutture dati® che
realizzano I'algontmo,

La programmazione ¢ffettiva nchicde non solo la comprensione delle
tecniche di realizzazione possibili per gli algoritmi convenzionali ma
anche I'abilita di impiego di tutte le caratteristiche hardware del calcola-
tore come i registri interni, la memoria cd i dispositivi periferici, pid un
impicgo costruttivo di opportune strutture di dati. Queste tecniche
saranno sviluppatc nei capitoli successivi.

La programmazioene richiede anche una severa disciplina di documen-
tazione, in modo che | programmi siano comprensibili da altre persone
olire all'autore. La documentazione deve essere interna ed esterna al
programma,

La documentazione interna del programma fa riferimento ai com-
menti introdotti nel carpo di un programma, allo scopo di spicgare il suo
modo di operare.

La documentazione esterna consiste nei documenti di progetto che
sono separali dal programma: spiegazioni scritte, manuali ¢ diagrammi
di flusso.

DIAGRAMMI DI FLUSSO

Esiste quasi sempre una fase intermedia fra l"algoritmo ed il pro-
gramnta. Questa fase utilizza i diagrammi di flusso. Un diagramma di
flusso & semplicemenie una rappresentazione simbolica dell'algoritmo,
espressa come sequenza di blocchi contenenti le fasi dell'algoritmo.
Questi blocchi sono dei reitangoli se utilizzati per comandi ovvero “'state-
ment eseguibili®’, Invece per tesr come: se I'informazione X & vera cicguc
I'azione A, altrimenti' B si utilizzano dei blocchi a forma rombica,
Anziché presentare qui una definizione formale dej diagrammi di flusso,
questi saranno introdotti e discussi in seguito quando si considereranno i
programmi,

1l metodo dei diagrammi di flusso & una fase intermedia altamente
raccomandabile tra la specificazione dell’algoritmo ¢ la codifica effettiva
deta soluzione. Si fa notare che forse sole il 10% dei programmataori pud
SCrivere con successo un programma senza l'utilizzo del diagramma di
fusso. Sfortunatamentc ¢ stato anche osservato che il 90% di questa
popolazione crede di appartencre a questo 109!

Il risultato & questo: mediamente '80% dei programmi si interrom-
pono Ja prima volta che vengono eseguiti su un calcolatore, (Natural-
mente questi numert non si propengono di essere accurati). In breve, 1a
maggior parle dei non iniziati alla programmazione raramente intravede
la necessitd di disegnare un diagramma di flusso. Questo si risolve
normalmente in programmi “non puliti” ovvero errati. Essi devono cosi
impiegare una grande quantita di tempo per provare ¢ correggere i loro
programmi (questa fase & detta di collaude o debugging).

Si raccomanda vivamente quindi di passare attraverso la disciplina dei
diagrammi di ftusso in tutti i casi. Questa richiedera una piccola quantita
di tempo addizionale prima della codifica ma normalmente si risolvera
in un programma chiaro che verra escguito correttamente e veloce-
mente. Una volia che ¢ stata ben compresa la tecnica dei diagrammi di
flusso una piccola percentuale di programmatori sard in grado di ese-
guire mentalmente questa fase senza trascriverla su carta, Sfortunata-
mente in tali casi i programmi che essi scriveranno saranno normaimente
difficilt da capire a chiunque senza la documentazione fornita dai dia-
grammi di flusso. Come risultato si raccomanda universalmente di
impiegare la disciplina dei diagrammi di flusso come una stringente
disciplina di programmazione per quaisiasi programma significativo.
Molti esempi saranno forniti in seguito nel corso del libro.

INZIa

l

LETTUAA DELLA
TEMPEAATUAA (MPOSTATA
T SULLA SCALA DEL TEAMOETATO

} 1

LETTURA DELLA TEMPERATURA
AMBIENTE EFFETTIVA “R" DA UM
TEAMOMETRO OD ALTAG SENSORE

-3

JAMBIERTE ANBIEMTE
TROPPD FREDCD} THOPPO CalLbOy
ALIMENTAZIONE ELEMENTO
ELEMENTO |4 5| RISCALDANTE
RISCALDANTE BPENTD
RITARDO & SCELTA AITARDO A SCELTA

Figura 1-1: Un dlagramma di flusao di un sietema di termostatazione

RAPPRESENTAZIONE DELL'INFORMAZIONE

Tutti i calcolatori manipolano informazione, sotto forma di numeri o
di caratteri. Si esamineranno di seguito le rappresentazioni esterna ed
interna dell'informazione di un caicolatore.

RAPPRESENTAZIONE INTERNA

Tutte Ie informazioni sono immagazzinate in un calcolatore come
gruppi di bit. Un bir significa un digir binario cio¢ *0” oppure 1. A
causa delle limitazioni dell'elettronica convenzionale, la sola rappresen-
tazione pratica dell'informazione impiega la logica a due stati, ciod la
rappresentazione deglistati'0"" ed ™1™, Ne risulta che vittualmente tutta
I'elaborazione dell’'informazione attualmente é eseguita in formato bina-
rio. Nel caso dei microprocessori in generale, e del 6502 in particolare,
questi bit sono strutturati in groppi di 8, Un gruppo di 8 bit é chiamato
un byte.

Un gruppo di quatiro bit ¢ chiamato un aibble,

Si esamini ora come I'informazione ¢ rappresentata internamente nel
sno lormaio binaric. Due entitd devono essere rappresentate all'interno
del calcolatore. La prima & il programma, che ¢ una sequenza di istru-
zioni. La seconda sono i dati sui quali esso opera, ¢ che possono
comprendere numeri di un testo alfanumerico. Si esaminino queste tre
rappresentazioni,

Rappresentazione del programma

Tutte le istruzioni sono rappresentate internamente come byte singoli
o multipli. Una cosiddetta “istruzione breve™ & rappresentata da un
singolo byte, Un'istruzione pil lunga sard rappresentata da due o pil
byte. Poiché il 6502 & un microprocessare ad 8 bit, esso preleva i byte
sequenzialmente dalla sua memoria. Percid un'istruzione a singolo byte
& sempre potenzialmente di esecuzione piu veloce di un'istruzione a due
o tre byte. Si vedrd in seguito che questa ¢ un'importante caratteristica
del set di istruzioni di qualsiasi microprocessoce ed in particolare del
6502 dave & stato fatto uno sforzo speciale per farnire pith istruzioni a
singolo byte possibile in modo da migliorare Veflicienza di esecuzione
del programma. Comunque ia limitazione ad 8 bit in lunghezza, si
risolve in importanti limitazioni che verranno sotiolineate. Questo & un
esempio classico del compromesso tra efficienza di velocita ¢ flessibilitd
nella programmazione.

La rappresentazione binaria deile istruzioni ¢ dettata dal costruttore
ed il 6502, come qualsiasi altro microprocessore, viene equipaggiato con

4

un set di istruzioni fisso. Queste istruzioni sono definite dal costruttore e
sono clencate alla fine di questo libro. Qualsiasi programmea sard
espresso come sequenza di queste istruzioni binarie, L'effettiva codifica
binaria delle istruzioni de! 6502 & rappresentata nel Capitolo 4,

Rappresentazione dl dati numericl

La rappresentazione di numeri non é sufficientemente immediata ed,
in alcuni casi, deve essere distinta. Si devono innanzi tutto rappresentare
i numeri interi, Si devono anche rappresentare numeri con segno, ciod
positivi o negativi, ed infine si deve essere in grado di rappresentare i
numeri decimali. Si considereranno ora queste richieste e le soluzioni
possibili.

La rappresentazione di numeri interi deve essere eseguita impiegando
una rappresentazione binaria diretta. La rappresentazione binaria
direrta ¢ semplicemenie la rappresentazione del valore decimale di un
numero nel sistema binario. Nel sistema binario il bit pid a destra
rappresenta 2 elevato alla potenza 0. Quellosuccessivo a sinistra appre-
senta 2 alla potenza 1, il successivo rappresenta 2 alla potenza 2 ed il biy
pil a sinistra rappresenta 2 alla potenza 7 = {28:

babebsbeb)bib be
, . rappresema
b2 + b2 + b2 + b2 + 12’ + 62" + b2 + b2

Le potenze di 2 sono:

27 =128.2=64,2=32,2"=16,2"=8,20=42=2,2=1

La rappresentazione binaria dei numeni é analoga a quella decimale, nella
quale 123" rappresenta:

1 x100=100
+2x 10= 20
+3Ix I= 3

=123

Si noti che 100 = 10°, 10 = 10', 1 = 10°.

In questa *“*notazione posizionale™ opnt cifra rappresenta una potenza di
[0. Nel sistema binario ogni digit o “'bit"” rappresenta una potenza di 2,
invece di una potenza di 10 del sistema decimale.

Esempio: “00001001"; in binario rappresenta:

Ix 1=1 ()

ax 2=0 24

O0x 4=0 (2h

1x B=R v

0x 16=0 29

0x 32=0 (2

0x 64=0 (2

0x128=0 2)

in decimale =9
Si considerino alcumi esempi:
* 10000001 rappresenta;

I1x 1= 1

O0x 2= 0

O0x 4= 0

O0x 8= 0

Ox 16= @

0x 32= 0

O0x 64= O

Ix128=128

in decimale =12

" 10000001" rappresenta percid i) numero decimale 129,

Esaminando la rappresentazione binaria dei numeri, si comprendera
perché i bit sono numerati da 0 a 7, andando da destra asinistra. I bit 0é

“ho" & corrisponde a 2°. 1l bit | 2 “b," e corrisponde a 2' ecc.

La Fig. 1-2 mostra gli equivalenti binari dei numeri da 0 a 255,

Esercizlo 1.1: Qual'é if valore decimale di 1111111007

Da decimale a bingrio

[nversamente, si caleoli 'equivalente binario del decimale *11':

1Ih+2=5restol — |
§5+2=2resto]l — |

2+2=1resto0 —~0

[+2=0resto| — |

(LSm

(MSB)

Dacimale Binarlo Decimale Binarla
0 c000C000 3z 00100000
1 00000001 i} 00100001
2 Q0000010]

3 00000011 .
4 opoeo100
5 0000011 a3 b1y
[00000110 €4 1000001
7 0co00111 BS 01000001
a 0o001000]
8 GD001DDD]
10 00001010 127 01111111
" 00001011 128 10000000
12 00001100 129 10000001
13 0000111
14 00001110]
15 09001111 L]
18 00010000 L
17 0o010001]
.
.
[] 254 11114110
M 00011191 255 11911111

11 binario equivalente & quindi 1011 (lettura corretta della colonna dal

baszo all’alto).

L’equivalente binaric di un numero decimale pud essere ottenuto
mediante divisioni successive per 2 finché non si ottiene un quaoziente Q.

Eserclzlo 1.2: Qual'é I'equivalente binario df 257?

Esercizlo 1.3: Sf converia i9 in binario ¢ quindi nuovamenie in decimale.

Operazioni sui dati binari

Figura 1-2: Tabelia dac/male binarlo

Le regole aritmetiche sui numeri binari sono immediate.

Le regole per 1'addizione sono:

g0+0= 0
o+1= 1
I+0= 0
1+1=(1)0

dove (1) indica un “riporto” (carry) di 1 (si noti che 10" ¢ l'equivalente
binario del decimale **2™*). La sottrazione binaria verrd eseguita "'som-
mando il complemento™. Esempio:

2 10
+ () + 01
=3 I

L'addizione viene eseguita in modo perfettamente uguale al caso deci-
male, sommando colonna per colonna, da destra a sinistra:

Sommando la colonna pil a destra:
1
+

(0 + 1 = ¥ Nessun riporto.)
Sommando la colonna successiva:
: a
+
1 {1 + 0 = 1. Nessun riporto.)
Eserclzio 1.4: Si calcoli 5 + 10 in binario e si verifichi che il risultato é 15.

Altrimenti esempi di addizione biparia:

0010) 0011 %))
+ 0001 {1) + 0001)]
= 0011 3 =0100 @

L'ultimo esempio spiega il ruclo del riporto.

Si osservino i bit di estrema destra: 1 + 1 =(1) 0
Si genera un riporto di 1 che deve essere sommato ai bit successivi:

001 —~1a colonna 0 ¢ stata appena sommata
+ 000 —
+ 1 ({riporto)
= (1)0 —dove (1) indica un nuovo riporto
nella colonna 2,

1 risultato finale é: 0100

Un altro esempio!

0111)]
+0011 +(3)
1010 = (10)

In questo esempio si genera un riporto fino alla colonna di estrema
sinistra.

Eserclzio 1.5: Si cafcoli il risultaro di:

11l
+ 000
=7

If risultato pud essere comtenuto in 4 bit?

Con B bit ¢ percio possibile rappresentare direttamente i numeri da
Q0000000 a 11111111, ciod da 0 a 255, Si possono osservare immediata-
mente due ostacoli. Primo si stanno rappresentando solo numeri posi-
tivi. Secondo, la grandezza di questi numeri & limitata a 255 se si impie-
gano solo § bit.

Nell'ordine si considerano entrambi questi problemi.

Binario ron Segno

In una rappresentazione binaria con segno il bit pin a sinistra &
impiegato per indicare il segno del numero. Tradizionalmente “0" &
impiegato per denotare un numero posfrive mentre **1™ & impiegato per
denotare un numecro Aegativo.

Ora 1111111 1" rappresenterd — 127, mentre *01 111111 rapprescnteri
+ 127. Si possono ora rappresentare numeri positivi ¢ negativi ma si é
ridotta la grandezza massima di questi numeri a 127.

Esempio: 0000 0001" rappresenta + | (lo “0* di testa &il *“+", seguito
da 0000 000L" = 1}.

1000 0001 & — 1 (I"™ 1" ditesta & il *—"').

Esercizio 1.6: Qual'é la rappresentazione di - 5 in binario con segno?

81 consideri ora il problema della grandezza: allo scopo di rappresen-
tare numeri pih grandi sard necessario utilizzare un maggior numero di

bit. Per esempio se si vtilizzano 16 bit (due byte) per la rappresentazione
di numeri si & in grado di rappresentare numerida —32ka + 32 kin
binario con segno (1 k nel gergo del calcolatore rappresenta 1024).
Se questa grandezza & ancora troppo piccola siutilizzeranno 3o piG byte.
Se si desidera rappresentare interi molto grandi, sard necessario utiliz-
zare un numero maggiore di byte interni per la loro rappresentazione,
Questa @ la ragione per cui il pill semplice BASIC, od altri linguaggi,
forniscone solo una precisione limitata per gli interi.

Si consideri ora un altro problema, quello dell’efiicienza di velocita. 8i
consideri I'esecuzione di un'addizione nella rappresentazione binaria
con segno precedentemente introdotto. St sommi *—5" ¢ *+ 77,

+ 7 & rappresentato da 00000111
— 5 3 rappresentato da 10000101

.2 somma binaria & 10001100, ovvero — 12

Questo risultato non & esatto. Il risultato corretto sarebbe + 2. In altre
parole 'addizione binaria di numeri binari con segno non gpera in modo
corretto. Questo ¢ fastidioso. Chiaramente il calcolatore non deve sol-
tanto rappresentare l'informazione ma deve anche eseguire operazioni
aritmetiche su questa.

La soluzione a questo problema ¢ chiamata rappresentazione comple-
mento a due, che sard impiegata invece della rappresentazione binaria con
segno. Allo scopo di introdurre il complemento a due si introdurra una
fase intermedia: if complemento ad uno.

Complemento ad uno

Nella rappresentazione in complemento ad une tutti gli interi sono
rappresentati nel loro formato binario corretto. Per ¢sempio *+ 37 &
rappresentato come comunemente da 0000001 1. Comunque it suo com-
plemento *'— 3" & ottenuto mediante complementazione di ogni bit della
rappresentazione originaria, Ogni 0 & trasformato inun 1 ed ogni 1 ¢
trasformato in uno (. Nell'esempio considerato |a rappresentazione in
complemento ad uno di “— 3" sard 11111100

Un’altro esempio:

+ 2&00000010
=2¢11111101

Si noti che 1 numen positivi iniziano con 0 e quelli negativi con 1

Esercizio 1.7: La rappresentazione di + 6 é 000001 10. Qual’éla rappresen-
igzione di meno & in complemento ad uno?

10

Si escgua ora la prova convenzionale, ciod si sommi meno 4 ¢ pid 6:
—4¢ 11111011
+ 6 & 00000110

Ja somma ¢ (1) 00000001 ovvero ™I
pil un riporto.

1l “*risultata corretto™ sarebbe *'2"°, ovvero “00000010™.

Riproviamo:;
—3& 11111100
—2élll11101
la somma & (1) 00000001

o “1", pid un riporto, !l risultato corretto dovrebbe essere *“— 5", La
rappresentazione di “'— 5' & 11111010. Noa ha funzionato,

Inoltre questa rappresentazione rappresenta numeri positivi e nega-
tivi. Comunque il risultato di un'addizione ordinaria non ¢sce corretta-
mente. Si considerera quindi un'ulteriore rappresentazione. Questa &
un’evoluzione dal complemento ad uno ed & chiamata rappresentazione
in complemento a due.

Rappresemiazione in complemenio a due

Nella rappresentazione in complemento a due i numeri positivi sono
rappresentati come al solite, in binacia con segno, proprio come in
complemento ad uno. La dilferenza risiede n¢lla rappresentazione di
numeri negativi. Un numero negativo, rappresentato in complemento a
due, & ottenuic dal primo sommardo une al complemento ad uno. Si
oonsideri un esempio: + 3 & rappresentato in forma binaria consegno da
0000001 1. La sua rappresentazione in complemento ad uno ¢ (1111100,
Il complemento a due é oftenuto aggiungendo uno. Esso & 11111101,
Se non si considerd il nporto il risultato ¢ 00000001, ciod ! in decimale.
Questo ¢ il risultato corretto.

Si verifichi un*addizione:

(3} 00000011
+ (5) + 0000010
=83 = 00001000

Il risultato & corretto.

11

Si verifichi una sottrazione:
) 00000011
(=) + 11111011
= L1110

Si determina il risultate calcolando il complemento a due:

il complemento ad wno di 11111110 @ 00000001
Apgiungendo | + 1
percio il complemento a 2 & 00000010 cioé¢ +2

11 risultato precedente, “11111110™ rappresenta — 2. E corretto.

Si ¢ quindi trovato che i risultati di addizioni e sattrazioni sono corretti
{non considerando il riporto). Sembra che il complemento a due operi
corretlamente!

Eserclzio 1.8: Qual"é la rappresentazione in complemento a due di "+
1217

Esercizio 1.9: Qual éla rappresentozione in complemento a due di '~ 128"'?

Si consideri ora la somma di + 4 ¢ — 3 (la sottrazione si esegue som-
mando il complemento a due}):

+ 400000100
=& 110

Il risullato & (1) 00000001

dove (1) indica il riporto. Senza fornire una dimostrazione matematica
completa si & stabilito che questa rappresentazione opera correttamente.
In complemento a due & possibile sommare e sottrare numeri con segno.
Impiegando e regole usuali dell’'addizione binaria si ottiene un risullatp
corretto, compreso il segne, 1l riporto viene trascurato. Questo & un
vantaggio molto impettante, infatti, in caso contrario, si dovrebbe cor-
reggere il segno ogni volta, con un tempo di esecuzione notevolmente
superiore.

Per completezza si pud affermare che la rappresentazione in comple-
mento a due & la pil conveniente per i processori pid semplici quali i
microprocessori. Sui processori pid complessi si possona utilizzare altre
rappresentazioni. Per esempic si pud utilizzare la rappresentazione in
complemento ad uno, ma essa richiede una circuiteria speciale per *“cor-
reggere il risultato™,

12

D’ora in poi tutti gl interi con segno verranno, in modo implicito,
rappresentati internamente con la notazione in complemento a due. La
Fig. 1-3 rappresenta una tabella dei numeri in complemento a due,

Esercizio 1.19: Quali sono i numery pit: piceolo e pit grande che si possonp
reppreseniare con la nolazione in compiemento a due impiegando solo un
byte?

Esercizlo 1,11: SV calcoli il compiemento a due di 20. Quindi si caleoli il
compiemento a due del risultato. Si otiiene ancora 207

Di seguito vengono riportati degh esempi per dimostrare le regole della
notazione in complemento a due. In particolare C rappresenta un possi-
bile riporto (o prestito). (Esso & il bit 8 del risuliato).

Invece V rappresenta un overflow del complemento a due, cioé indica
una variazione “accidentale™ del segno del risultato a causa di numeri
troppo grandi. Si tratta sostanzialmente di un riporto intermo dal bit 6al
bit 7 {il bit del segno).

Questo verrd chiarito in seguito.

Si considera ora il ruolo del riporio “C™ & dell’overflow V™,

1

I riporto C
Ecco un esempio di un riporto:

(128) 10000000
+ (129) + 10000001

(25T = (1) 00000001

dove (1) indica un riporto.

H nisultato richiede un nono bit (bit *'8" poich quello di estrema destra &
il bit *0"). Queslo ¢ il bit carry.

5i assume quindi che il carry sia il nono bit del risultato e si riconosce
che il risultato ¢ 100000001 = 257,

Comunque il carry deve essere riconosciuto £ manipolato accurata-
mente. All'interno del microprocessore, i registri utilizzati per conser-
vare I'informazione sono larghi generalmente solo otto bit, Nella memo-
nzzazione del risultato saranno conservati soltanto i bit da0a 7.

Quindi un riporio richiede sempre un'azione speciale: essa deve essere
rivelato da istruzioni particelari e quindi deve essere ¢laborato. L'elabo-
razione del riporte pud significare, a seconda dei casi, la sua memorizza-
zione (con un'istruzione pariicolare), non tenerne conto oppure decidere

13

+ Codice In - Codice in
complamento a 2 compiemanto a 2
+127 g111111 -—128 10000000
4128 g1111110 - 127 10000G01
+125 01111101 — 136 10000410
—125 10000011
+ 65 01000001 — 65 LLARRRRN
+ B84 01000000 — &4 14000000
+ 83 00111141 - 63 11000001
+ 33 00100001 — 3 HMOITIN
+ 32 00100000 — 32 11104040
4+ AN 00011111 - N 11100001
+ 17 00010001 - 17 11101111
+ 18 0eD1000a — 16 11110000
4+ 15 opDoY111 - 15 11110001
+ 14 opdo1110 — 14 11110010
4+ 13 00001101 — 13 11110011
4+ 12 oDpDO1100 - 12 11110100
“+ 1 oDao0101 - 1 11110101
+ 10 00001010 ~ 10 111011
+ 9 00001001 - 8 ARRRTUREI
+ @8 QQa01000 — 8 11111000
+ 7 00000111 - 7 11111001
+ @ 0QoDo110 - 8 1111810
+ 5 00000101 ~ 5 1M1110n
+ 4 0eoD0100 - 4 11111100
+ 3 00000011 - 3 11111101
+ 2 0oDOGO10 - 2 11111110
+ 1 0000001 -1 11111111
4+ 0 BOOOCO00

Figura 1-3: Taballa dal complementi a due

che si tratta di un errore (s¢ il risultato piit grande consentito &
HINLILLNY,

14

Cverflow V
Consideriamo un esempio di overflow:

bit &6

bit 7 |
31000000 {64)

+ 01000001 + (63)
= 10000001 = (— 127}

In questo caso & stato generato un riporto interno dal bit 6 al bit 7,
Questo & cid che si chiama un overflow.

Accidentalmente il risultaio & negativo. Occorre rivelare situazioni di
questo tipo in modo da intervenire.

Si consideri un'altra situazione:

i (=
+ 1ty + (=10
= (1) 10000001 = {— 2}
v
carry

Anche in questo caso & stato generato un riporto interno dal bit 6 al bit 7,
ma questo ha generato a sua volia un riporto dal bit 7al bit 8 (il “Carry™
C formale, considerato al paragralo precedente). Le regole dell’aritme-
tica in complemento a 2 specificano che questo riporto dovrebbe essere
ignarato. [l risullato & quindi corretto,

Questa & una conseguenza del fatto che il riporto dal bit §al bit 7 non
cambia il segno.

Questa non ¢ una condizione di overflow, Quando si opera su numen
negativi Poverflow non & semplicemente un riporto dal bit 6 al bit 7. Si
consideri un ulteriore esempio:

11060000 (— 64}

+ 10111111 (— 63)

= (1) o (+ 127
v

carry

Questa volta non si & verificato un riporto interno dal bit 6albit 7, masid
verificato un tiporio esterno. Il risultato non & corretto in quanto & stato
cambiato il bit 7. In questo caso & quindi indispensabile indicare una
condizione di overflow,

15

L*overflow si verifichera nellc quattro situazioni:
1 -somma di numeri positivi troppo grandi
2 -somma di numeri negativi lroppe grandi in valore assoluto

3 -sotirazione di un numero positivo molto grande da un numero nega-
tivo molio grande in valore assoluto

4 -sottrazione di un numero negativo molto grandein valore assoluto da
un numero positive molto grande.

Precisiamo la definizione di overflow precedentemente fornita.

Tecnicamente I'indicatore di overflow, uno speciale bit riservato per
questo scopo, ciod un *flag”, sard posta ad uno quando si verifica un
riporto dal bit 6 al bit 7 ma non un riporto esterno, oppure quando non
¢'t riporto dal bit 6 al bit 7 ma si verifica un riporto estemno. Questo
indica che il bit 7, ciod il segno del risultato, & stato cambiato accidental-
mente. Come si ricorderd, il flag di overflow & posto ad | dall'OR
ESCLUSIVO del bit 7 entrante ed uscente (il bit segno). Praticamente
ogni microprocessore & dotato di un flag dioverflow speciale per rivelare
automaticamente questa condizione, che richiede un’azione correttiva.

Overflow indica che il risultato di un'addizione o di una sottrazicne
richiede pil bit di quelli disponibili nel registro standard di otto bit,
utilizzato per contenere il risuliato.

It Carry & FOverflow

1 bit carry ed overflow vengono denominati “flag”. Essisono disponi-
bili su tutti i microprocessor e, nel corso del capitolo successivo, si
apprendera come utilizzarli per la programmazione effettiva. Questi due
indicatori sono posizionati in un registro speciale denominato registro di
“stato” o dei flag. Questo registro conlicne altri indicatori le cui flunzieni
saranno chiarite al Capitolo 4,

Esempi

Si consideranc ora degli esempi pratici per mostrare la funzione del
carry e dell'overflow. I simbolo V indica overflow e C carry.

Se non si verifica overflow ¢ V = 0. Se si ¢ verificato un overflowd¢ V=
1 (analogamente per il carry C). Si ricordi che le regole del complemento
a due specificano che il carry deve essere ignorato. (In questa sede non
viene fornita Ja dimostrazione matematica).

Ié

Positivo-Positivo

0000011G (+ 6)
+ Q0001000 (+ 8)

= 00001110 (+ 14)
(CORRETTO)

Positivo-Positive con Overflow

OLI111N (+ 127)
+ 00000001 (+ 1)

= 10000000(— 128)

V0

V:1

C:0

C:0

[L risultate non ¢ valido perché si ¢ verificata in overflow

(ERRORE)

Positivo-Negalivo {risultato positive)

00000100 (+ 4)
+ DI (- 2)

= (1)00000010 (+ 2)
(CORRETTO)

Positivo-Negative (risultato nepativo)

00000010 (+ 2}
+ 11N (- 4

= 110 (=2)
(CORRETTO)

Negativo-Negativa

L1110 (= 2)
+ N0 (-4

=(1)I13111010 (— 6)
(CORRETTO)

v:0

VO

V0

C:1 {ignorato)

C:0

C:1 (ignorato)

17

Nepativo-Negative cca overflow

10000001 (+ 127)
+ 11000010 (— 62)

=(1)01000011 (67 Vil C:1
(ERRORE)

Questa volia si ¢ verificato un “underflow”, sommando due¢ numeri
negativi molto grandi in valore assoluto. 1l risultato dovrebbe essere
—189, che ¢ lroppo grande per essere contenulo in otto bit,

Esercizio 1.12: Si rompletino le seguenti addizioni. Si indichi if risultato, il
carry C, loverflow V e si specifichi se il risultato é corretto o no.

101110 (—)
+ 11000001 (—)

=___ V:__ C:
OCORRETTO OERRORE

000100 {(—)

+ 01000000 (—)
= __________ V:_ C:
O CORRETTO OERRORE

1w (—)
+1eel (—)

= . V_ C ____
OCORRETTO OERRORE

g ()
+00101010 (—)

= _ _ Y _ C
COCORRETTOD DERRORE

Esercizio 1.13: Porese fornire un esempio di overflow sommando un numero
positivo ed uno negativo? Perche?

Rappresentazione in Formate Fisso

A questo punlo si conosce la rappresentazione degli interi con segno.
Comunque non 2 ancora stato risolio il problema della grandezza. Se st
vogliono rappresentare numeri interi pili grandi, ¢ necessario uilizzare
pit byte, Per eseguire efficientemente operazioni aritmetiche, & necessa-
rio utilizzare un numero fisso di byte piuttosto che un numero variabile,
Percid, una volla scelto il numero di byte, & fissa la grandezza massima
del numero che pud essere rappresentato.

Esercizio 1.14: Quali sono i numeri piit grande e pi piceefo che possono
essere rappresentati in due byte impiegando la notazione im complemento a
due?

I probiema della grandezzo

La somma di numeri & limitata dal fatto che il microprocessore opera
internamente su otto bit alla volta. Questa restrizione consente di utitiz-
zare numeri nella gamma da — 128 a + 127,

Chiaramente questo non ¢ sufficiente per aumerose applicazioni.

Per aumentare il numera di digit che possono essere rappresentati
occorre utilizzare la precisione multipla. Si pud utilizzre un formato a
due, tre, oppure N byte.

Per esempio si consideri un formato in doppia precisione a 16 bit:

00000000 00000000 & 0
00000000 00000001 & 1™

onntn 1111 & 32767
1 N é¢v—1-
IRRSRERY g é«=2v

Esercizlo 1.15: Qualé l'intero regativo pii grande, in senso asseluta, che
PHO essere rappreseniato, in un formato in iripla precisione, in comple-
mento a due?

Comunque, questio metodo presenta degli svantaggi. Per esempio
sommando duc numeri occorrerd spmmaerli otto bit alla volta. Questo
verra spiegato al Capitolo 4 (Tecniche di Programmazione di Base). Ne
risulta un'claborazione pid lenta. Inoltre questa rappresentazione
impiega 16 bit per un numero qualsiasi, anche se esso potrebbe essere
rappresentato con soli otto bit, Quindi & comune utilizzare 16 od anche
32 bit ma talvelta ¢ sovrabbondante.

19

Si consider ora il seguente punto importanie; qualunque sia il numero
N dt bit scelti per Ja rappresentazione in complemento a due, esso & fisso.
Se qualsiasi risultato o calcolo intermedio dovesse generare un numero
che richiede piti di N bit, alcuni bit andranno persi. Normalmente il
programma conserva gli N bit di sinistra (quelli pid significativi) ¢ perde
quelli di basso ordine. Questo ¢ il troncamento del risultato.

Ecco un esempio nel sistema decimale, utilizzando una rappresenta-
zione a sei digil:

123456
x 1,2

246912
123456

= 148147,2

1l risultata richiede 7 digit! Il *2" dopo la virgola andrd perso ed il
risultato finale sard [48147. 5i ha cos! un troncamento. Normalmente,
non perdendo 1a posizione della virgola questo metodo viene utilizzato
per estenderc la gamma di operazioni che possono essere eseguite, a
scapito della precisione.

Il problema ¢ analogo per |a rappresentazione binaria. [dettagli della
moltiplicazione binaria saranno mostrati al Capitolo 4.

Questa rappresentazione in formato fisso pud causare una perdita di
precisione, ma questa & generalmente sufficiente per i calcoli comuni e le
operazioni matematiche.

Sfortunatamente, nel caso dei calcoli contabili, non é tollerata nes-
suna perdita di precisione. Per esempio un venditore potrebbe non
tallerare un arrotondamento del risultato di cassa. Quindi quando &
essenziale la precisione del risuitato & indispensabile utilizzare un'altra
rappresentazione.

Normalmente la soluzione & la rappresentazione BCD, ciod decimale
codificato binario.

Rappresentazione 8CD

tl principio utilizzato nella rappresentazione di numeri in BCD & di
codificare separatamente ogn digit decimale ¢ di utilizzare tutti i bit
necessari per rappresentare esattamente il numero completo. Per codifi-
care tutti i digit da 0 a 9 sono necessari quattro bit. Tre bit consentireb-
bero sollanto ctioc combinazioni ¢ quindi non sono sufficienti per le dieci
cifre decimali. Quattro bit consentono sedici combinazioni e sono quindi

20

sufficienti per codificare i digit da 0 a 9. 5i pud anche notare che nella
rappresentazione BCD saranno inutilizzati sei dei codici possibili
(Vedere Fig. 1.4).

Questo rappresenterd successivamente un potenziale problema da risol-
vere successivamente durante le addizioni e le sottrazioni. Poiché sono
necessari solo quattro bit per codificare un digit bed, ogni byte pud
codificare due digit BCD. Questo viene denominato *BCD impaccato™.

Per esempio “00000000" sard 00" in CD, *10011001'* sara 99",

5IMBOLO SIMBOLO
CODICE eco CODICE BCD

o000 0 1000 B

oD 1 1001 9

o010 2 1010 non impisgato
0011 3 1011 non Impiegato
0100 4 1100 non impiegato
ib]n] 5 11901 non Impiegato
0110 6 1110 non Impiegato
M 7 1 ran Implegaio

Figura 1-4: Tebella BCD

Un codice BCD si legge come segue:

0010 000|

Digit BCD “2"4—’ |

Digit BCD 1"

Numero BCD “217

Esercizio 1.16: Qual’é la rappresentazione BCD di "'29'°? 942

Eserclzio 1.17: " 10100000" & una rappresentazione BCD valida? Perché

Per rappresentare tutti i digih BCD verranno utilizzati tutti i bit
necessari. Tipicamente, all’inizic della rappresentazione, saranno utiliz-
zaii uno o pitl nibble per indicare il numero totale degti stessi, cio? il
numero totale di digit BCD utilizzati, Un aliro nibble o byte sar
utilizzato per indicare la posizione della virgola. Comunque {e conven-
zioni possono essere diverse,

21

Questo & un esempio della rappresentazione di interi BCD multibyte.

| [3 [+ | 2 .2 [1 | (bye
W
NUMCro numero *221"
di digit

(fino a 253) segno

Questo rappresenta + 221
(It segno pud essere rappresentato da 0000 per + ¢ da 0001 per —, per

esempio).

Esercizio 1.18: Si rappresenti "'— 23123, impiegando la stessa conven-
zione. St utifizzi inizialmente un formato BCD e quindi binario.

Esercizio 1.19: 5i ricavi il corrispondente BCD di ' 222" edi*' [11", quindi
del risultato di 222 % 111, (Sicalceli il risultato a mano e quindi si utitizzi la
rappresentazione precedente).

La rappresentazionc BCD pud essere utilizzata facilmente con i numeri
decimali.

Per esempio + 2,21 pud essere rappresentato da:

G T 2 T T2 T 2 [1 1|

1] —w—

221
3 digit La*,'" & a sinistra
del secondo digit

+ -]+

Il vantaggic della rappresentazione BCD & quello di ricavare dei
nisultati esatti in mode assolute. Il suo svantaggio ¢ di utilizzare una
grande quantitd di memoria ¢, consegucntemente, un procedimenio
aritmetico lento, Questo & accettabile solo nel settore della contabilitd e,
normalmente, non viene impiegato negli altri casi.

Esecizio 1.20: Quanti bir sono richiest per codificare 9999 in BCD? Ed
in complemento a due?

Abbiamo ora risolte il problema connesso con la rappresentazione dei
numeri interd, degli interi con segno ¢ dei numen interi di valore assoluto

11

elevato, E gii s1ato presentato un metodo possibile di rappresentazione
dei numeri decimali, per mezzo della rappresentazione BCD, Siconside-
rerd ora il problema della rappresentazione dei numeri decimali in ur,
formato di lunghezza fissa.

Rappresentazione a Virgola Mobile

[l principio di base ¢ che i numeri decimali devono essere rappresentati
con un formato fisso. Allo scopo di non sprecare bit, la rappresentazione
normalizzerd 1utti i numen.

Per esempio 0,000123" spreca tre zeri a sinistra del numero che non
hanno altro significato che di indicare 1a posizione del punto decimale.
La normalizzazione di questo numero porge 0,123 % 107, *0,123" & detta
mantissa normalizzate, “— 3" & detto esponente. E stato normalizzato
questo numero eliminando tutti gli zeri non significativi alla sua sinistra
ed aggiustando I'esponente,

Consideriamo un altro esempio:
22,1 viene normalizzato come 0,221 x 10™

ciod M X 10f dove M ¢ la mantissa ed E l'esponente.

Si puéd vedere facilmente che un numero normalizzato & caratterizzato
da una mantissa minor¢ di uno e maggiore ugnoale a 0,1, in tutti j casi
dove il numero considerato non & zero.

In altre parole questo pud essere rappresentato matematicamente da:

0.1 <M < | oppure 107" <M< 10°
Analogamente nella rappresentazione binaria:

'S M <2 (oppure 0,5 < M < 1)
Dove M ¢ il valore assoluto della mantissa (trascurando il segno).

Per esempio:
111,01 & normalizzato come; ,11101 X 2%,

La mantissa ¢ 11101.

L'esponente & 3

E stato ora definito il principio della rappresentazione.

Si esamini il formate effettivo. La rappresentazione tipica a virgola
mobile & mostrata in figora 1-5.

23

3 22 23 s 15 8 7 q
T I
5

1

EXP § M
A

3 —o

{
N T I8 5§ A
|

Figura 1-5: Rappresentazione tipica in virgola mobile.

Nella rappresentazione utilizzala in questo csempio sono impiegati
quattro byte per un totale di 32 bit. Il primo byte a sinistra dell'illustra-
zione & impiegalo per rappresentare I'esponeate. Sia l'esponente che la
mantissa saranno indicati mediante 12 rappresentazione in complemento
a due.

Come risultato il massimo esponente sard 22" ed il pilt piccolo 27",

Tre byte sono impiegati per rappresentare |a mantissa,

Poiché il primo bit della rappresentazione in complemento a due indica il
segno, rimangono 23 bit per la rapprescatazione deila grandezza delta
mantissa.

Esercizio 1.21: Quanie cifre decimali passono essere rappresentate con i 23
bis della mantissa?

Questo & solo uno degli esempi possibili di una rappresentazione a
virgola mobile. E possibile utilizzare solo tre byte, oppure & possibile
utilizzare pid byte, La rappresentazione a quatiro byte proposta sopra é
proprio quella comune che rappresenta un ragionevole compromesso
tra precisione, grandezza dei numeri, utilizzazione della memoria ed
efficienza nelle operazieni aritmetiche.

Sono stati ora esaminati i problemi associati con la rappresentazione
di numeri ed ora si conosce come rappresentarli in forma intera, con
segno oppure in forma decimale. Si esaminerd ora come rappresentare
internamente i dati alfanumerici.

Rappresentazione dei Dati Alfanumerici

La rappresentazione di dati alfanumerici, ciod caratten, & completa-
mente diretta: tutti i caratten sono codificati in un codice di 8 bit. Solo
due codict sono generalmente wtilizzati nella parola del ealeolatore, i
Codicc ASCII ed il Codice ERCDIC. ASCII sigaifica " American Stan-
dard Code for Information Interchange™ ¢d & universalmente utilizzato
nella parola dei microprocessori. “EBCDIC™ ¢ una variante dell’ASCII
utilizzata dalla IBM e percid non é utilizzato nella parola di un microcal-
colatore se non ¢ realizzata un'interfaccia ad un terminale IBM.

24

Si esamini brevemente la codifica ASCII. Si possono codificare 26
lettere dell’alfabeto, maiuscole € minuscole, pit 10 simboli numerici pin
circa 20 simboli addizionali speciali,

Questo pud essere facilmente realizzato con 7 bit, che consentono 128
codici possibili. Tunti i caratteri sono percid codificati in 7 bit: 'ottavo
bit, quando utilizzato, ¢ i1 bir di parizd. La paritd é una tecnica per
venficare ¢he i contenuti di una parola non siana stati accidentalmente
cambiati. Viene contato il numero di uni della parale e I'ottavo bit 2
posto ad uno se il conteggio ¢ dispari, rendendo cosi par il numero
totale. Questa é chiamata parita pari. $i pud anche utitizzare la paritd
dispari, cioe scrivendo uno zero invece di un uno,

Esempic: si calcoli il bit di parita di "“0010011"" impiegando la paritd
pari. Il numero di uni ¢ 3. 11 bit di paritd deve percid essere un + |,
cosicché il numero totale di uni & 4, ciod pari. Il risultato & (0010011,
dove P'uno di testa ¢ il bit di parila ed il numero 0010011 identifica il
carattere. :

La tabella dei codici ASCII a 7 bit appare in Fig. 1.6.

HEX MSD 0 1 2 a 4 8 6 7
LSD | BIT 000 Q01 D10 011 100 101 110 111
0 oobd | NUL OLE SPAZIO p @ P — p
1 oD01 | SOH DG t 1 A Q a a
2 polc | STX DC2 " 2 B A b r
3 po1Y | ETX DC3 # 3 cC 8 c 1
4 0100 | EOT DC4 $ 4 D T d t
5 0101 | ENQ NAK % 5 E U e u
6 0110 | ACK SYN & 6 F v 1 v
7 0311 | BEL ETE, : 7T G W g ow
B 1000 BS CAN { 8 H X h x
g 1001 HT EM) g) Y j y
A 1010 LF SuUB . J z i z
] 1011 VT ESC + ; K [K |
c 1100 FF FS ' < L \ [
D 1101 CR GS - = M | m |
£ 1m0 | so RS . > N A n -

F 111 5(us / 2 O - o DEL

Flgura 1-6: Tabella di conversione (vedsra Appendice E per ls abbreviazioni)

25

In pratica essa viene utilizzata sia dircttamente, cio? senza paritd,
aggiungendo uno 0 nella posizione di estrema sinistra, sia con la paritd,
aggiungendo il bit opportuno sulla sinistra.

Esercldo 1.22: Si calcoli ia rappresentazione ad 8 bit delie cifre da 0" a
9", utilizzando la parita pari. (Questo codice verrd utilizzaio nell’ esempio
di applicazione del Capitolo 8},

Esercizio 1.23: Si esegua lo stesso procedimento sulfle lettere dalia " A" atla
“F.

In settori specifici, come quello delle telecomunicazioni, possono
essere utilizzati altri metodi di codifica, come j codici a correzione di
errore. Comunque essi esulano dallo scopo di questo libro.

Si ¢ imparato come rappresentare sia il programma che i dati all'in-
terno del calcolators, Si esamineranno ora le possibili rappresentazioni
esterne.

RAPPRESENTAZIONFE ESTERNA DELL'INFORMAZIONE

La rappresentazione esterna fa riferimento al modo in cui I'informa-
zione & presentata all'urente, cioé generalmente al programmatore, L'in-
formazione pud essere rappresentata esternamente essenzialmente in tre
formati.

1. Binario

Si ¢ visto che I'informazione é immagazzinata internamente in bir
(sequenze di zeri ed uni). E talvolta desiderabile mostrare questa infor-
mazione interna direttamente nel suo formato binario e questa é chia-
mata rappresentazione binaria.

Un semplice esempic ¢ fornito dalle luci del pannello frontale di un
microcalcolatere (se esso ha un pannello frontale), Neb caso di un
microprocessore ad 8 bit, un pannello frontale sara tipicamente Fornito
di 8 LED per mostrare i contenuti di qualsiasi registro.

Un LED illuminato indica un uno, un LED che non é itluminato indica
uno zero. Tale rapprescntazione binaria pud essere necessaria per un
debugging accurato di un programma complesso, specialmente se esso
coinvolge operazioni di ingressc-uscita, ma & naturalmente impratica-
bile a livello umang. Si sono evolute rappresentazioni pi convenienti.

2 Ouale ed Exadecimale
L™‘Ottale™ ¢ I'*Esadecimale™ codificano rispettivamente tre e quattro

26

bit binari in un'unico simbole. Nel sistema ottale, qualsiasi rappresenta-
zione di tre bit binari é rappresentata da un numero tra 0 e 7.

“Ottale” & un formato che impiega tre bit, nel quale ogni combina-
zione di tre bit & rappresentata da un simbolo tra Qe 7:

binaric | otlale
000 0
001 |
010 2
01] K}
100 4
101 5
110 6
11 7

Figura 1.7: Simboli ottali

Per esempio, "“00 100 100" in binario, nella rappresentazione ottale

diventercbbe; ¥ YV ¥
0 4 4

ciod 044" in ottale.

Un altro esempio: 1t 111 11l &
Y Y !
] 7 ?

avvero “37T in ottale.
Inversamente in numero ottale 211" rappresenta:

010 001 00l
o 10001001 binario.

Tradizionalmente |"ottale & stato utilizzato nei computer pit vecchi che
interamente utilizzavane van numeri di bit da 8 a circa 64.

Pid recentemente, cot dominio dei microprocessori ad 8 bit, il formato
ad 8 bit ¢ divenuto quello convenzionale ed & utilizzata un'altra rappre-
sentazione che ¢ pih pratica. Questa & |'esadecimale.

27

Nella rappresentazione esadecimale un gruppo di quattro bit & codifi-
cato ¢come digit esadecimale. [digit esadecimali sono i numerida0a9,
seguiti dalle lettere A, B, C, D, E, F. Per esempio “0000" & rappresentato
da 0", “0001" ¢ rappresentato da *‘1" ed “1111" & rappresentato dalla
lettera ““F™. (Vedere Fig. 1-8).

DECIMALE | BINARIO ESADEC. OTTALE
o 0000 0 g
1 0001 1 1
2 0010 2 2
3 0013 3 S
4 D100 4 4
5 0109 5 5
6 110 6 [
7 11 7 7
8 1000 8 10
9 1001 2] "
10 1010 A 12
1 1011 B 13
i2 1100 C 14
13 1mmM D 15
14 1110 3 16
1 111 F 17

Figura 1.B: Codici esadecimali

Esempio: 1010 0001 in binanaq, ¢ rappresentato da:
e e
A Il in esadecimale

Esercizio 1.24: Qual'? la rappreseniazione esadecimale di 101010107

28

Esercizio 1.25: Jnversamenic qualé il binario equivalente di*'FA" esadeci-
male?

Esercizio 1.26: Qual’é Iotrale df 010006017

Lesadecimale offre il vantaggio di codificare i bit in soli due digit,
Questo & pid facile da viswahzzare o memonzzare ¢ pily veloce da
rappresentare. Percid, su tutti i nuovi microcalcolatori, 'esadecimale 211
metodo preferito di rappresentazione di gruppi di bit,

Naturalmente. ogni volta che 1'infarmazione presente nella memoria
ha un significato, ciog rappresenta un testo, o numeri, I'esadecimale non
& conveniente rispetto ad altn per rappresentare il significato di questa
informazione, per I'impiego umano diretto.

In questi casi si potrebbe utilizzare un terzo metado.

3. Rappreseniazione Simbolica

La rappresentazione simbolica conduce alla rappresentazionc esterna
dell'informazione in forma effettiva. Per esempio i numen decimali sono
rappresentali come numeri decimali ¢ non come sequenze di simboli
esadecimuli o bit. Analogamente il Lesto & rappresentato come tale.
Naturalmente la rappresentazione simbolica é molto pill pratica all’u-
tente. Essa ¢ impiegata opni volta che ¢ disponibile un appropriato
dispositivo display, come un display CRT oppure una stampante. Sfor-
lunatamente, nei sistemi pid piccoli come i microcomputer su scheda
singola, non & economico fornire tali display ¢ 'utente ¢ limitato alla
comunicazione in esadecimale col microcalcolatore,

Sommario delle Rappresentazionl Esterne

La rappresentazione simbolica dell'informazione é 1a pil auspicabile
poiché & la pil naturale per ['utente umano. Comunque essa richiede
un’interfaccia dispendiosa sotto forma di una tastiera alfanumerica pill
una stampante oppure un display CRT. Per questa ragione essa non pud
essere disponibile sui sistemi meno dispendiosi. Un tipo alternativo di
Trappresentazione viene quindi utilizzato ed in questo caso I'esadecimale
t la rappresentazione dominante.

Solo in rari casi di correlazione con un accurato debugging a livello
hardware o software viene utilizzata la rappresentazione binaria. 11

Binarie mostra direttamente i contenuti dei registri o della reemoria in
formato binario.

19

Si ¢ ora imparato come rappresentare I'informazione internamente ed
esternamente. Si esaminera ora il microprocessorc effettivo che manipo-
lerd questinformazione.

Ulteriori Esercizi

Esercizio 1.27; Qual'é il vantaggio del complemento a due rispetio alle
altre rappresentazioni?

Esercizio 1.2B: Come si potrebbe rappresentare **1024" dirextamente in
binario? In binario con segne? in complemenio a due?

Esercizio 1.29: Cos'é il bit V? If pragrammatore dovrebbe verificarlo dopo
un'addizione o sotirazione?

Esercizlo 1.30: Si caicoline i complementi a due di *'+ 16, “+ 17",
‘l+ !8'.' lt-_ J?’Il il_ !8':

Esercizio 1.31: Si mosiri la rappresentazione esadecimale del testo
seguemte, che é stato memorizzato internamente nel formato ASCIT senza
paritd: = "MESSAGE",

30

CAPITOLO 2

ORGANIZZAZIONE HARDWARE
DEL 6502

INTRODUZIONE

Per programmare a livello elementare non & necessario comprendere
in dettaglio la struttura inlerna del processore che si sta utilizzando.
Comungue, per una programmazioae cfficiente, tale comprensione &
richiesta. Lo scopo di questo capitolo édi presentare i concetti hardware
di base necessan per la comprensione del funzionamento del sistema
6502. 1l sistema completo del microcalcolatore comprende non solo
I'unitd del microprocessore (ciod il 6502) ma anche altri componenti.
Questo capitolo presenta il 6502 vero e proprio; invece gli altri dispositivi
(principalmente d'ingresso/uscita) sarahno presentati in un capitolo
separato. (Capitolo 7).

Si analizzera di seguite I'architettura di base del sistcma microcalcola-
tore, Quindi si studiera in detlaglio I'organizzazione interna del 6502. Si
csamineranna in particolare, i vari registri. 8i studicra poi 'esecuzione
del programma ed i meccanismi sequenziali. Da un punto di vista
hardware questo capitolo ¢ solo una presentazione semplificata, I let-
tote inleressalo ad oftenere una comprensione detlagliata si riferisca al
nostro libro (“"Microprocessori’, dello stesso autore),

ARCHITETTURA DEL SISTEMA

L'architettura del sistema microcalcolatore ¢ mostrata in Figura 2.1,
L'unitd del microprocessore (MPU), che in questo caso sard un 6502,
appare a sinistra dell'illustrazione, Essa realizza l¢ funzioni di una unird
df elaborazione centrale (CPU) all'interno di un chip: essa comprende
un'unitd aritmetico-dogica (ALU), pitl i suoi registri interni, ed una unird
di controllo (CU) avente il compito di sequenziare il sistema. Il suo
funzionamento sari spiegato in questo capitolo.

La MPU origina tre buss: un bdus dari bidirezionale ad 8 bit, che
compare alla sommita dell'illusirazione, un bus indirizzi bidirezionale a
16 bit ed un bus di controlle che appaiono in basso nell'illustrazione. Si
descrivera la funziene di ciascuno di questi bus.

K] |

Il bus dati trasferisce i dati che devono essere scambiati dai vari
clementi del sistema. Tipicamente esso trasferird i dati dalla memoria
alla MPU, oppure dalla MPU alla memoria, oppure dalla MPU ad un
chip d'ingresso/uscita. {Un chip d'ingresso/uscita ¢ un componente che
si incarica di comunicare con un dispositivo esterno).

POTENZA
‘ BLS DATY A 1 B4
‘e N
M A A S 1
Bus 1.Q
re-=n
NPy ADM -4 CZD L vo |
IPRO- {g:‘".,l) c'% HISPO.
GRAM ’ STt
WA !
e e
CONTROLLO
o 9 N

BUS INDIRUZZO A 12T

LINEE CONTROLLD

Figura 2.1; Architaitura di un sislema 8 micropracessore convanzionale

Il bus indirizzi trasferisce un indirizzo generato dalla MPU, che selezio-
nera un regisiro interno di uno dei chip connessi al sistema, Questo
indirizzo specifica la sorgente, ovvero la destinazione dei dati che transi-
teranno lungo il bus dati.

11 bus comrotio trasferisce 1 vari segnali di sincronizzazione richiesti dal
sistema,

Descritto lo scopo dei bus, si considerano ora le connessioni dei
componenti addizionali richiesti da un sistema completo.

Ogni MPU richiede un preciso liming di rifenmento che é fornito da
un clock ¢ da un quarzo. Nella maggior parte dei microprocessori *pilh
vecchi™, "oscillatore del clock ¢ esterno alla MPU e richiede un ulieriore
chip. Nei microprocessori piu recenti, l'oscillatore del clack ¢ normal-
mente incarporato all’interno della MPU. H cristailo di quarzo, comun-
que, a causa del suo volume, ¢ sempre esterno al sistema. [lcristalloed il
clack compaiono a sinistra del blocco MPU nell'illustrazione,

Si rivolga ora l'attenzione ad aliri elementi del sistema.

Andando da sinistra a destra nell'illustrazione, si distingue: il blocco
ROM ¢ la memoria a sofa leriurae contiene il programma per il sistema. 11
vantaggio della memoria ROM ¢ che i suoi contenuti sono permanenti ¢

n

non scompaiono ogni volta che il sistema viene spento. La ROM percio
contiene sempre un bootsirap ovvero un programmma monitor {la loro
funzione sard spiegata in seguito} che consente il funzionamento iniziale
del sistema. Nei controlli di processo quasi wutti i programmi risiedono
su ROM poiche ¢ssi probabilmente non saranno mai cambiati. In tali
casi 'utente industriale deve proteggere il sistema contro interruzioni
dell’alimentazione: i programmi possono non essere volatili. Essi
devono essere su ROM.

Comunque, nclle condszioni di hobby, ovvero in unao sviluppo di
programma (quando il programmatore prova il suo programma), la
maggior parte dei programmi risiederanno su RAM cosicche essi pos-
sano essere facilmente cambiati. In seguito ess! possono rimanere sy
RAM oppure essere trasfenti su ROM, se richiesto. Comunque la RAM
& volatile. I suoi contenuti vanno persi se viene a mancare |'alimenta-
zione,

La RAM (Random-Access-Memory) ¢ lamemoria di lettura/scrittura
del sistema. Nel caso di sistema di controllo la quantitd di RAM sara
tipicamente piccala (salo per i dati).

Draltra parte, nel caso di sviluppo di programma, la quantita di RAM
sara grande e conterrd i programmi pill il software di sviluppo. Tuti i
contenuti RAM devono essere caricati prima dell'impicgo da un disposi-
livo estermno.

Infine il sistema conterrd uno o pid chip di interfaccia. Quello usato
pil1 spesso & il "PIO”" ovvero chip d’Ingresso/Uscita Parallelo. £ quello
mastrato in figura. Questo PIO come tutti gli altri chip del sistema, &
collegato a tutti ¢ tre 1 bus e fornisce almeno due porre a 16 bit per
comunicare ¢ol mondo esterno. Per maggiori dettagli, su come cffetriva-
mente lavora un PIO, ci si riferisca al libro “Microprocessori™ ovvero
anche, specificamente per il sistema 6502, si faccia rifenmeato al Capi-
tolo 7 (dispositivi di Ingresso-Uscita).

Tutti questi chip sono connessi a tuuti & tre bus, compreso il bus
controllo. Comungque, per chiarire I'illustrazione, le connessioni tra bus
controllo ¢ questi vari chip non sono mostrate sul diagramma.

I modubi funzionali descritti non necessariamente risiedono su un
unico chip LSI. Infatti si useranno chip di combinazione che compren-
dano sia un PI1Q ed una limitata quantita di ROM o RAM. Per maggiori
dettagli 5i faccia riferimento al Capitolo 7.

Ancora pil componenti saranno richiesti per ¢costruire un sistema
reale, In panicolare i bus normalmente richiedono dei duffer. Anche la
fogica di decodifica pud essere utilizzata per i chip di memoria RAM ed
infine qualche segnale pud richiedere di essere amplificato per mezzo di
driver.

33

Questi circuiti ausiliari non verranno descritti perché non sono impor-
tanti dal punto di vista della programmazione. Il lettore interessato in
particolare all’assembly ed alle teeniche di realizzazione di interfacce
viene indirizzato al libro; “Tecniche di Interfacciamento dei Micropro- .
cessori”,

ORGANIZZAZIONE INTERNA DEL 6502

Un diagramma semplificato dell'organizzazione interna del 6502
appare in Figura 2.2.

L'unit aritmetico logica (ALU) compare sulla destra dell'istruzione.
Essa pud essere facilmente riconosciuta dalla caratteristica sagoma a
“¥", La funzione dell’ALU ¢ I'esecuzione di operazioni aritmetiche e
logiche sui dati che la alimentane attraverso le sue due porte d'ingresso.,
Queste due porte d'ingresso della ALU sono rispettivamente I “Ingressa
sinistro™ e 1'*Ingresso desiro™, Essi corrispondono alle due estremita pit
alte della sagoma a "'V, Dopo I'esecuzione di un'operazione aritmetica
come una addizione o sottrazione, I'ALU fa uscire i suoi contenuti dal
fondo dell’illustrazione.

[7.1:11‘_—'—:__>m .

1L j{
£

[~

| INDWRIZZO
[. ; Bisoy
|
E INDIREZZO
ALTOQ
L

Figura 2.2: Organizzazione interna del 8502

L'ALU & equipaggiata di uno speciale registro, laccumutatore (A).
L'accumulatore & sull'ingresso sinistro. L' ALU fa riferimento automati-
cAMente a questo accumulatore come ad uno degli ingressi. (Comunque

M

esiste anche un by-pass). Questo ¢ un progetto classico basato sull'accu-
mulatore. Nelle operazioni aritmetiche e logiche, uno degli operandi
sard nell’accumulatore e |'altro si troverd tipicamente in una locazione di
memona. 1] risultato sard depositato nell’accumulatore. 1l riferimento
dell'accumulatore come sorgente ¢ destinazione dei dati ¢ la ragione del
suo nome: esso accumula i risultati. Il vantaggio di questo approccio
basato sull’accumulatore & la possibilitd di impiegare istruziani molto
corte, appena un singolo byte (8 bit) per specificare il codice operativo od
“gpeode”, ciot la natura dell'operazione da eseguire. Se uno degli
operandi deve essere prelevato da uno degli altri registri (diversi dall*ac-
cumulatore), sarebbe necessario utilizzare ulteriori bit per indicare quale
registro all'interno dell'istruzione. Percié I'architettura dell’accumula-
tore si risolve in una maggiore velocita di esecuzione, Lo svantaggio &
che I'accumulatore deve sempre essere caricato con 1 dati richiesti prima
della sua utilizzazione, Quesio pud risolversi in qualche punto ineffi-
ciente,

Si ritorni all'illustrazione. Di fianco alla ALL, alla sua sinistra, appare
uno speciale registro ad B bit, i flag di seato del processore (P). Ciascuno
di questi bit, rcalizzato fisicamente da un flip-flop all’interno del registra
¢ utilizzato per denotare una condizione speciale. La funzione dei vari bit
di stato sara spiegata successivamente durante gli esempt di programma-
zione che saranno presentati nel capitolo successivo e saranno completa-
mente descnitti nel Capitolo 4 che presenta il set di istruzini completo.
Come esempio tre di tali flag di stato sono i bit N, Z ¢ C,

N sta per “negative™. Esso il bit 7 (ctod il pib a sinistra) del registra P.
Ogni volta che questo bit ¢ al livello logico uno indica che il risultato
dell’operazione eseguita dalla ALU é negativo.

Il bit Z s1a per zero. Ogni volta che questo bit (posizione di bit 1) ¢ ad
uno, si denota che & stato ottenuto un risultato zero.

11 bit C, nella posizione pil a destra, (posizione 0}, & un bit carry, cioé
di riporto. Ogni volia che sono sommati due numeri di 8 bit ed il risultato
non pud essere contenuto in 8 bit, il bit C ¢ il nono bit del risultato. [1
carry ¢ usato in modo estensivo durante le operazioni aritmetiche.

Questi bit di s1alo sono controllati automaticamente dalle varie istru-
zioni, Una hsta completa delle istruzioni ed il modo in cui esse influen-
7ano i bit di stato del sistema appare nell'Appendice a come pure al
Capitolo 4. Questi bit saranno utilizzati dal programmatore per varie
verifiche speciali ¢ condizioni eccezionali, oppure per verificare veloce-
mente alcuni risultati errati. Per eserpio la verifica del bit Z pud essere
associata con istruzioni speciali e dird immediatamenze se il risultato di
una preedente operazione era 0 oppure no. Tutte le decisioni in un

5

programma in linguaggio assembly, cioé in tutti i programmi che
saranno sviluppati in questo libro, sarapno basati sulla verifica di bit.
Questi bit saranno sia i bit che saranno letti dal mondo esterno, oppurei
bit di stato della ALU. E percio molio importante capire la funzione ¢
I'uso di tutti i bit di stato del sistema. La ALU & dotata di un registro di
stato contenente questi bit. Tutli gli altri chip di ingresso/uscita del
sistema saranno anch'ecssi equipaggiati con bit di stato. Questo sara
studiato al Captialo 7,

Ci si muova cra verso sinistra dalla ALU nell'illustrazione 2.2, 1
retiangoli orizzontali rappresentano i registni interni del 6502,

PC & i) comtatore di programma. E un registro a 16 bit ed & realizzato
fisicamente come due registri ad 8 bit: PCL ¢ PCH, PCL costituisce la
meta di basso livello det contatore di programma, cioéibitda 0a 7. PCH
costituisce Ja parte ad alio livello del contatare di programma cioé i bit
da 8 a 15, 1! contatore di programma & un registro a L6 bit che contiene
I'indirizzo dell'istruzione successiva da cscguire. Ogni calcolatore & equi-
paggiato con un contatore di programma in modo da conoscere quale
isiruzione deve ¢ssere successivamente eseguita. Si analizza brevemente
il meccarnismo di accesso alla memoria in modo da mostrare il ruolo del
contatore di programena.

MPL Bau

PL:

WS INOIRIZZO

Figura 2.3: Prelievo di umistruzione dalta memoria

IL CICLO D1 ESECUZIONE DI UN'ISTRUZIONE

8i faccia riferimento alla Figura 2-3, L'unitd microprooessore appare
a sinistra e la memoria a destra. 1l chip di memoria pud essere una ROM
oppure una RAM oppure qualsiasi altro chip che svolga le funzioni di
memoria. La memoria é utilizzata par immagazzinare istruzioni e dati.

36

Ora si seguird il prelieve di un'istruzione della memaria per illustrare il
ruclo del contatore di programma. Si supponga che il contatore di
programma abbia un certo contenuto valido. Esso conserva cosi un
indirizzo a 16 bit che ¢ I'indirizzo dell'istruzione successiva da prelevare
dafla memoria. Qualsiasi processore procede in tre cicli:

1 — Prelievo dellistruzione successiva
2 — Decodifica dell'istruzione
3 — Esecuzione dell'istruzione

Prefievo (feich)

Si segue la sequenza. Nel primo ciclo i contenuti del contatore di
programma sono depositati sul bus indirizzo ¢ portati alla memoria (sul
bus indirizzo stesso). Contemporaneamente un segnale di lettura pud
esserc emesso sul bus controllo del sistema, se richiesto. La memoria
riceverd I'indirizzo. Questo indirizzo € utilizzalo per specificare una
locazione all'interno della memoria. Dopo la ricezione del segnale di
lettura la memotria decodificherd)'indinzzo ricevuto, per mezzo dideco-
dificatori interni, ¢ selezionerad la locazione specificata dall'indirizzo,
Alcune centinaia di nanosecondi pid tardi, la memoria depositerd i dati
ad 8 bit, corrispondenti all'indirizzo specificato, sul suo bus dati. Questa
parola ad 8 bit & I'istruzione che si vuole prelevare. Nell'illustrazione
precedente quest'istruzione sard depositata sulla sommita del bus dani.

Si rinassuma brevemente la sequenza: j contenuti del contatore di
programma son¢ inviaii sul bus indirizzo. Viene generato un segnale di
lettura. La memoria entra in funzione. Cirea 300 nancsecondi piu tardi,
"istruzione dell'indirizzo speciftcato ¢ depositata sul bus dati. [micro-
processore quindi legge il bus dati e depone i suoi contenuti in un registro
interno specializzato, il registro 1R. Il registro IR & il registro di istru-
ziane. Esso € largo 8 bit ed & utilizzato per contenere istruzione appena
prelevaia dalla memoria, Il ciclo di prelievo é cosl compietato. Gli B bit
dell’istruzione si trovano ora fisicamente nello speciale registro interno
del 6502, il registro IR, Questo registro IR appare a sinistra nella Figura
2-4.

Decedifica ed Esecuzione

Una vaolta che I'istruzione & contenuta nell'[R, 'unita di controllo del
microprocessore decodificherd i contenutt e sard in grado di generare la
sequenza correila deisegnali internied esterni per |'esecuzione dell"istru-
zione specificata. C'% percid un breve ritardo di decodifica seguito da

kPl

una fase di esecuzione, la cui larghezza dipende dalla natura dell'istru-
zione specificata. Alcune istruziom saranno eseguite interamente all'in-
terno della MPU. Altre istruzioni preleveranno o depositeranna dati
dalla o nella memoria. Questa € laragione per cui le diverse istruzioni del
6502 richiedono diversi tempi di esecuzione. La durata & espressa come
numero di cicli (di clock). Si faccia riferimento all’Appendice per il
numero di cicli richiesti da ciascuna istruzione. Tipicamente i1 6502
utilizza un clock di | MHz. La lunghezza di ogni ciclo é percid un
microseconde. Poiche possonc essere utilizzate varie velocitd di clock
con componenti diversi, la velocitd di esecuzione & normalmente
espressa in numero di cich piutiosto che in numero di nanosecondi.

Si notera anche che sulla parte pib a sinistra dell'illustrazione compare
un oscillatore interno al 6502. Questo & il clock che & interno nel caso del
6502,

Prellevo dell’istruzione successiva

E stata appena descritta Putilizzazione del contatore di programma e
come un'istruzione pud essere prelevata dalla memoria, Durante I'esecu-
zione di un programma, le istruzioni sono prelevate in sequenza dalla
memoria, Qccorre percid fornire un meccanismo automatico per prele-
vare le istruzioni in modo sequenziale. Questo compito & eseguito da un
semplice incrementatore connesso al contatore di programma. Questo €
illustrato in Figura 2-4. Ogni volta che i contenuti del contatore di
programma (in basso nell'illustrazione) sono posizionati sul bus indi-
rizzo, i contenuti dello stesso contatore saranno incrementati e riscritti
nel contatore stesso, Per esempio, se il contatore di programma conte-
nesse il valore 0, il valore 0 uscirebbe sul bus indirizzo. Allora i contenuti
del contatore di programma sarebbero incrementati ed il valore |
sarebbe riscritto nel contatore stesso. In questo modo la volta successiva
che il conmatore di programma viene utilizzato, sard prelevata 'istru-
zione all’indirizzo 1. Si & cosi realizzato un meccanismo automatico per
sequenziare le istruzioni,

Si deve sottolinearc che la precedente descrizione ¢ semplificata, In
realtd alcune istruzioni possono essere lunghe 2 od anche 3 byte cosicché
i byte successivi saranno prelevati in questo modo dalla memoria.
Comunque il meccanismo & identico. II contatore di programma ¢
utilizzato per prelevare byte successivi di un'istruzione allo stesso modo
del prelievo di istruzioni successive, Il contatore di programma, assieme
al suo incrementatore, fornisce un meccanismo automatico peril punta-
mento alle locazioni di memoria successive,

38

MEMQRIA

sy 8US OATI ,]
L
1
1
1]

—t—
! ISTRUZIONE 1%e
SEGNAL! LETTURA _
1 ” o
904 MEMORIA
PROPRIA
—-. BUS INDIRIZZO ”1
> BECOD. INHRIZZO
INDIRIZZI

Figura 2 4: Sequenza automatica

Altri Registri del 6502

Un’ultima area della Figura 2-2 non é ancora stata spicgata, Questa
comprende I"insieme dei tre registri indicati X, Y ed S. I registri Xed Y
sono chiamati registri indice, Essi sono larghi 8 bit. Essi possono essere
utilizzati per contenere dati su cui opererd il programma. Comunque essi
sono normalmente utjlizzat: come registri indice.

[1 ruplo dei registri indice sara descritto al Capitolo 5 sulle teeniche di
indidzzamente, Brevemente, i conteputi di questi due registri indice
possono essere scmmati in diversi modi a qualsiasi registro specificato
all'interno del sistema per fornire una scelta automatica. Questa ¢ una
caratteristica importante pet recuperare in modo efficiente i dati quando
sono immagazzinati in tabelle. Questi duc registri non sono completa-
mente simmetrici ed il loro ruolo sara differenziato nel capitalo sulle
tecniche di indinzzamento.

1l registro dello stack S ¢ utilizzato per contenere un puniatore alla
sommitd dell’area dello stack all'interno della memona.
Si introdurra ora il conceito formale di uno stack.

3

LO STACK

Uno stack & formalmente chiamato una struttura LIFQ (last-in, first-
out). Uno stack ¢ un insieme di registri, o locazioni di memoria, allocati
per questa struttura dati. La caratteristica essenziale di questa struttura &
che si tratta di una struttura crenelogica. 1l primo elemento introdotto
nello stack & sempre in fondo allo stack. L'ultimo elemento depaositato
nello stack & sempre alla sommitd dello siack. Si pud tracciare un‘analo-
gia con i piatti su un contatore di un ristorante.

C*¢ un foro sul contatore con una molla sul fondo. [piatti sono infilati
sopra il foro, Con questa organizzazione ¢ sicuro che il piatto introdotto
per primo nello stack é sempre in fondo. Quello che & stato posizionato
pil recentemente sullo stack ¢ quello alla sommitd. Questo esempio
illustra anche un‘altra caratteristica dello stack. Nell'impiego normale
uno stack ¢ accessibile solo atiraverso due istrurioni “push® e “pop” (o
“pull™). L'operazione push (spinge) fa depositare un elemento alla som-
mitd dello stack. L'operazione pull (estrae) consiste nella rimozione di un
elemento dallo stack. In patica, nel caso di un micraprocessore, & f'aceu-
mulatore che sara depositato alla sommita dello stack, L operazione pop
conduce ad un trasferimento dell’elemento di sommita dello srack nel-
I'accumulatore, Possono esistere altre istruzioni specializzate per trasfe-
rire [a sommitd dello stack tra altri registri specializzati, come il registro
di stato.

E richiesta la disponibilita di uno stack per realizzare tre possibilita di

programmazione allinternc del sistema caleolatore; subrouline, inter-
rupt cd immagazzinamento temporanco di dati. Il ruolo dello stack
durante le subroutine sara spiegato nel Capitolo 3(Tecniche di Program-
mazione di Base).
1l ruolo deilo stack durante gli interrupt sard spiegato al Capitolo 6
{Tecniche di Ingresso/Uscita). Infine il ruolo dello stack nella conserva-
zione di dati ad alta velocttd sard spiegato nel corso di programmi
specifici di applicazione.

A guesto punto si assumerd semplicemente che lo stack & una caratte-
ristica richiesta in qualsiasi sistema calcolatore.

Uno stack pud essere realizzato in due modi:

I. Un numero fisso di registri pud essere fornito all’interno del micro-
processore stesso, Questo ¢ uno “stack hardware™. Questo ha il vantag-
gio di un'alta velocitd, Comunque ha lo svantaggio di un limitato
numero di registri.

2. La maggior parte dei microprocessori gencral-purpose scelgono un
altro approccio, lo stack software, in modo da non restringere lo stack ad

40

un numero molto piccolo di registri. Questo & 'approccio scelto nel
6502. Nell'approccio software un registro orientato all'interno del
microprocessore, il registro S in questo caso, immagazzina il puntatore
dello stack, cioé I'indirizzo dell'clemente di sommitad dello stack pit
uno). Lo stack ¢ poi realizzato come un'area di memoria. 1l puntatore
dello stack richiederd percié 16 bit per poter puntare ovunque nella
memaoria,

Comunque, nel caso del 6502, il puntatore dello stack & ristretto ad B
bit. Esso comprende un nono bit, nella posizione pit a sinistra, sempre
posto ad 1. In altre parole I'area riservata allo stack nel caso del 6502 va
dall’indirizzo 256 all'indirizzo 51). In binaric questo & da “ 100000000™ a
“111111111". Lo stack inizia sempre all'indirizzo ([1111111 e pudavere
fino a 255 parole. Quesio puéd essere visto come una limitazione del 6502
¢ sara discusso successivamente in questo libra. Nel 6502 lo stack &
all'indirizzo pid alto ¢ 51 sviluppa “all'indietro’: il puntatore dello stack
¢ decrementato da un’istruzione PUSH.

Per utilizzare lo stack il programmatore inizializzerd semplicemente il
registro S. Il resto & automatico.

Lo stack vicne considerato risiederc nella paging { della memoria. $i
introdurrd ora il concetlo di impoginazione.

"[Comara J°

SP

D
i L
e A
LR
A

MICROPROCESSORE 7 MEMORIA O
________)
REGISTAO I
i
7T oan |0 b
— } PUSH
‘ l —
T
|
|

= ey

HASE

Figura 2.5: Le 2 Istruzloni di manipotazione dello stack

IL CONCETTO DI IMPAGINAZIONE

11 microprocessore 6502 & equipaggiato con un bus indirizzo a 16 bit.
Si possono utilizzare 16 bit binari per creare fino a 2'* = 64 K combina-
ziont (1 K ¢ uguale a 1024). A causa delle caratteristiche di indirizza-
mento del 6502 che saranno presentate al Capitolo 5, & conveniente la

41

.

partizione della memoria in pagine logiche. Una pagina é semplicemente
un blacce di 256 parole. Cosl le locazioni di memoriada 0a 255sono la
pagina 0 della memoria. Esse saranno utilizzate per I'indirizzamento
“Pagina zero”. La pagina | della memoria comprende le locazioni di
memoria da 256 a 511, E stato appena stabilito che la pagina 1 &
normalmente riservata all'area stack. Tutte fe altre pagine del sistema
non sono coinvolie dal progetio e possono essere utilizzate liberamente.
Nel caso del 6302 & importante ricordare I'organizzazione a pagina della
memoria. Ogni volta che viene attraversata la frontiera di una pagina sj
introduce spesso un ulteriore ciclo di ritardo nell’esecuzione di un'tstru-
zione.

INOIRIZZO MEMORAA
Y [N
i
PAGINA » CAZICNE
Lo BAGINA
155
-1
PAGINA 1
uii
L)
LOCAZIONE
INTERMNA
ALLA PAGINA
PAROLA
b

Figura 2.6 (| cangetto di impaginezione

IL CHIP 6502

Per completare la nostra descrizione del diagramma, il bus dati,
riportato nella parte superiore della Figura 2-2, rappresenta il bus dati
esterno. Esso sard utilizzato per comunicare con i dispositiviesternied in
particolare la memoria.

42

AQ-7 ed AZ-15 rappresentano rispettivamenie Ic parti di basso ed alio
ordine del bus indirizzo creato dal 6502,

Per completezza si presenta di seguito I'effettiva disposizione dei pin
del microprocessore 6502, Non 2 necessario leggere questo per capire it
resto di questo libre. Comunque se si intende connettere i} dispositivo ad
un sisterna questa descrizione sard preziosa.

L'effettiva disposizione dei pin del 6502 appare in Figura 2-7, 1l bus
dati ¢ indicato con la label DB(0-7 ed & factlmente riconoscibile sulla
destra dell'illustrazione. 1l bus indirizzo ¢ indicato con la label AQ-11ed
A12-15. Esso comprende i pin dal 9 al 20 a sinistra det chip ed i pin 22 a
destra,

{ segnali rimanenti sono 1'alimentazione ed i segnalt di controllo.

Wi ——— i [e—
ROY — o 2 » #
2~ 3 w -
W ——ay o 17 |—
- % =
L I Y »
STHE ——m=| 7 M p—— AW

) 26.21 <:> Ot ¥

Ag |1< (X 72.95 ___"\, A2 14

AR Y.

Figura 2.7: Dleposizione del pin del 5502

I segnali di controllo

—R/W: & |a linea di controllo di LETTURA/SCRITTURA nella
direzione del trasferimento dei dati sul bus dati,

~IRQ ed NMI sono la “Richiesta di Intereupt” e I'Interrupt Non
Mascherabile. Quesle sono due linee di interrupt ¢ saranno utiliz-
zate al Capitolo 7.

~SYNC 2 un segnale che indica il prelicvo di un codice operativo dal
mondo esterno.

43

—RDY ¢ normalmentc utilizzato per il sincronismo con una memotia
lenta; esso arresterd il processore.

—S80 comanda il Nag di overflow. Normalmente non vienc utilizzato,

—Bo, B; ¢ B, sono i segnali di clock.

—RES ¢ il RESET, impiegato per inizializzare.

—Vss e Vee sono le alimentazioni (5V).

SOMMARIO HARDWARE

Questo completa la nostra descrizione hardware dell'organizzazione
interna del 6502. L'esatta struttura interna dei bus del 6502 non &
importante a queste punto. Comunque il ruolo esatto di ogni registro é
importante e dovrebbe essere pienamente compreso prima di proseguire
la lettura. Quindi si prosegua solo se si ha familiarita con t concetli
prescntati, diversamente si suggerisce di rileggere ancora le parti essen-
ziali di quesio capitolo non appena queste sono utilizzaie nei capitoli
successivi. Si suggerisce di osservare ancora la Figura 2-2 cdi assicurarsi
la comprensione della funzione di ogni registro di questa illustrazione.

CAPITOLO 3

TECNICHE DI PROGRAMMAZIONE
DI BASE

INTRODUZIONE

Lo scopo di questo capitolo ¢ di presentare tutte l¢ tecniche di base
necessaric per scrivere un programma utilizzando il 6502. Questo capi-
tolo introdurrd concetti addizionali come la gestione dei registri, i ciclie
le subroutine. Esso sara focalizzato sulle tecniche di programmazione
utilizzando solo le risorse interne del 6502, cioé i registri. I programmi
effettivi saranno sviluppali come programmi aritmetici. Questi pro-
grammi serviranno per illustrare i vari concetti presentati ed urilizze-
ranno istruzion effettive. Si vedra cosi come le istruzioni possono essere
utilizzate per manipolare l'informazione tra la memoria la MPU, come
pure per manipolare l'informazione all'interno della MPU stessa, 1l
capitolo successivo discuterd quindi i dettagli completi delle istruzioni
disponibili sul 6502. I! Capitolo 6 presenterd le teeniche disponibili per
manipolare 'informazione all’esternc del 6502: le tecniche d'ingressa/u-
scita,

In questo capitolo si apprendera essenzialmente mediante esecuzione
diretta. Esaminando programmi di complessitd crescente si apprendera
il ruolo delle varie istruzioni. dei registri, e si applicheranna i concetti
precedentemente sviluppati. Comunque un concetto importante che non
verra presentato 1l concetto delle tecniche di indinzzamento. A causa
della sua apparente complessitd esso sard presentato separatamente al
Capitolo 5.

Si inizierd immediatamente s¢rivendo alcuni programmi per il 6502. Si
partird dai programmi aritmetici.
PROGRAMMI ARITMETICI

1 programmi aritmeiici comprendone I'addizione, sottrazione, molti-
plicazione ¢ divisione. Il programma che verri ora presentato opera su
numeri interi. Quesli interi possono essere binari positivi oppure anche

45

espressi nella notazione in complemento a 2 nel qual caso il bit pil a
sinistra & il bit del scgno (Vedere il Capitolo 1 per la notazione in

complemento a due).

Addizione ad B bit

Si sommeranno due operandi ad 8 bit chiamati OP1 ed OP2, rispetti-
vamente immagazzinati agh indirizzi di memoria ADR) ed ADR2Z, La
somma sard chiamata RES e sarj immagazzinata all’indirizzo di memo-
ria ADR3. Questo é illustrato in Figura 3-1. I! programma che esepuira

questa addizione é il seguente:

LDA ADRI CARICA QPIIN A

ADC ADR2 SOMMA OP2 AD OP|

STA ADR)} CONSERVA [L RISULTATO AD ADR}

MEMOALE
ADR] ———a QP1 IPRIMG DPERAMDGQ)
ADRY ————a ap2 (SECONDO OFERAMDO|
ADR] ——————w RES RISULTATO
INDIRIZ2) M/\'\/W

Figura 3.1: Addizlone ad 8 bit: Res = OPt + OP2

Questo ¢ un pregramma dj tre istruzioni. Ogni riga costituisce un'i-
struzione, in forma simbolica. Ogni istruzione sard trasformata dal
programma assemblatore in 1, 2 o 3 byte binar. Non si considerera

46

questa trasformazione qui, ma si osservera solo la rappresentazione
simbolica. In particolare la prima riga ¢ un'istruzione LDA. LDA
significa "carica I'accumaulatore A dall'indirizzo che segue™.

L'indirizzo specificato sulla primariga ¢ ADRI, ADR! & una rappre-
sentazione simbaolica di un indirizzo effettivo a 16 bit. Da qualsiasi altra
paric del programma sard definito il simbolo ADRI. Esso potrebbe
essere, per esempio, l'indirizze 100.

L'istruzione LDA specifica “carica I'accumulatore A" (all'interno de!
6502) dalla locazione di memoria 104, Questo si risolverd in un‘cpera-
zione di lettura dall'indirizzo 100, i cui contenuti saranno trasmessi
lungo il bus dati e depositati all’interno deil’accumulatore. Si ricordera
che le operazioni aritmetiche ¢ logiche operano sull'accumulatore come
uno degli operandi sorgente (per maggiori dettagli st faceia riferimento
al Capitolo precedente). Poiche si desidera sommare assiemc i due valor

¥0d REMDAILA
" —‘
o EWBDATI N
A - - s a, L. :
v ol | ! H
i
(D)
BusS INMJIRIZZD

Figura 3.2: LDA ADRY: OFP1 & caricato dalla memoria

OPI ed OP2, innanzitutto si carica OP1 nelf"accumulatore. Quindi si
sara in grado di sommare i contenuti dell'aceumulatore (OP1) ad OP2,

1l campo piti a destra di questa istruzione ¢ detto campe del commento.
Esso ¢ ignorato dal processore ma viene fornito per la leggibilita del
programma. Per comprendere cosa fa il programma & di importanza
suprema impiegare dei buoni commenti.

Questa lecpica & la documentazione di un programma. Qui il com-
mento ¢ auto esplicativo: il valore di OPI, che ¢ allocato all'indirizzo
ADRI, viene caricato nell'accumulatore A,

Il risultato della prima istruzione ¢ illustrato dalla Figura 3-2.

47

La seconda istruzione del programma in esame &:
ADC ADR2

Essa specifica "“somma i contenuti della locazione di memoria ADR2
all'accumulatore”. Con riferimento alla Figura 3-1, i contenuti della
locazione di memeria ADR2 sono OP2, il secondo operando. I contenuti
effettivi dell’accumulatore sono ora OPL, il primo operando. Come
risultato dell'esecuzione della seconda istruzione, OP2 sard prelevato
dalla memoria e sommato ad OP|. La somma sard depositata nell*accu-
mulatore, Il lettore ricorderd che i risultati di un'operazione aritmetica,
nel caso del 6502, sono rideposti nell'accumulatore. Negli altri micro-
processori, pud essere possibile depositare questi risultati in altri regisiri
o nella memoria.

La somma di QP] ed OP2 & ora nell’accumulatore. Occorre ora
trasferire i contenuti dell'accumulatore nella locazione di memoria
ADR3 in modo da immagazzinare i risultati alla locazione richiesta,
Anche qui il campo pit a destra della secanda istruzione é semplice-
mente un campo commento che spiega il ruala dell’istruzione (somma
QP2 ad A).

MEMORIA

e

BUS QAT

LACE 1y

BUS INDIRIZZO

Flgura 3.3: ADC ADR2

L’effetto della seconda istruzione ¢ illustrato dalla Figura 3-3.

5i pud verificare dalla Figura 3-3 che inizialmenie 'accumulatore
conteneva OPL. Dopo I'addizione un nuovo nisultato & stato scritto
nell’accumulatore. Questo &€ OP1 +OP2. [contenuti di qualsiasi registro
all'interno del sistema, come pure di qualsiasi locazione di memoria,
rimangono invariati quando viene eseguita un'operazione di lettura. In
altre parole, /g lertira dei contenuti di un registro o di una locazione di
memoria non cambia i suof contenuti. Soltanto, ed esclusivamente, un"o-

48

perazione di scrittura cambierd i contenuti di un registro. In questo
csempio i contenuti delle locazioni di memoria ADRI ed ADR2 sono
invariati, Comungue dopo la seconda istruzione di questo programma, i
conteruti dell'accumulatore sono stati modificati poiché 'uscita della
ALU e stata scritta nel'accumulatore, [suoi contenuti precedenti sono
andati persi.

Si conservera ora questo risultalo all'indirizzo ADR3J e questa sem-
plice addizione sard cosi completata,

La terza istruzione specifica: STA ADR3. Questo significa “immagaz-
zina i contenuti dell*accumulatore A all'indirizzo ADR3". Questo é
auto-csplicativo ed é illustrato in Figura 3-4.

sl HEMORLA
——
5 G g Py
U5 DATI
. RES
ap |
soTl
BUS INWRI2ZZO

Figura 3.4: 5TA ADR3 (Immagazzina in mamona i contenuti dell'accumulalore}

Peculiaritg del 6302

Il precedente programma di tre istruzioni sarebbe davvero un pro-
gramma completo per]a maggior parte dei microprocessori, Comunque
esistono due peculiaritd del 6502 che normalmente richicderanno due
istruzioni addizionghi.

Primo, I'istruzione ADC in realtd significa “somma con carry"” piutto-
sto che “somma"’, La differenza sta nel futto che una normale addizione
somma due numeri assieme. Un'addizione-con-carry somma due
numeri assieme pid il valore del bit carry. Poiché qui si stanno som-
mando due numeri di 8 bit il carry non dovrebbe essere utilizzato. Ora
all'inizio dell’addizicne non $i conosce necessariamente la condizione
del bit carry (esso pud essere stato posto ad uno da un’istruzione
precedente), si deve quindi azzerarlo. Questo sard eseguito dall’istru-
zione CLC “azzera carry”.

49

Sfortunatamente il 6502 non possiede entrambi i tipi di operazione di
addizione, Esso possiede solo I'operazione ADC. Come risultato, per
singole addizioni ad £ bit, una precauzione necessaria ¢ quella di azze-
rare sempre 1l bit carry. Questo non ¢ uno svantaggto significalivo ma
non deve essere dimenticato.

La seconda peculiarita de] 6502 concerne il fatto che esso ¢ equipag-
giato con istruzioni decimali potenti che saranno impiegate al paragrafo
successivo con [*aritmetica BCD, 11 6502 funziona sempre in uno dei due
modi: binario o decimale. Lo stato in cuisitrova ¢ condizionato dal bit di
stato, i| bit "D (del registre P). Poicht in questo esempio sista conside-
rando un funzionamento un modo binario & necessario assicurarsiche D
sia posizionalo correttamente. Questo sara fatto da un’istruzione CLD,
che azzererd it bit D. Naturalmente se tutte le operazioni aritmetiche
all'interno del sistema sono eseguite in binario il bit D sard azzerato una
sola volla e per tutte all'inizio del programma ¢ non sard necessario
posizionarlo tutte le volte. Percid questa istruzione pud di fatto essere
omessa nella maggior parte dei programmi. Comunque il lettore che fard
pratica di questi esercizi su un caleolatore, pud passare da esercizi in
BCD ad esercizi in binario ¢ questa ulteriore istruzione inclusa qui deve
apparire almeno una volia prima dell’esecuzione di qualsiasi addizione
binaria.

Per riassumere: il programma ad 8 bit completo e sicuro ¢ ora:

CLC AZZERA 1L BIT CARRY
CLD AZZERA [L BIT DECIMALE
LDA ADRI CARICA OPL [N A

ADC ADR2 SOMMA OP2 AD OP1

5TA ADR3] CONSERVA RES AD ADR)

Si possono utilizzare indirizzi Risici effettivi invece di ADR1, ADR2ed
ADR3. Se si desidera mantenere gli indirizzi simbolici sard necessario
utilizzare le cosiddette “pseudo-operazioni'® che specificano il valore di
questi indirizzi simbolici cosicché il programma assembly pud, durante
la 1aduzione, sostituire gli indirizzi fisici cffettivi. Tali pseudo-
operazioni sarebbero per esempio:

ADRI = § 100
ADR2 =5 120
ADRI = § 200

Eserclzio 3.1: Facendo riferimento soltanro alla lista deile istruzioni ofla
Jine delllbro, siscriva un programma che sommi due nurmeri immagazzinati
alle tocazioni di memoria LOC! e LOC2. Sf depositine i risuliati alla

50

locazione di memoria LOC3. Quindi si confronti il pragramma con quetlo
precedente.

Addizione a 16 bit

Un’addizione ad 8 bit consentira solo 'addizione di numeri ad 8 bit,
cioé numeri tra 0 e 225, sc & utilizzato il binario assoluto. Per applicazioni
pili pratiche & necessario utilizzare una precisione multipla per sommare
numeri maggiori o uguali a 16 bit. Si presenteranno qui degli esempi di
aritmetica a 16 bit. Essi possono essere facilmente estesi a 24, 32 oppure
pits bit. (Ma sempre multipli di 8 bit). Si assumera che il primo operando
sia immagazzinato alla locarione di memoria ADR] ed ADRL-1. Poiché
guesta volta OP] & un numero a 16 bit, esso richicdera duc locazioni di
memoria ad B bit,

Analogamente OP2 sard depositato agli indirizzi di memoria ADR2
ed ADR2-1. 1l risultato deve essere depositato agli indirizzi di memoria
ADR3 ed ADR3-1. Questo & illustrato in Figura 3-5,

MEMORIA
ADR t (ORI
ADRY | 1oPL
H - T H
|
: i
ADAZ ¥ 10PFM ,
—
ADRZ JOPRZIL
ADRI 1 {REBIH
ADRY {RESIL
|

Figura 3.5 Addizione 8 16 bit: gli operand)

La logica di questo programma & esattamente la stessa di quello
precedente. Prima sard sommata Ja meta di basso ordine degli operandi

51

poiche il microprocessore pud sommare soltanto su 8 bit alla volta.
Qualsiasi riporto generato dall’addizione di questi due byte di basso
ordine sard automaticamente immagazzinato nel bit carry interno
("C™). Quindh le mectd di ordine elevato dei due operandi saranno
sommale insieme con qualsiasi carry ed il risultato sard conservato nella
memoria.

Il programma ¢ il seguente:

CLC

CLD

LDA ADRI META' BASSA D] OP]

ADC ADR2 {OF + OP2) BASSQ

STA ADRJ CONSERVA LA META™ BASSA DI RES
LDA ADRI-1 META™ ALTA DI OP1

ADC ADR2-1 {OP! + OF2) ALTCQ + RIPORTO

STA ADR-] CONSERYA LA META' ALTA DI RES

Le prime due istruzioni di questo programma sono wiilizzate per
sicurezza;: CLC, CLD. 11 loro ruolo ¢ stato spicgato nel paragrafo
precedente, Si esamini ora il programma: le successive tee istruzioni sono
essenzialmente identiche a quelle dell’addizione della metd meno signifi-
cativa (bit da 0 a 7) di OP] ¢d OP2. La somma, chiamata RES, &
immagazzinaia alla locazione di memoria ADR3.

Automaticamente, ogni volta che viene eseguita un’addizione, qual-
siasi riporto risultante & conservato nel bit carry del registro dei flag
(registro P). Se 1 due numen non generano nessun riporlo, il valore del
bit carry sard zero. Se i due numeri generano un riporto aflora il bit C
sarh uguate ad 1.

Le successive tre istruziuni del programma sono inoltre essenzial-
menie identiche alla precedente addizione ad 8 bit. Esse sommano
assieme Je metd pill significative (i bit da 8 a 15) di OP1 ed OP2, pin
qualsiasi carry, ed immagazzinano il risultato all'indirizzo ADR3-1.
Dope che @ stato eseguito guesto programma, il risultato a 16 bit &
immagazzinato alle locaziont di memoria ADR3 ed ADR3-I.

Qui ¢ stato assunto che nessun riporto sia generato da questa addi-
zione a 16 bil. Si é assunto infatti che il risultato sia un numero a 16 bit.
Se il programmatore sospetta per qualungue ragione che il risultato
possa avere |7 bit allora dovrebbe essere inserita un'istrezionc addizio-
nale per verificare il bit carry dopo questa addizione. La locazione degli
operandi nella memoria é illustrata in Figura 3-5.

Nota: qui 2 stato assunte che la parte pil alta dell'operando sia
immagazzinata "‘alla sommita" della parte pil bassa ciog all'indirizzo di
memoria pit basso. Questo pud non essere generale, Infatti gli indirizzi

52

sono immagazzinati in modo opposto: la parte bassa é memorizzata per
prima neclla memoria ¢ poi la parte pid alta ¢ immagazzinata nella
successiva locazione di memoria, Per utilizzare una convenzione
comune per i dati e gli indirizzi si raccomanda che anche i dan siano
conservati con la parte pill bassa sopra la parte pid alta, Questo ¢
illustrato in Figura 3-6a e b,

MEMQRMA
Ll R LY
L T []
At Iy
[¥.L A 1 2
ey he
ARy s

Figura 3.8a: Immagarzinamento degli operandi di ordine inverse

Esercizio 3.2: Sf riscriva il programma dell'addizione a 16 bit con Io
schema di memoria indicato in Figura 3-6a.

Esercizio 3.3: 5i assuma ora che ADR! non punti afla merd piis bassa di
OPRI (vedere Figurg 3-6a). ma punii alla parte piii alta di OPR 1. Questo é
illusirato in Figura 3-6b. Si scriva nuovamente il programma corrispon-
dente.

1l programmatore deve decidere come immagazzinare i aumeri a 16
Dit (cioé prima la parte bassa o quclla alta) ed anche se lindirizzo di
niferimento punti alla metd pid bassa o pif alia di tali numeri. Questa & la
Prima di molte scelte che si imparerd ad ¢seguire quando si progettano
algoritmi oppure strutture dati.

LX)

MEMDRLA

ADN 1 AL
Apal [1]
A1 [r B
AL) -
AL} L0
Apk] AT

Figura 3.8b. Funtamenlo al byte elevalo

Si & coslimparato ad eseguire I'addizione binaria, Si considerera ora la
sottrazione.

Sottrazlone di numeri a 16 Bil

L’esecuzione di una sottrazione ad 8 bit & troppo semplice, Si esepuird
ora per esercizio una sourazione a 16 bit. Come al solito i numert che si
considerano, OPR| ed OPR2, sono immagazzinati agli indirizzi ADR|
ed ADR2. Lo schema di memoria sard assunto esserc quello di Figura
3-6. Per sottrarre si escguird I'operazione di sottrazione (SBC) invece di
un’operazione di addizione (ADC). L'unica variazione, rispetto all‘ad-
dizione, & che si utilizzera un'istruzione SEC all’inizio del programma
invece di un CLC, SEC significa **pone ad | carry”', Questo indica una
condizione di “'non prestito”. [) resto del programma ¢ identice a quello
dell’addizione. Il programma ¢ il seguente:

CLD

SEC PONE CARRY AD |
LDA ADRI (OPRIILIN A

5BC ADR2 {OPRI} L - (OPRY) I

54

STA ADR} IMMAGAZZINA (RESULT) L

LDA ADR] + 1 (OPRIIHIN A
SBC ADRZ + ! (CPRI}H - (OPR2ZI H
5TA ADRY+ | IMMAGAZZINA (RESULT) H

Esercizio 3.4 Si scrivail programma defla sottrazione per gli operandi ad
8 bir.

Si deve ricordare che nel caso dell’aritmetica in complemento a 2 il
valore finale del flag carry non é significativo. Se si ¢ verificata una
condizione di overflow come risultato della sottrazione allora viene
posto ad uno il bit di overflow (bit V) del registro dei flag. Questo pud
quindi essere verificato.

Gli esempi appena presentali sono semplici addizioni binarie,
Comunque pud esscre necessaria un altro tipo di addizione: ¢ I'addizione
BCD,

ARITMETICA BCD

Addizione BCD ad 8 Bit

Il cancetto dell’aritmetica BCD éstato presentato al Capitolo 1. Essa
utilizzata essenzialmente per applicazioni commerciali dove ¢ impera-
tivo conservare ogni digit significativo di un risultato. Nella notazione
BCD, viene utilizzato un nibble di 4 bit per immagazzinare un digit
decimale (da 0 a 9). Ne risulta che ogni byte di § bit pud immagazzinare
due digit BCD. (Questo & chiamato BCD packed), $i sommino ora due
byte contenenti due digit BCD ciascuno.

Per definire i problemi si provino innanzi tutta alcuni esempi nume-
rici.

Si sommi *01'" e "“02™:

"01" é rappresentato da 0000 0001,

“02" ¢ rappresentio da 0000 0010
11 risultato & 0000 001 1.

Questa ¢ |a rappresentazione BCD di 03" (Per assicurarsi dell'equiva-
lente BCD si consulti 1a tabella di conversione alla fine del libro), Le cose
sono molto semplici in questo caso.

Si consideri un altro esempio.

*08" ¢ rappresentato da 0000 1000,
03" & rapprescniato da 0000 0011.

55

Esercizio 3.5: Calcolare la somma dei due numeri precedenti nella rappre-
sentazione BCD. Che cosq si oitiene? {la risposta & riportata di seguito).

Se & stato ottenuto 0000 1011 &s1ata calcolata lasomma bingria di 8"
c*'3". Si ¢ infatti ottenuto *'11" in binario. Sfortunatamente “ 1011 é un
codice BCD non consentito. Si doveva otlenere la rappresentazione BCD
di “11" cio¢ *'0001 0001

I} problema deriva dal fatto che larappresentazione BCD utilizza solo
le prime dieci combinazioni di 4 digit in modo da codificare i simboli
decimali da 0™ a "*9". Le nmanenti sei combinazioni di 4 digit sono
inusilizzate cd il valore non consentito *1011" & una di queste combina-
zioni. In altre parole ogni volta che la somma di due digit binari ¢
maggiore di 9" si deve aggiungere *'6" al risultato in modo da saltare i
6 codici inutilizzati. Si sommi quindi la rappresentazione binaria di
6" ad *1011"":

1011 {risultato binario non consentito)
+ 0110 (+6)
1l risultato &: 000! 0001.

Questo ¢, infatti, " 11" nella notazione BCD! Quindi & stato ottenuta il
risultato corretto.

Questo esempio illustra una delle difficoltd di base dell'impiego del
BCD. Occorre compensare & codici inutilizzati. Nella maggior parte dei
microprocessori, un'istruzione speciale, chiamata “aggiustamento deci-
male™ deve essere utilizzata per aggiustare il risultato di un‘addizione
binaria. (Somma 6 se il risultato & maggiore di 9). Nel caso del 6502
I'istruzione ADC fa questo avlomaticamente. Questo é un indubbio
vantaggio del 6502 quando opera nell’aritmetica BCD,

1 problema successivo & illustrato dallo stesso esempio, Nell’esempio
considerato il riporto sara generato dal digit BCD pil basso (quello pid a
destra) in quello pii a sinistra. Questo riporto interno deve esserc consi-
derato e sommato al secondo digit BCD. L'istruzione di addizione del
6502 fa questo automaticamente. Comunque ¢ spesso conveniente rive-
‘lare questo riporto interno dal bit 3 al bit 4 (il “riporto intermedio}.
Non esistone flag per questo scopo nel 6502,

Infine, come nel casc dell’addizione binaria, occorre utilizzare le
usuali istruzioni SED e CLC prima dell’esecuzione dell'addizione BCD
vera e propria. Come esempio si riporta un programma per la somma

56

BCD dei numen 1™ e “22™:

CLC A2ZERA CARRY

SED POSIZIONA MODO DECIMALE
LDA #3101 BCD LETTERALE 1"

ADC xs22 BCD LETTERALE 12"

S5TA ADR

In questo programma sono stati utilizzati due nuovi simboli: “#" ed
“8", Il simbolo "“#" denota che seguc un “letterale™ (o costante). Il
segno “$", all'interno del campo operando dell'istruzione, specifica che i
dati che seguono sono espressi in notazione esadecimale. Le notazioni
esadecimali e BCD per i digit da “0" a “9" sono identiche. Qui si
desidera sommare i letterali (o costanti) “11" ¢ *22", Il risultato &
immagazzinato alt'indirizzo ADR. Quando ['operando ¢ specificato
come parte dell'istruzione, come nell’esempio precedente, si ha il cosid-
detto indirizzamente immediate. (1 vari modi di indirizzamento saranno
discussi in dettaglio al Capitolo 5).

MEMORIA

[|
RISULTATO

VRN,

Figura 3.7: Immagazzinamento dei digit BCD

L'immagazzinamento del risultato ad un indirizzo specificato, come con
STA ADR, ¢ chiamato indirizzamento assoluto quando ADR rappre-
Scnta un regolare indirizzo a 16 bit.

l'}{iercizin 3.6: £ possibile spostare 'istruzione CLC nel programma sotto
Fistruzione 1DA?

57

Sottrazione BCD

La sottrazione BCD # apparentemente complessa, Per eseguire una
sotirazione BCD si deve sommare il complemento a 10 del numero
proprio come occorre sommare il complémento a 2 di un numero per
eseguire la sottrazione hinaria. [) complemento a 10 si otliene calcolando
il complemento a ¢ ed aggiungendo 1. Questo richiede tipicamente tre o
qualtro operazioni su un microprocessor¢ convenzionale. Comungque il
6502 & equipaggiato con una speciale istruzione di sottrazione BCD che
esegue questo con una semplice istruzione! Naturalmentc, ¢ come nell’e-
sempio binario, il programma sard preceduto dalle istruziont SED (che
seleziona il modo decimale, sc non ¢ stato fatto precedentemente) ed
SEC che pone il carry ad 1. Cosi il programma per sottrare 25" a “26™
in BCD ¢ il seguente:

SED PONE MODO DECIMALE

SEC PONE CARRY

LDA & 826 CARICa IL BCD 26

SHC # 323 MENO IL BCD 25

STA ADR IMMAGAZZINA [L RISULTATO

Addizione BCD a 16 blt

L'addizione a 16 bit viene eseguita allo stesso modo del caso binaria. 1]
programma per tale addizione ¢ il seguente:

CLC

SED

LDA ADRI
ADC ADR2
5TA ADR2
LDA ADRI-)
ADC ADR2-1
STA ADRJ-1

Esercizio 3.7 Si confronti il programma precedente con quello utilizzaio
per Paddizione binaria o 16 bit. Qualé la differenza?

Esercizie 3.8: 57 scriva il programema per la sotirazione per i1 BCD g 16 bit.
(Non si utilizzi CLC ed ADC!).

Flap BCD

Nel modo BCD il lag carry durante un’addizione indica che il risultato
¢ maggiore di 99. Questo non & come nella situazione del complemento a

58

2 poiché i digit BCD sono rappresentati in binario vero. [nversamente
[*assenza del flag carry durante una sotirazione indica un preslita,

Suggerimenti di Programmazione per la Somma e la Sottrazione

—Azzerare sempre il lag carry prima di eseguire un’addizione,
—Porre sempre ad | i} flag carry prima di eseguire una sottrazione.
—Porre il mode appropriato: binario o decimale,

Tipi di Istruzioni

Sono stati utilizzati tre tipi di istruzioni del microprocessore. Sono
state impicgate LDA e STA che, rispettivamente, caricano I'accumula-
tore da un indirizzo di memoria, ed immagazzinana i suoi contenuti
allindirizzo specificato, Queste sono due istruzioni di trasferimento dati.

Successivamente sono state utilizzate istruzioni ariimetiche, come
ADC ed SBC. Queste eseguono rispettivamente le aperazioni di addi-
zione ¢ sottrazione. Ulterion istruzioni AL saranno introdotte ne
corse di queste capitolo.

Infine sono state utilizzate istruzioni, come CLC e SED. ed altre, che
manipolano i bit di flag (rispettivamente il bit carry ed il bit decimale
negli esempi considerati). Queste soneo istruzioni di manipolazione di
state o di controllo. Un'estesa descrizione delle istruzioni del 6502 sari
presentata al Capitolo 4.

Ancora altri tipi di istruzioni sono disponibili all'interno del micro-
pracessore € non sono ancora state utilizzate,

Queste sono in particolare le istruzioni di “diramazione" ¢ di “salto”
che modificheranno "ordine secondo il quale il programma deve essere
eseguito. Questo nuevo Lipo di istruzioni sard introdotto nell’esempio
SUCCEsSIvo,

Moltiplicazione

Si consideri ora un problema aritmetico pil complesso: la moltiplica-
zione di numeri binari, Per intradurre |'algoritmo di una moltiplicazione
binaria si inizia esaminando l'ordinaria moltiplicazione decimate: Si
moltiplicherd 12 x 23,

12 (Moltiplicando)
x 23 (Moltiplicatore)

36 (Prodotio parziale)
+ 24

= 276 Risuvllato finale

59

La moltipticazione ¢ eseguita moltiplicanda fa cifra pid a destra del
moltiplicatore, col moltiplica "~, cioé “*3" x 12", 1l prodotto parziale &
+36". Quindi si moltiplica la cifra successiva del moltiplicatore cioé 2"
per *12". “24" & sommato al prodotto parziale.

Ma c'? un'ulteriore operazione: 24 ¢ sposiate a sinistra di una posi-
zione. In modo equivalente si potrebbe dire che il prodotto parziale (36)
& stato spostate a destra di una posizione prima di sommarlo.

1 due numeri, correttamente spostati, sono poi sommati e la somma é
276. Questo & semplice, Si consideri ora la moltiplicazione binaria. La
moltiplicazionc binaria & eseguita esattamente ncllo stesso modo.

Si considen un esempio. Si moltiplichera 5 x 3:

(5 101 (MFD)
(3) <011 (MPR)
101 (PP
1ol
000

(15) ol (RES)

Per eseguire la moltiplicazione si opera esattamente come sopra. La

|

POME A LTRO
IL RISULTATO

RISULTATQ =
RAISLATATO - MPD J

|

SPURTA & LM TR
|1 MP
SPOSTA A DESTRA
111 MBS

JUCCESSW LAY
[T L]

1]
FAFTD

Figura 3.8: L'algoritmo di base della maltipilcazions: diagrammi-di flusso

60

rappresentazione formale di questo algoritmo appare in Figua 3-8, Que-
sto ¢ un diagramma di flusso per I"algaritmao, il primo diagramma di
flusso. Esaminaniamole pil in dertaglio.

Questo diagramma di Nusso é una rappresentazione simbolica dell’al-
goritmo appena considerato, Ogni rettangolo rappresenta un ordine da
eseguire. Esso sard tradotto in una o pil istruzioni di programma, Ogni
simbolo a forma di rombo rappresenta un test da escguire. Questo sara
un punto di diramazione del programma. Se il test si verifica si entra in
un‘alira locazione. 1l concetio di diramazione sard spiegato successiva-
mente nel programma siesso. Il lettore dovrebbe ora esaminare questo
diagramma di flusso ed accertare che esso rappresenta esattameate
l'algoritmo presentato precedentemente. Si noti che ¢’ una {reccia che
esce dall’ultimo rombo in fondo al diagramma di flusso ed una che entra
nel primo romba in alto. Questo perché la stessa porzione di diagramma
di flusso sard eseguila otto volte, una voita per ogni bit del moltiplica-
tore. Una siluazione di questo genere dove I'esecuzione riparte dallo
stesso punto & detta un ciclo di programma (loop) per ovvie ragioni.

Esercizio .9: Si moltiplichi in binarie 4" per “7° utilizzando il diagramma
di flusse » verificandp che si ottiene " 28", Se ¢id non accade 5i provi ancora.
Sela se & s1ato otienuto il risultato corretto si é in grado di tradurre quesio
diagramma di flusso in un programma.

Si traduca ora questo diagramma di flusso in un programma per il
6502. 1l programma completo appare io figura 3-9. Si studierd questo in
dettaglio. Come si ricorderd dal Capitolo 1, la programmazicne in
questo caso consiste nella traduzione del diagramma di flusso di Figura
3-8 nel programma di Figura 3-9. Ciascun blocco del diagramma di
flusso sard tradotto in una ¢ pil istruzioni.

E stato assunto che MPR ed MPD abbiano gid un valore.

. Il primo blocco del diagramma di Nusso & un blocco di inizializzaziane.
E necessario porre a 0" un certo numere di registri o locazioni di
memoria poiché questo programma i utilizzerd,] registri che saranno
utilizzati dal programma della meltiplicazione appaiono in Figura 3-10.

Sulla sinistra dell'istruzione appare la porzione rilevante del micro-
processore 6502, Sulla destra dell'illustrazione appare una sezione rile-
vante dalla memoria. Qui si assumerd che gli indirizzn di memoria
aumentine dall'alto al basso dell'illustrazione. Naturalmente si potrebbe
utilizzare 1a convenzione opposta. Il registro X, riportato all’sstrema
sinistra (uno dei due registri indice del §502) sara utilizzato come conta-

61

LDA #0 AZZERA L'ACCUMULATORE
STA ™P AZZERA QUESTO INDIRIZZO
STA RESAD AZZERA
STA RESAD +1 AZZERA
LDX #B X E IL CONTATORE

MULT LSR MPRAD SPOSTA MPR A DESTRA
BCC NO ADD TEST DEL BIT DEL CARRY
LDA RESAD CARICA CON RES BASSO
cLC PREPARA A SOMMARE
ADC MPDAD SOMMA MPD A RES
STA RESAD CONSERYA [L RISULTATO
LDA RESAD + 1 SOMMA IL RESTO DI MPD SPOSTATO
ADC T™MP
STA RESAD + |

NOADD ASL MPDAD SPOSTA MFD A SINISTRA

ROL TMP CONSERVA IL BIT DA MPD
DEX DECREMENTA IL CONTATORE
BNE MULT RIPETI SE CONTATORE # 0

Figura 3.9: Moltlplicazione Bx8 bit

tore, Poiché st sta eseguendo una moltiplicazione ad 8 bit si devono
verificare gli 8 bit del moltiplicatore. $Sfortunatamente non <i sono
istruzioni nel 6502 che consentono di provare detti bit in sequenza. 1soli
bit che possono essere verificati convenientemente sono i flag del registro
di stata. Come risultato di questa limitazione della maggior parte dej
microprocessori, per verificare successivamente tutti i bit del moltiplica-
tore sard necessario trasferire il valore del moltiplicatore nell’accumula-
tore. Quindi i contenuti dell’accumulatore saranno fatti scorrere a
destra.

Un’istruzione di scorrimento muove ogni bit del registro di una
posizione a destra oppure a sinistra, L'effetto di un’operazione di scomi-
mento ¢ illustrato in Figura 3-10. Esistona molte varianti possibili in
dipendenza del bit che entra nel registro ma queste differenze saranno
discusse al Capitolo 4 (set di istruzioni del 6502).

Si ritorni alle successive verifiche di ciascuno degli 8 bit del moltiplica-
tore. Poiché si pud verificare facilmente il bit carry, il moltiplicatore sara
spostato di una posizionc 8 volte. Ogni volta il suo bit pit a destra cadra
nel bit carry ¢ sara verificato, Il problema successivo da risolvere & cheil
prodotto parziale che sara accumulato durante le addizioni successive
richiederd 16 bit. La mottiplicazione di due numeri ad 8 bit pud produrre
un risultato a 16 bit. Questo perché 2' X 2* = 2'*. E quindi necessario

62

BuUsOATI T

£

x[o] {MPRAD) wea I |
£
(TEMIP} o
{MPDAD) MPD
MOIA22)

\RESAD) WES |LOW

MPL) biiaH
L]
IMEMQRIA)

Figura 3.10: Moltiplicazione i registri

niservare 16 bit per questo risuliato. Sfortunatamente il 6502 ha vera-
mente pochi registri interni cosicché questo prodotto parziale non pud
essere memorizzato all'imemo del 6502 stesso. [nfatti, a causa del limi-
tato numero di registri non si é in grado di immagazzinare il moltiplica-
tore, il moltiplicando oppure i prodotti parziali all'interno del 6502. Essj
saranno immagazzinati in memoria. {Questo originerd un'esecuzione pit
tenta di quetla che sarebbe possibile ottenere memorizzandoli tutti nei
registri interni. Questa € una limitazione del 6502. L'area di memoria
utilizzata per la mohiplicazione appare sulla parte destra deila Figura
3-10, In alto si pud vedere la parola di memoria allocata per il moltipiica-

SCORAMENTO A SINISTHA

LM NN DD DD A

CARRY

RDTAZIINE & SINISTRA,

e N DN N o

CaRAY

Figura 3.11: Scorrimento ¢ rotazione

63

torc. Si assumerd, per esempio, che esso contenga ** 3" in binario, L'indi-
rizzo di questa locazione di memoria ¢ MPRAD. Sotto a questo si trova
un “temporaneo’ il cui indirizzo ¢ TMP. 1l ruolo di questa locazione
sara chiarito di seguitn. Si sposterd il moltiplicando a sinistra nella
locazione principale aggiungendolo al prodotio parziale. 11 moltipli-
cando & successivo ¢ si assumerd contenere il valore 5" in binario. Il suo
indirizzo ¢ MPDAD.

Infine, in fondo alla memoria, si trovano dee parole allocate per il
prodotto parziale ovvero il risultato. Il loro indirizzo ¢ RESAD.

Queste locazioni di memoria saranaa i “'registri di lavoro™ ela parola
“registro’ puéd essere utilizzata come sinonimo di “locazione™ in questo
contesto.

La freccia che compare nella parte destra in alto dell'illustrazione che
fa entrare MPR nel bit C ¢ un modo simbolico per mostrare come il
moltiplicatore sia fatto scorrere nel bit carry. Naturalmente questo bit
carry ¢ fisicamente contenuto all'interno del 6502 ¢ non all'interno della
memoria.

Si ritorni ora al programma di Figura 39, Le prime cinque sono
istruzioni di inizializzazione.

Le prime quatlro istruzioni azzereranno i contenuti dei “registri™
TMP, RESAD e RESAD + 1. Si verifichi questo.

LDA # 0

Questa istruzione carica 'accumulatore con il valore letterale 0", Come
risultato di questa istruzione I'accumulatore conterra *00000000".

I contenuti del’accumulatore verranno ora utilizzati per azzerareitre
“registri”* della memoria. Occorre ricordare che la lettura di un valore da
un registro non altera il suo conenuto. Cosi & possibile leggere il
contenuto di un registro tante volte quanto & necessario. 1 suoi contenuti
non vengono cambiati dall'operazione di lettura, Si proceda:

STA TMP

Questa istruzione immagazzina i contenuti dell'accumulatore nelia loca-
zione di memoria TMP. Si faccia riferimento alla Figura 3-11 per capire
H flusso dei dati nel sistema. L'accumulatore contiene *00000000°. L
nisultato di questa istruzione sard la scrittura di tutti zeri nella locazione
di memoria TMP, Si ricordi che i contenuti dell'accumulatore riman-
gono { dopo un’operazione di lettura. Sono invariati. Si sta per utiliz-
zarli ancora.

64

STA RESAD

Questa istruzione opera csatlamente come la precedente ed azzera |
contenuti dell’indirizzo RESAD. Analogamente opera:

STA RESAD + 1

nfine si azzera la locazione di memoria RESAD + 1 che ¢ stata riservata
per memaorizzare la parte alta del risultato. (La parte alta sono i bit 8-15;
la parte bassa sono i bit (-7).

Infine, per arrestare lo scorrimento dei bit del moltiplicatore all‘i-
stante corretto, & necessario contare il numero di scorrimenti che sono
stati escguiti. Sono necessari oo scorrimenti. Il registro X sard uljliz-
zato come contalore ed inizializzato al valore “8'. Ogni valta che viene
eseguito uno scorrimento, i contenuti di questo contatore saranno decre-
mentati di 1. Quando il valore del contatore diventa **0" Ia moltiplica-
zione & terminata, Si inizializza questo registro ad “B™;

LDX # 8

Questa istruzione carica il lenerale 8" nel registro X.

Con riferimento al diagramma di flusso di Figura 3-Bsi deve verificare
il bit meno significativo del moltiplicatore. E state indicato precedente-
mente che questa prova non puo essere esegiita in una singola jstru-
zigne, Qccorre utilizzare due istruzioni. Prima il moltiplicatore sard
fatto scorrere a destra, poi il bit che esce sara verificato. Questo & il bit
carry. Si ¢segua quest’operazione;

LSR MPRAD
Questa istruzione & uno Spostamento Logico a Destra dei contenuti della
locazione ¢h memoria MPRAD.

Esercizio 3.10: Assumendo che il moltiplicatore neil’ esempio sia "' 3" qual'é
il bit che cade dolla parte della locazione di memoria MPRAD? (In alire
parote quale sarad il valore del carry dopo questo scorrimento?).

La successiva istruzione verifica tl valore del bit carry:

BCC NOADD

Questa istruzione significa **Se il Carry ¢ Zero “vai" all'indirizzo
NOADD.

Questa ¢ la prima volta che si incontra un'istruzione di diramazionc.
Tuttj i programmi fin'ora considerati erano strettamente sequenziali.
Ogni istruzione era eseguita dopo la precedente in ordine sequenziale,
Per capire 'utilizzazione di test logici, come quello del bit carry, si deve

65

esserc in grado di eseguire istruzioni dovunque nel programma dopo il
test. L'istruzione di diramazione esegue appunto tale funzione. Si esami-
nerd il valore del bit carry. Se il carry era 0", ciod azzcralo, allora
I'esecuzione del progamma proseguird all’'indirizzo NOADD. Questo
significa che la successiva istruzione eseguila dopo BCC saré l'istruzione
all'indinzzo NOADD, se i) test é soddisfatto.

Altrimenti, sc il test non ¢ soddisfatto, non si verificherd alcuna
diramazione ¢ sard eseguita P'istruzione sequenziale successiva BCC
NOADD.

NOADD necessita di un'ulteriore spiegazione: questa & una /pbe!
simbelica. Essa rappresenia fisicamente un indinizzo effettive all'interne
della memoria. Per convenienza del programmatore, il programma
assemblatore consente I'utilizzazione di nomi simbolici al posto di indi-
rizzi eflettivi. Durante il processo assembly, 1"asscmblatore sostituird
["indirizzo fisico reale al posto delsimbolo “NOADD™. Questo migliora
la leggibilita del programma in modo sostanziale e consente anche al
programmatore di inserire istruzioni addizionali tra il punto di dirama-
zione e NOADD, scnza dover riscrivere ogni cosa. Questi artifici
saranno studiati in maggior dettaglio al Capitolo 9 sull’assemblatore,

Sc il test non ¢ soddisfatto vienc cseguita I'isiruzione sequenzialmente
successiva nel programma. Si esamineranno ora entrambe le alternative,

Alternariva 1: it carry sia "' 1",

Scilecarryé | il test da BCD non ésoddisfatto c viene eseguita listruzione
immediatamente sucessiva BCC in ordine sequenziale.

LDA RESAD

Alternativa 2: il carry sia "'0".

1l testo & soddisfatto e la successiva istruzione & quella con la label
"NOADD"™.

Con riferimento alla Figura 3-8, il diagramma di flusso specifica che,
se il bit carry era 1, il moltiplicando deve essere sommato al prodotto
parziale (nel caso considerato i registri RES). Inoltre occorre eseguire
uno scorrimento, 11 prodotto parziale deve essere mosso di una posizione
a destra ovvero il moltiplicando deve e¢ssere mosso di una posizione a
sinistra. Si adotterd qui la convenzione normalmente impiegata nell'ese-
cuzione manuale della moltiplicazione e si muoverd il moltiplicando di
una posizione a sinistra,

1l moltiplicando & contenuto nei registri TMP ed MPDAD. (Per
semplicitd saranno normalmente chiamate “registri” le locazioni di
memaria). | 16 bit del prodotto parziale sono contenuti agli indinizzi di
memoria RESAD ¢ RESAD + 1,

66

Per spiegare questo si assuma che il moltiplicando sia **5. 1 vari
registri appaiono in Figura 3-10.

Si devono semplicemente addizionare due numeria 16 bil, Questo é un
problema che si & gia imparato a risolvere. (Se si ha qualcht dubbio si
faccia niferimento al precedente paragrafo sull'addizione a 16 bit). Si
sommerannc prima i byte di basso ordine ¢ poi quelli di ordine elevato.
Si procede cosi:

LDA RESAD
L'accumulatore & caricato con la parte bassa di RES.
CLC

Prima di quaisiasi addizionc il 6502 richiede che i} bit cary s1a azzerato.
Qui ¢ particolarmente importante perché si sa che il bit carry era stato
posto ad L. Percid esso deve essere azzetato,

ADC MPDAD

Il moliplicande é sommato all'accumulatore, che contiene (RES)
BASSO.

STA RESAD

1l risultato dell’addizione & conservato all'appropriata locazione di
memoria (RES) BASSO, Viene poi eseguita la seconda metd dell’addi-
zione. Durante 'esecuzione del controllo manuale di questo programma
non si dimentichi che "addizione porrd il bit carry. [l carry sard posto a
“0” o ad 1" in dipendenza del risultato dell’addizione. Qualsiasi
riporto che deve esserc generato sard portato automaticamente nella
parte di ordine elevato del risuliato,

Si completa ora "addizione:

LDA RESAD =~ |
ADC T™MP
STA RESAD + |

Queste istruzioni completanc I'addizione a 16 bit, Si & ora sommatoil
moltiplicando a RES. Occorre ora spostarlo di una posizione a sinistra
prima dell'addizione successiva. Si pud anche considerarc lo sposta-
mento del moltiplicando di una posizione a sinistra prima del’addizione,
eccetto che per ta pnma volta. Questa & una delle molte scelte di pro-
grammazione sempre aperte al programmatore.

Si faceia scorrere il moitiplicando a sinistra:

67

NOADD ASL MPDAD

Questa istruzione & uno “*Spostamento Aritmetico a Sinistra™.

Essa spostera di una posizionc a sinistra i contenuti della locazione di
memeria MPDAD che contiene la parte bassa del moltiplicando, Questo
non basta, Non ci si pud permettere di perdere il bit che cade dalla partc
estrema sinistra del mohiplicando. Questo bit cadrd nel bit carry. Esso
qui non pud esscre immagazzinato permanentemente perche poi pud
essere distrutto da qualsiasi operazione aritmetica. Quesia dovrebbe
esscre conservato in un registro “permanente’™. Esso dovrebbe esserc
fatto scorrere nella locazione di memaoria TMP. Questo & infatti realiz-
zato dall'istruzione successiva:

ROL TMP

Questa specifica; "*‘Rolazione a sinistra™ dei contenuti di TMP,

Qui si pud fare un'interessante osservazione. Sono stati appena utiliz-
zati due diversi tipi di istruzioni di scorrimento per fare scorrere un
registro di una posizione a sinisira. La prima & ASL. La seconda é ROL.
Qual'é la differenza?

Listruzione ASL fa scorrerc i contenuti del registro, L'istruzione
ROL ¢ un'istruzione di rotazione. Essa sposta i contenuti del registro di
una posizione a sinistra ed il bit che cade dall'estremna sinistra va nel bit
carry, come al solito. La differenza sla nel fatto che i contenuri precedenti
del bit carry sona forzati nefin posizione piit o destra. Questa in matema-
tica ¢ chiamata rotazione circolare (rotazione a 9 bit). Questo & esatta-
mente quello che si vuole come risultato della ROL, il bit spinto fuori da
TMP sulla sinistra e preservato nel bit carry C arriverd nella posizione
pill a destra del registro TMP. Cosi opera come si voleva.

Si ¢ cosi terminato con la parte aritmetica di questo programma. Si
dovra verificare se I'operazione é stata eseguita otto volte, cioé sc la
moltiplicazione € terminata. Normalmente nella mapgior parie dei
mICTOprocesson questo richiede due istruzioni:

DEX

Questa istruzione decrementa i contenuti del registro X, Se esso conte-
neva 8, dopo 'esecuzione di questa jstruzione esso conterrd 7.

BNE MULT

Quecsta & un’altra istruzione di verifica e diramazione, Essa specifica
*salia alla locazione MULT sc il risultato non ¢ uguale a 0. Finch# il
registro contatore decrementa ad un intera non zero, c'¢ un salto auto-
matico indietro alla label MULT. Questo & chiamato ciclo di moltiplica-

68

zione, Con riferimento al precedente diagramma di flusso questo corri-
sponde alla [reccia che esce dall’ultimo blocco, Questo ciclo sard cse-
guito 8 volte.

Esercizio 3.11: Cosa succede guando X é decrementato a 0? Qual’é la
successiva istruzione che viene eseguita?

Nella maggior parte dei casiil programma appena sviluppato sari una
subroutine e I'istruzione finale della subroutine sard RTS. Il meccanismo
della subroutine sard spiegato in scguito nel corso di questo capitolo.

AUTO-TEST IMPORTANTE

Se si desidera imparare come programmare ¢ estremamente impor-
tante capire un programma bLipico nei dettagli completi. Sono state
introdotte molte nuove istruzioni, L'algoritmo € ragioncvolmente sem-
plice ma il programma ¢é molto pid lungo dei programmi precedente-
mente sviluppati. S/ suggerisce vivamente di eseguire completamente ¢
correitamente il seguenie esercizio prima di procedere nel corso di guesto
capitole. Se si fa questo correttamente si avr} realmente capito il mecca-
nismo mediante il quale le istruzioni manipolano i contenuti della
memoria e dei regisiri del microprocessore ¢ come deve essere utilizzato
il flag carry. Se non si fa questio & probabile che si provino difficolta nella
scrittura da soli dei programmi. Si proceda quindi all'esecuzione del
seguente esercizio,

Esercizio 3.12: Ogni volta che vieme scritto un programma si dovrebbe
verificarto monualmente in modo dua accertare che I suof risuliati saranno
corretii. St fard proprio quesio. lo scopo di questo esercizio é di riempire la
tabella df Figura 3.12.

Si pud scrivere direttamente su questa ovvero su una sua copia. Lo
scopo & determinare i contenuti di ogni registro ¢ locazione di memoria
di rilievo del sistema dopo I'esecuzione di ogni istruzione di questo
programma, dall'inizio alla fine. Nella Figura 3.12 si troveranno ripor-
tali orizzontalmente tutti i regisiri e locazioni utilizzati dal programma:
X. A, MPR, C (il bit di flag carry}, TMP, MPD, RESL, RESH. Sulla
parte sinistra dell'istruzione si deve riporare 1a label, se disponibile, ¢
l'istruzione da eseguire. A destra dell'istruzione si devono serivere i
contenuti di ogni regisiro dopo I'esecuzione di questa istruzione. Ogni
volta che i contenuti di un registro sono indefiniti si utilizzera un tratta,
Si inizia riempendo assieme questa tabella. Si dovra poi riempirla fino
alla fine,

6%

ZL-C CIZ[2Jaga,|jap auo|znaess | 1ad andwiew ep OVEnge L ZL°¢ emnbig

H 1avs3d)

5 (0vsad)

OdW

CLENR

HdW

ANCIZOWLSE

J38v

70

La prima riga & la seguente:

LABEI.I&'NU:I 1 . e < e wy it Him
[aw [--==m A T EEE S

Flgura 3.13: Prima istruzione della moltiplicaziane

La prima istruzione da escguire ¢ LDA # 0.

Dopo l'esecuzione di questa istruzione, i contenuti del registro X non
sono noti, Questo & indicato con trattini. | contenuti dell'accumulatore
sono utti zeri. Si assume anche che il moltiplicatore ed il moltiplicando
siano stati caricati dal programmatore precedente I'esecuzione diquesto
programma. (Altrimenti sona necessarie istruzioni addizionali per posi-
zionare i contenuti di MPR ed MPD). In MPR sitrovail valore binario di
3", In MPD si trova il valore binario di **5". [1 bit carry non édefinito e
cosi pure il registro TMP ed entrambi i registri utilizzati per RES. Si
riempia ora la riga successiva. Essa é riportata di seguito: la sola diffe-
renza & che i contenuti del registro TMP sono stati posti a “0". L’istru-
zione successiva porrd a “0" i contenuti di RESAD ¢ quella ancora
successiva porra a ‘0" i contenuti di RESAD + |

[re 1 l £ OAS 1 - L] [4 TR] IWER L]
A [----— I |) [=== o [u e [ema— =
4T owD

Figura 3 14; Prima due righe della moltiplicazione

La quinta istruzione: LDX # 8 porrd i contenuti di X ad “‘8". Si consideri
untulteriore istruzione (vedere Figura 3-15).

L'istruzione LSR MPRAD fard scorrere i contenuti di MPRAD a
destra di una posizione. Si pud vedere che dopo lo scorrimento i conte-
nuti di MPR sono 0000 0001%. L"*1" pii a destra-di MPR ¢ caduto nel
bit carry. Il bit C & ora posto ad 1. Gli altri registn sono invariati.

Si proceda ora da soli: si riempia completamente il resto di questa
tabella, Non 2 difficile ma questo richiede attenzione, Sc si hanno dubbi
sulle regole di alcune istruzioni, si pud far riferimento al Capitolo 4 dove
si pud trovare ciascuna di queste elencate ¢ descrittc, oppure anche alla
parte di Appendice di questo libro dove esse sono riportate in forma di
tabella.

Il risultato finale della moltiplicazione dovrebbe essere 15" in forma
binaria, contenuto nei registri RES basso ed alto. RES alto dovrebbe

k!

essere posto a 0000 0000™. RES basso dovrcbbe essere posto a 000
1111". Se ¢ stato ottenuto questo risultato, I'esercizio & slato risolto
correttamente. Diversamente si provi ancora una volta. La sorgente pid
frequente di errori & una manomissione del bit carry. Ci si assicuri che il
bit carry sia cambiato ogni volta che si esegue un’istruzione aritmetica.
Non si dimentichi che la ALU porra il bit carry dopo ogni operazione di
addizione.

Lasb. M‘m‘ . 2 -
-y fe——— G e | ———— [I e

Wit | b A [TV e

CLUO DL

RPN Lreyfy L TR S ETE: Riviinid L) Y S

mal [wess

= m =

Figura 3.15: Tabulaio parzialmente completo per V'esercizig 3-12

Alternative di Programmazione

1] programma appena sviluppato & solo uno dei molti modi in cui esso
potrebbe e¢ssere scritto. Ogni programmatore pud trovare modi per
cambiare ¢ talvolta migliorare un programma. Per esempio & statn
spostato il moltiplicando a sinistra prima di sommare. Sarebbe stato
matematicamente equivalente allo spostamento del rsultato di wna
posizione a destra prima di sommarlo al moltiplicando. Il vantaggio ¢
che non sarebbe richiesto il registro TMP, risparmiando cosl urna loca-
zione di memoria. Questo potrebbe essere un metodo preferito in un
microprocessore equipaggiato con sufficienti registri interni cosicche
MPR, MPD ¢ RES potrebbero essere contenuti all'interno del micropro-
cessore. Poiché si & obbligati ad utilizzare la memoria per escguire queste

-operazioni, il risparmio di una locazione di memoria non & di rilievo, 11
punto ¢ quindi se il seconde metodo pud portare ad una moltiplicazione
pit veloce. Questo & un esercizio interessante:

Esercizio 3.13: 5i scriva una moltiplicazione di § x & bit impiegando lo
stesso algoritmo ma facendo scorrere il risuliato di una posizione a destra

72

invece di far scorrere (i moltiplicando di una posizione a sinistra. Si
confrontino i due programmi precedenti e si determini se quesio diverso
approccio potrebbe essere piwt veloce o pit lemto di quello precedente.

Pud sorgere un zltro problema: per determinare la velocita de) pro-
gramma si pud far riferimento alla tabella del paragrafo di Appendice
cheelenca il numero di cicli richiesti da ciascuna istruzione. Comunque il
numero di cicli richiesti da alcune istruzioni dipende da dove ¢sse sono
localizzate. Esiste uno speciale modo di indirizzamento del 6502 chia-
mato Modo di Indirizzamenio Diretto dove la prima pagina (locazioni da
0 a 255) & riscrvata all'esecuzione veloce. Questo sard spiegato al Capi-
tolo Ssulletecniche di indirizzamento. Brevemente tutti i programmi che
richiedono un’esecuzione veloce saranno tocalizzati in pagina 0 cosicché
le istruzioni richiedono solo due byte per indirizzare le locazioni di
memaoria (I'indirizzamento di 256 locazioni richtede solo un byte), men-
tre le istruzioni localizzate in posizione generica nella memoria richiede-
ranno tipicamente istruzioni di 3 byte. Quest'analisi verra ripresa al
Capitolo 5.

Un Programma di Moltiplicaziooe migliorato

Il programma appena sviluppato ¢ una traduzione diretla in codice
dell’algontmo. Comunque Ja programmazione effettiva richiede una
stringente attenzione ai dettagli cosicché la lunghezza del programma
pud essere ridotta per migliorare la sua velacita di esecuzione, Si presen-
terd ora una realizzazione migliorata dello stesso algaritmo.

Uno dei compiti che consuma istruzioni e tempo ¢ Jo scorrimento del
risultato e del moltiplicatore. Un “espediente” convenzionale utilizzato
nell"algoritmo della moltiplicazione ¢ basato sull’osservazione seguente:
ogni volta che il moltiplicatore & fatto scorrere di una posizione di bit a
destra, diventa disponibile sulla sinistra una posizione di bit. Contempo-
rancamente si pud osscervare che il primo risultato (o prodotto parziale)
utilizzerd, al pib, 9 bit. Dopo il sucecessivo scorrimento di moltiplica-
zione, la dimensione del prodotto parziale aumenterd ancora di un bit.
In altre parole si pud riservare, inizialmente, una locazione di memoria
per it prodotto parziate ¢ poi utilizzare la posizione di bit che é stata
liberata dal moliplicatore in virtit del suo scorrimento.

Si sta ora facendo scorrere il moltiplicatore & sinistra. Si libererd una
posiziane di bit sulla destra. Si fa entrare il bit pidl 8 destra del prodotio
parziale in questa posizione di bil appena liberata. Si consideri ora il
programma.

73

Si consideri anche "utilizzazione ottima dei registri. | registri interni
del 6502 appaiono in Figura 316, X ¢ meglio utilizzato come un conta-
tore. Questo sard utilizzato per contare il numero di bit spostati, L'accu-
mulatore (sfortunatamente) & il solo registro interno che pud essere fatto
scorrere, Per migliorare I'efficienza, si dovrebbe immagazzinarein esso il
meltiplicatore oppure anche il nsultato.

+
L > j ACCUMULATORE

AECQISTRINDICE

[s | sTacx poINTER
(R <
I % _] CONTATOAE D4 PROGAAMMA
L)
v - 1 c ' {]c | FLAGS

Figura 3.18: I registri del 6502

Quale si meltera nell'accumulatore? Il risultato deve essere sommato
al moltiplicando ogni volta che scorre fuori un 1. Poiché il 6502 somma
sempre soltanto qualcosa all'accumulatore, € il risultato che risiedera
nell"accumulatore.

Gli altri numen devono risiedere nella memoria (vedere Figura 3-17).

A e B conserveranno il risuliato. A conserverd la parte alta del
risultato e B quella bassa. A & I'accumulatore ¢ B una tocazione di

a0z MEMORIA
[} A 7
[conatant —|[|j nEsH]——-Q—a- RESL -l
] MNP
+
D yor

Figura 3.17: Allocazlone dei segisiri (moltiplicaziane migliorata)

74

memaoria, prefetibilmente in pagina 0. C conservera il moltiplicators
{una locazione di memoria). D conserva il moltiplicando (una locazione
di memona), Il programma risulta quindi:

MULT LDA &0 INIZIALIZZA (L RISULTATO A ZERO (ALTO)
STA A INIZIALIZZA IL RISULTATO (BASS0)
LDX #8 X E 1L CONTATORE DI SCORRIMENTI
LOOP LsR C SCORRE MPR
BCC NOADD
CLC CARRY ERA UNO. VIENE AZZERATO
ADC D A=A ~MPD
NOADD ROR A SCORRE 1L RISULTATO
ROR B RIT INSERITO IN B
DEX DECREMENTA IL CONTATORE
ANE LOCOF ULTIMO SCORRIMENTO?

Figura 3.18: Moltiplicazione migliorata

Si esamini il programma. Poiché A ¢ B conservano il risullato e
devono essere inizializzati al valore 0. Questo viene eseguito da:

MULT LDA # 0
STA B

Si utilizzera quindi il registro X come contatore di scorrimento e sara
inizializzato al valore 8:

LDX#E

5i & ora pronti per entrare nel ciclo di moltiplicazione principalc come
in precedenza. Si fard scorrere prima il moltipliatore, quindi si verifi-
cheri il bit carry che conserva il bt pil a destra del moltiplicatore caduto
fuori. Qperano questo:

LOOPLSR C
BCC NOADD

Qui si fa scorrerc il moltiplicalore a sinistra (invece che prima a
destra). Quesio & equivalente al precedente algoritmo perché I'opera-
zione di addizionc # commutativa.

Esistono due possibilita: se il carry cra 0 st andrd a NOADD. Si

75

assuma che il carry sia 1. Si procedera:

CLD
ADCD

Poiché il Carry era |, esso deve essere azzerato ¢ quindi sommare il
maltiplicande alt*accumulatore. (L'accumulatore conserva i risultati, 0
fin‘ora).

Si faccia ora scorrere il prodotte parziale:

NOADD ROR A
ROR B

Il prodotto parziale in A & fatio scorrere a destra di un bit. [! bit pid a
destra cade nel bit carry. [] bil cary ¢ catturato e ruotato nel registro B,
che conserva la parte bassa de] risuliato.

Si deve ora verificare semplicemente se 'operazione é conclusa:

DeEx
BNE LOOP

Se si esamina questo nuovo programma risulta che ¢ formato da un
numero di istruzioni circa meta di quello precedente. Esso sarad anche
eseguito molto pil velocemente. Questo mostra I'importanza del selezio-
namento corrcito dei registri che contengono l'informazione.

Un progetto diretto originerd un programma che lavora. Ma non
originerd un programma ottimizzato. Percid ¢ molto importante utiliz-
zare i registn disponibili e le locazioni di memonia nel modo migliore
possibile. Questo esempio illustra un approccio razionale alla selezione
dei registri per ottenere la massima efficienza.

Eserclzio 3.14: Si calcoli la veloritd di un’operazione di moltiplicazione
wtilizzande quest'ultimo programma. Si assuma che una diramaziene si
verifichi nel quindici per cento dei casi. St ricavi if numero di cicli richiesti
da ogni isiruzione nella tabella alla fine del libro. Sf assuma una velocitd di
clock con un ciclo = I microsecondo. '

Divisione Binaria

L'algoritmo per la divisione binana ¢ analogo a quello utilizzato per la
moltiplicazione, 1l divisore & successivamente sottratto dai bit di ordine
elevato del dividendo. Dopo ogni sottrazione, il risultato ¢ utilizzato al
posto del dividendo iniziale. 11 valore del quoziente ¢ contemporanea-
mente aumentato di 1 ogni volta. Eventualmente il risultato della sottra-

76

zione & negativo. Questo ¢ chiamato un eccesso. Si deve quindi immagaz-
zinare il risultato parziale riaggiungendo il divisore ad esso. Natural-
mente il quoziente deve essere contemporaneamente decrementatodi 1,
Il quoziente ¢ dividendo sono poi fatti scorrere di una posizione di bit e
I'algoritmo ¢ ripetuto.

Il metodo appena descritto é chiamato metodo a ri-immagazzinamento.
Una variazione di questo metodo che produce un miglioramento di
velocita di esecuzione ¢ detto metodo senza ri-immagazzinamento.

Rt k]
QO -3
CONT I Acoee = §

e

SOOI MTO & SevinTia

ARG T8 SO TTRAZ N

[L RSN PR L ol R =T)

‘

I i ARG AT
SUONINTE - GUODENTE . ¢

O Drenied
CONTATDAS ~CONTATDAM] -

J

P L SEETO A S TRA EADENDOs

Figura 3.18: Diagramma dl flusso della divisione binaria ad 8 bit

La divisione a 16 bit

Verra ora descritta la divisione senza rimemorizzazione per un divi-
dendo a 16 bit ed un divisore di 8 bit. La Fig. 3-20 riporta il registro e la

77

locazione di memoria di questo programma. [l dividendo & contenuto
nell’accurmtlatore (parte alta) ¢ nella locazione di memoria 0, qui indi-
cata con B. 1| risultato & contenuto in Q (locazione dt memoria 1). 11
divisore & contenuto in D (locazione di memoria 2), Il nisultato sara
contenuto in D ed A (A conterra il resto),

"o

S TATA = Oy DENOO

RUOTA & SMISTRA
I IQLENTE

IrT A Seal TRL DI AR

Figura 3.20: Diagramma dl flusso divisione 16x8

La Fig. 3-21 riporta il programma, mentre il diagramma di Ausso
corrispondente ¢ riportato in Fig. 3-22,

LINE # |NC CO0t LUNE

ooo2 0000 » =g
0003 000C 8 =]
Q004 0001 q LRSS |
0005 0663 [V])
000 poa3 - = §0
000? 020 AD0E Dy DY a#d
0000 o2 n SEC
Co0e 0203 502 5ecp
noio 0205 1] LOOP PHP

o1 0 bLTH ROLQ
0012 Ly 06 00 ASLD
0013 3204 n ROL A
001a 0208 26 ALP

ons ox0C 2005 BCC ADD
0'e O20¢ 502 S58C D
paiz o210 #1507 JMP NEXT
aole ona 8502 ADD aDCO
ae 025 8B NEXT DEY

D020 o2te DG ED BNE LOOP
ooz 0213 BO 03 BCS LAST
0022 oA 6509 ADCD
0021 0?|C 1] Qac

0074 021G awal LAY ROLQ
o0 QMF [1.%] BRE

o v¥ {1 [0 700] END

Figura 3.21; Programma

Esercizio 3-18: 81 verifichi il funzionamento carretto di quesio programma
eseguendo la divisione a mano e verificando if programma in modo analogo
alf Esercizio 3-12. Si divida 33 per 3. I risultato, naturalmente, dovrebbe
essere 11 con resto 0.

OPERAZION] LOGICHE

L'altra classe di istruzioni che la ALU pud eseguire all’interno del
microprocessore ¢ il set di istruzioni logiche. Queste comprendona
AND, OR ed OR esclusivo (EOR). Inoltre si possono comprendere qui
anche le operazioni di scorrimento che sono gia state utilizzate e I'istru-
zione di confronto chiamata CMP per il 6502, L'impicgo singolo di
AND, ORA, EOR sara descritto al Capitolo 4 sul set di istruzioni del
6502. Si svilupperd ora un breve programma che controlleri s¢ una data

79

lacazione di memona chiamata LOC contiene il valore **0", il valore **|*
oppure qualcos’altro. 1l programma ¢ il seguente:

LDA Loc LEGGE CARATTERE IN LOC
CMP #8300 CONFRONTA CON ZERO
BEQ ZERO £ UNO ZERO?
CMP o 301 2
BEQ ONE

TROVATO NIENTE -

ZERO
ONE

La prima istruzionc: LDA LOC legge i contenuti della locazione di
memoria LOC. Questo ¢ il carattere che si vuole provare,

CMP # 500

Questa istruzione confronta i contenuti dell*accumulatore col valore
csadecimale letterale “00” cio con la struttura di bit 00000000,
Questa istruzione di confronto porrd il bit Z del registro dei flag, che sard
poi controllato dall'istruzione successiva.

ﬂ

L}
A '
1
e) ® "
IANCHE RESTOn Loww—— RISULTATO |
LA L ar
@ OWISAONE -:&i
PROGRAMMA
I
F1L =]

Figura 3,22: Diagramma di flussodella divisiong 18x8 {senza rimemorizzazione del
riguliato ad 8 hil)

BEQ ZERO

L'istruzione BE(specifica “'diramazione se uguale'. L'istruzione di
diramazione determinera se la verifica ¢ soddisfatts esaminando il bit Z,
Se si il programma salterd a ZERQ. Se il test non ¢ soddisfatto allora
vicne eseguita I'istruzione successiva in ordine sequenziale:

CMP # $01

1l processo sard ripetuto per un’alira struttura. Se il test & verificato
I'istruzione successiva risultera da un salto alla locazione uno. Se fallisce
viene eseguila I'istruzione successiva ia ordine sequenziale,

Esercizio 3.16: Si scriva un programma che legga f comenuti dello ioca-
zione di memoria 24" e solti all’indirizzo chiamato "STAR' se c'era un
"o nella locazione di memoria 24, La struttvra di bit per un *'*"' nella
notazione in linguaggio assembiy é rappreseniato da " 00101010,

Sommario

Sono state ora studiate le istruzioni pitt importanti del 6502 mediante
la lore utilizzazione diretta. | valori scno stati trasferiti tra la memoria ed
i registri. Sono slate eseguite operazioniaritmetiche ¢ logiche su tali dati.
Sono state verificate ed, in dipendenza del risultato di questo test, sono
state eseguite varic porzioni di programma. E stata anche introdotta una
struttura chiamata ciclo net programma della moltiplicazione. Verrd ora
introdotta un'importante struttura della programmazione: la Subrou-
tine.

SUBROUTINE

Concettualmente una subroutine é semplicemente un blocco di istru-
zioni alle quali ¢ stato assegnato uvn nome dal programmatore. Da un
punto di vista pratico, una subroutine deve iniziare con una speciale
istruzione chiamala la dichiarazione della subroutine che la identifica
per I'assemblatore. [nolire deve terminare con un‘altra speciale istru-
zione chiamata ritorno. Innanzi tutto si illusirerd ['uso delle subroutine
nel programma in modo da illustrarne 'importanza. Quindi si ¢sami-
neri come esse sono cffettivamente realizzate,

L'impiego di una subroutine éillustrato in Figura 3.23. Il programma
principale appare sulla sinistra dell'illustrazione. La subroutine & rap-
presentala simbolicamente sulla destra. Si esamini il meccanismo della
subroutine. Le righe del programma principale sono successivamente
cseguite finch non si incontra una nuova istruzione di chiamata “SUB"".
Questa istruzione speciale & una chiamata di subroutine e si risolve in un

81

trasferimento dell’esecuzione alla subroutine, Questo significa che
I'istruzione successiva da eseguire dopo la CALL SUB ¢ 1a prima istru-
zione all'interno della subroutine, Questo & illustrato dalla freccia 1
nell'illustrazione.

PACGRAMMA, PRINCIPALE

SJUBROUTINE

RETUAN

Figura 3.23; Chiamate di subroutine

Quindi il sottoprogramma all'interno della subroutine viene eseguito
proprio come qualsiasi aliro programma. Si assumera che la subroutine
non contenga nessun‘altra chiamata. L'ultima istruzione di questa
subroutine &€ un RETURN. Questa ¢ un'istruzione speciale che originera
un ritorno al programma principale. L'istruzione successiva da eseguire
dopo RETURN ¢ quella scguente la CALL SUB. Questo & mostrato
dalla freccia 3 nell’illustrazione. L esecuzione del programma continua
quindi come illusirato dalla freccia 4.

Nel corpo del programma principale appare una seconda CALL SUB.
Si verifica un auovo trasferimento, mostrato dalla freccia 5. Questo
significa che il corpo della subroutine é ancora eseguito successivamente
all'istruzione CALL SUB.

Ogni volta che si incontra RETURN all'interno della subroutine si
verifica un ritorno all'istruzione successiva lJa CALL SUB in questione.
Questo & itlusirato dalla freceia 7. [n seguito al ritorno al programma
principale, ['esecuzione del programma procede normalmente, come
illustrato dalla freccia 8.

1l ruolo delle due isiruzioni speciali CALL SUB e RETURN & cosi
chiarito. Qual'? I'importanza della subroutine?

L'importanza essenziale della subroutine & che essa pud essere richia-
mata da un gualsiast numero di punti del programma principale ed
utilizzata ripetuetamente senza la sua riscrittura. Un primo vantapgio &
che questo approccio risparmia spazio di memoria ¢ non ¢'é necessita di
riscrivere la subroutine ogni volta. Un secondo vantaggio & che it pro-

82

grammatore pud propettare una subroutine specifica solo una volta e
quindi usarla ripetutamente. Questo ¢ una semplificazione significativa
del progetto de} programma.

Esercizio 3.17: Quat'é il principale svanmtaggio df una subroutine?

Lo svantaggio di una subroutine potrebbe essere chiaro proprio dal-
I’esame del flusso di esecuzione tra il programma principale ¢ la subrou-
tine. Una subroutine si risolve in una esecuzione piti lenta poiché devono
essere eseguite ulteriori istruzioni: la CALL SUB ed il RETURN.,

Realizzazione del Meccanismo della Subroutine

Si esaminerd qui come le due speciali istruzioni CALL SUB ¢
RETURN, sono realizzate all'interno del processore. L'effetto dell'istru-
zione CALL SUB 2 di causare il prelievo dell'istruzione successiva ad un
nuovo indirizzo, S ricorderd (altrimenti si rilegga il Capitolo 1) che
I'indirizzo del’istruzione successiva da esepwire in un calcolatore &
contenuto nel contatore di programma (PC). Questo significa che 1'ef-
fetto della CALL SUB ¢)a sostituzione di nuovi contenuti nel registro
PC. 1] suo effctto é di caricare I'indirizzo iniziale della subroutine nel
contatore di programma. Quesiv & in realtd sufficiente?

Per rispondere a questa domanda si consideri [*altra istruzione che
deve essere realizzata; il RETURN. [I RETURN deve originare, come
indica il suo nome, un ritorno all'istruzione che segue la CALL SUB,
Questa & possibile solo se I'indirizzo di questa istruzione é stato preser-
valo dz qualche parte. Questo indirizzo deve essere il valore dcl conta.
tore di programma all’istante in cui si incoatra la CALL SUB. Questo
perché il contatore di programma ¢ incrementato automaticamente ogni
volta che viene utilizzato (vedere Capitolo 1), Questo é precisamente
l'indirizzo che 5i vuole preservare cosi da poter successivamente eseguire
it RETURN.

FROGRAVMA PRINCIPALE
508 1 SUH 2

CaLSuA 1 CAaL 5u 2
RETURN]‘\ RETUAN

Flgura 3.24: Chiamate annidate

1l problema successivo é: dove si pud conservare questo indirizzo di

83

ritorno? Questo indirizzo deve essere conservato in una locazione ragio-
nevole dave é sicuro che non sard cancellato, Comunque si consideri ora
la situazione seguente, illustrata dalla Figura 3-24: in questo esempio la
subroutine 1 contiene una chiamata a SUB 2. Il meccanismo potrebbe
lavorare correttamente in questo caso. Naturalmenie possono esserci
molic pit di due subroutines, dette N chiamate “annidate™. Ogni voita
che si incontra una nvova CALL il meccanismo deve percid immagazzi-
nare ancora il contatore di programma. Questo imptica la necessita di
almeno 2N locazioni di memena per questo meccanismo. Addizional-
mente sard necessario ritornare da SUB 2 prima ¢ SUB] poi. In alire
parole & necessaria una struttura che possa preservare I'ordine cronolo-
gico in cui i dati devono essere conservati,

La struttura ha un nome. E gi stata introdotta. E fo stack. La figura
3-26 mostra i contenuti effettivi dello stack durante le chiamate di
subroutine successive. Si osservj prima il programma principale, AHin-
dirizzo 100 si incontra la prima chiamata: CALL SUB 1. Si assumera
che, in questo processore, la chiamata di subroutine utilizzi 3 byte.
L'indirizzo sequenzialmente successivo noa & percid 101" ma “ 103"
Listruzione di chiamata utilizza gli indirizzi 100", *101",* 102", Poi-
ché l'unitd di controllo del 6502 “*sa™ che si tratia di un’istruzione di 3
byte, it valore del contatore di programma quando la chiamata ¢ stata
completamente decodificata sara **103". L'effetto della chiamata sard di
cartcare il valore 280" nei contatore di programma. 280" ¢ I'indirizzo
di partenza di SUB 1.

WOIRZZO PRCGRAMMA PAINCIPALE

] CAL 5UB Y |
UF] - C’ SUA |
- Ju
— i
7] o SuRB 2
—_— —_—
-_— HK | Cal Su8 2
- i wi l —
RITORNG
— T
@
AITOR NG

Figura 3.25: Le chlamate d! subroutine

Il secondo effetto della CALL sara di spingere nello stack (per preser-
vare} il valore 103" del contatore di programma. Questo & iflustrato

84

nella parte destra in basse dell'iustrazione. Alla locazione 300 si incon-
tra una nuova chiamata. Analogamene al caso precedente il valore
“900" sard caricato nel contatore di programma. Questo & I'indirizzo d&i
partenza della SUB 2. Contemporaneamente il valore 303" sard spinto
nello stack. Questo € mostrato in basso a sinistra nell'itlustrazione dove
I'ingresso all'istante 2 & 303", L'esecuzione procedera quindi a destra
dell'illustrazione all’interno di SUB 2.

Si ¢ ora pronti per dimostrare I'effetto dell'istruzione RETURN e per
il funzionamento corretto del meccanismo dello stack. L'esecuzione
procede all’interno di SUB 2 finché non si incontra listruzione
RETURN all'istante 3. L'effetto dell’istruzione RETURN & semplice-
mente quello di far uscire la sommitd dello stack inviandola nel conta-
tore di programma. In altre parole il contatore di programma é ri-
immagazzinato al suo valore precedente I'ingresso nella subroutine. La
sommitd dello stack nell'esempio & 303", La fipura 326 mostra che,
all'istante 3, il valore ‘303" & stato rimosso dallo stack e riposizionata
nel contatore di programma. Come risultato "esecuzione di istruzioni
procede dall'indirizzo 303", All'istante 4 si incontra il RETURN di
SUB L Il valore alla sommita dello stack &*°103". Esso viene prelevato e
portato nel contatore di programma. Come risultato l'esecuzione del
programma procederi dalla locazione 103" all’interno del programma
principale. Questo & proprio l'effetto che si voleva. La Figura 3-26
mostra che all'istante 4 Jo stack é nuovamente vuoto. Quindi il mecca-
nismo funziona.

STAGR TEuPO@ Temro (2) TEMPo@ Temeo (4)

103 103 103

M

Figura 3.26; Lo stack In tunzipne del tempo

Il meccanismo di chiamata di subroutine funziona fino alla massima
dimensione dello stack. Questa &la ragione per cui | primi microproces-
son che avevano uno stack di 4 od 8 registri erano ¢ssenzialmente limitati
a 4 od 8 livelli di chiamata di subroutine. In teoria il 6502, che ha uno
stack limitato a 256 Yocazioni di memoria (Pagina 1), puéd accomandare
fino a 256 successive chiamate di subroutine. Questo ¢ vero solo se non ci
sono interrupl, s¢ lo stack non viene utilizzato per nessun altro scopo ¢

85

s€ nessun registro necessita di essere memorizzata all'interno dello stack.
In pratica vengone utilizzati pochi livelli di subroutine.

Si noti che, nelle illustrazioni 3-24 ¢ 3-25, le subroutine sono state
indicate a destra del programma principale. Questo ¢ solo per chiarezza
del diagramma. In realta le subroutine sono impostate dall'utente come
normali istruzioni del programma, Su un foglio di carta, ovvero la lista
di un programma completo, le subroutine possono essere all’inizio del
testo, a meta, oppure alla fine. Questo perché esse sono precedute dauna
dichiarazione di subroutine: esse devono essere identificate. le istruzion)
speciali diconc all’assemblatore che quello che segue deve essere (rattate
come una subroutine. Tali direttive dell’assemblatore saranno presen-
tate al Capitolo 9.

Subroutine del 6502

E stato ora descritto il meccanismo della subroutine ¢ come lo stack
viene impiegato per realizzarlo. L'istruzione di chiamata di subroutine
per il 6502 & detta JSR (salta alia subroutine). Questa ¢ proprio un’istru-
zione a 3 byte. Sfortunatamente questo & un salto incondizionato: non
esistono dei bit di prova, Cccorre inserire una diramazione esplicita
prima di JSR se deve esscre eseguito un test.

{l ritorno da subroutine & l'istruzione RTS (ritorno da subroutine),
Questa & un'istruzione di | byte.

Esercizio 3-1B: Perché il ritomo da una subroutine ¢ molto pii veloce defla
chiamata? (Suggerimento: se la rispoita non é ovvia si osservi ancora la
realizzazione deflo stack del meccanisme della subroutine e si analizzino le
operazioni interne che devono essere eseguite).

Esempi di Subroutine

La maggior parte dei progammi da sviluppare ¢ che si sviluppano
potrebbero essere normalmente scritti come subroutine. Per esempio il
programma della moltiplicazione potrebbe essere utilizzato da mokhe
aree del programma. Per facilitare lo sviluppo del programma e per
motivi di chiarezza, & petcid converiente delinire una subroutine il cui
nome sia per esempio MULT. Alla fine di questa subroutine si dovrebbe
aggiungere semplicemente 'istruzione RTS.)

Esercizio 3.19: Se MULT ¢ utilizzato come subroutine. si potrebbe '"dan-
neggiore'' qualsiasi flag o registro interno?

86

Recursione

Recursione & una parola utilizzata per indicare che una subroutine sta
chiamando st stessa. 8¢ é stato capito il meccanismo si dovrebbe essere
in grado di rispondere alle seguenti domande:

Esercizio 3.20: £ giustg che ung subroutine chiami se stessa? (In alire
parole, lavorera sempre anche se una subroutine chioma se stessa? Se non si
4 sicurf si disegni lo stack e lo si Hlempia con gli indirizzi successivi. Si
verifickera fisicomente se esso lavora oppure no, Quesio risponderg alla
domanda se il meccanismo lavoro. Quindt 3i osservino i registri e la
memoria ¢ si determini se esiste un problema.

Parametri della Subroutine

Quando si chiama una subroutine, normalmente ci si aspetta che Ia
subroutine lavori su alcuni dati. Per esempio nel caso della moltiplica-
zione si vuole trasmettere due numeri alla subroutine che eseguiri la
moltiplicazione. Si vede nel caso della routine della moltiplicazione che
questa subroutine si aspetta di trovare il moltiplicande ed il moltiplica-
tore in assegnate locazioni dy memoria. Questo illustra i] primo metodo
di passaggio di parametri: attraverso la memoria, Sono usate altre due
tecniche ed i parametri possono essere passati in tre modi:

1. Attraverso i registri
2. Attraverso la memoria
3. Autraverso lo stack

— I re, istri possono essere utilizzati per passare i parametri. Questa pud
essere una soluzione vantaggiosa, supponenda che i registei stano dispo-
nibili, poicht non é necessario utilizzare una locazione di memoria
prefissata, La subroutine rimane quindi indipendente dalla memoria. Se
viene utilizzata una locazione di memoria prefissata, qualsiasi altro
utente di subroutine deve essere molto attento per utilizzare la stessa
conversione ¢ che 1a locazione di memoria sia davvero disponibile (si
osservi il precedente Esercizio 3.19). Questo perché, in molti casi, un
blocco di locazioni di memoria ¢ riservato semplicemente per passare i
paramelri tra le varie subroutinc.

— L'utifizzazione delle memoria ha il vantaggio di maggiore fessibilith
(pitt dati) ma si risolve in minor adempimento ¢ ¢onduce a legare la
subroutine ad una data area di memoria.

— 1l deposito di parametri nello stack halo stesso vantaggio dell*otilizza-
zione dei regisiri; é indipendente dalla memoria. La subroutine semplice-

87

mente conosce che deve riceverc due parametri immagazzinati allz
sommita dello srack. Naturalmente questo vantaggio ha uno svantaggio:
si fa confusione introducendo datinello stack e percid si riduce il numero
di livelli possibili di chiamata di subroutine. La scelta ¢ lasciata al
programmatore. Nei caso generale si desidera rimanere indipendenti
dalle locazioni di memoria effettive il pih possibile.

Se i registri non sono disponibili, la miglior soluzione successiva ¢
nermalmente I'impiego dello stack. Camungue se & necessario trasmet-
tere alla subroutine una pgrande guantitd di informazioni occorrera
utilizzare la memonia. Un modo clegante per aggirare il problema de!
passaggio di blocchi di dati & di irasmettere semplicement¢ un puntatore
deli'informazione. Un puntatore (pointer} & llindirizzo all'inizio del
blocco. Un puniatore pud essere trasmesso in un registro (nel caso del
6502, questo limita il puntatore ad 8 bit), od anche, nello stack (due
locazioni dello stack possono essere utilizzate per immagazzinare un
indirizzo a 16 bit).

Infine se nessuna delle due soluzioni & applicabile allora si pud trovare
un compromesso ritenendo che i dati si trovino in qualche locazione di
memoria prefissata (la "“cassetta-postale™).

Esercizio 3.21: Quale def (re metodi precedenti é il migliore per la recur-
stone?

Biblioteca di Subroutine

C't un grosso vantaggio nclla strutturazione di parti di un programma
in subroutine identificabili: esse possono ¢ssere collaudate indipendente-
mente ¢ possono avere un nome mnemonico. Poiche exse possano essere
utilizzate in altre aree del programma, divengono condivisibili e si pud
quindi costruire una biblioteca di subroutine di utilitd immediata,
Comunque non esiste una panacea generale nella programmazione del
calcolatore.

L'impiego sistematico di subroutine per qualsiasi gruppo di istruzioni
che possono essere raggruppale da una funzione pud anche risolversi in
una scarsa efficienza. Il programmatore accorto dovrd sappesare i van-
taggi in funzione degli svantaggi. '

SOMMARIO

Questo capitelo ha presentato il modo in cui I'informazione ¢ manipo-
lata mediante istruzioni all'interno del 6502. Sono stati introdotti algo-
ritmi di complessita crescente e tradotti in programmi. Sono stati utiliz-
zati i principali tipi di istruzioni,

Sono state inoltre definite strutture importanti come cicli, stack e
subroutine,

$1 davrebbe pra aver acquisito una comprensione di base alla pro-
grammazione ¢ le principali tecniche utilizzate nelle applicazioni con-
venzionali, Si studieranno ora le istruzioni disponibilt.

89

CAPITOLO 4

IL SET DI ISTRUZIONI
DEL 6502

PARTE 1 - DESCRIZIONE GLOBALE

INTRODUZIONE

Questo capitolo analizzerd innanzitutto le varie classi di istruzione che
sarchbbero disponibili in un calcolatore general purpose. Si analizze-
ranno quindi una ad una wtte le istruzioni disponibili per il 6502 e si
spiegherd in dettaglio il loro scopoe ed il modo in cui esse influenzano i
flag o possono essere utilizzate in relazione a vari modi di indirizza-
mento. Una discussione dettagliata delle teeniche di indirizzamento sara
presentata a! Capitolo 5.

CLASSI DI ISTRUZIONE

Le istruzioni possono essere classificate in molti modi ¢ non esistone
convenzioni. Si distingueranno qui ¢inque categorie principali di istru-
zioni: ’

1. trasferimento di dab
2. elaborazione di dan
3. test e diramazione
4, ingresso/uscita

5. controlla

Si esaminerd in dettaglio ciascuna di queste classi di istruzioni.

Trasferimento Dati

Le istruzioni di trasferimento dati trasferiranno j dati ad 8 bit tra due
registri, oppure tra un registro e la memoria, ovvero tra un registro ¢d un
dispositivo d'ingressc/uscita. Istruzioni di trasferimento specializzate
possono esistere per registri che giocano un ruoloe specifico. Per esempio:

n

un funzionamento di introduzione ad estrazione per un'efficiente realiz-
zazione dello stack. Queste muoveranno una parola di dati tra |2 som-
mita dello stack ¢ ['accumulatore in una istruzione singola mentre si ha
Paggiornamento automatico del registro puntatore dello stack.

Elaborazione Dati

Le istruzioni di ¢laboraziene dati si dividono in qualtro categorie
zencrali:

- operazioni aritmetiche (come pii/meno)

- operazioni logiche (come AND, OR, OR esclusivo)

- operazioni di posizionamento e scorrimento (come scorrimenta,
rotazione, scambio)

- incremento ¢ decremento

Si potrebbe notare che per un’efficiente elaborazione dati ¢ desidera-
bile aver una potente costruzione aritmetica come moltiplicazione ¢
divisione. Sfortunatamente questo non ¢ disponibile sulla maggior parte
dei microprocessori. E anche desiderabile avere potenti istruzioni di
scorrimento ¢ posizionamento, come lo spostamento di n bit, ovvero
uno scambio di nibble, dove vengono scambiati la metd destra e quella
sinistra di un byte. Queste non sono normalmente disponibili sulta
maggior parte di microprocessori.

Prima di esaminare le effettive istruzioni del 6502 si richiama la
differenza tra uno scorrimento e una retazione. Loscorrimento muoverd
i contenuti di un registro ¢ di una locazione di memoria, di una posizione
di bit a destra o sinistra, ! bit che esce dal registro andra nel bit carry. 1)
bit che entra dall’altra parte sard uno *Q".

Nel caso di una rotazione il bit che esce va ancora nel carry, Comun-
que il bit che entra ¢ il precedente valore del bit carry. Questo corri-
sponde ad una rotazione a 9 bit. Potrebbe essere spesso desiderabile
avere una vera rotazione ad § bil dove il bit che entra da una parte ¢
questo che esce dall'zlira. Questo non & normatmente disponibile sulla
maggior parte di micraprocessori. Infine netlo scorrimento di una parola
a destra & conveniente avere pill tipi di scorrimento chiamati un'esten-
sione di segno ovvero uno ‘'spostamento aritmetico a destra’. Nelle
operazioni con numeri in complemento a 2, specialmente nellg realizza-
zione di routine a virgola mobile, & spesso necessario spostare a destra un
numero negativo. Quando si fa scorrere un numeroin complementoa2a
destra, il bit che deve entrare dalla parte sinistra dovrebbe essere [(il bit
segno dovrebbe essere ripetuto tante volte quanto richiesto dagli scorri-

92

SCOARMENTO A SINISTRA

N D M M P L —o

CARAY

ADTAZIONE A SIMISTRA

L ND MMM N M

CARRY

Figura 4.1; Scorrimento € rotezione

menti successivi. Sfortunalamente guesto tipa di scorrimento non esiste
nel 6502. Esso esiste in altry microprocessori.

Test e Diramazione

L'istruzione di test verificherd se tutti i bit del registro dei (lag sono
*0"" od “1” oppure combinaziom di questi. Quindi ¢ desiderabile avere
pitl flag possibile in questo registro. Inoltre occarre essere in grado di
verilicare guafsiasi posizione di bit all' interno df qualriasi registro e di
verificare il contenuto di un registro rispetto al valore di qualungque altro
(maggiore, minore oppure uguale a). Le istruzioni di test del micropro-
cessore sono normalmente limitate alla verifica dei singoli bit del registro
dei flag.

Le istruzioni di salto possono essere generalmente disponibili in tre
categorie:

- il salto vero e proprio ad uno specificato indirizzo a 16 bil,

- la diramazione che spesso é ristretta ad un campo di spostamento di
8 bit,

- la chiamata che viene utilizzata con le subroutine,

E conveniente avere diramazioni a due oppure anche tre vie, in dipen-
denza, per esempio, se il risultaio del confronto & “magpiore di",
**minore di”* oppure “uguate™, E anche conveniente avere operazioni di
salto che trasferiscono P’esecuzione in altri punti del programma, Infine,

93

nclla maggior parte dei cicli, c'¢ un’operazione finale di decremento od
incremento, seguita da un test ed una diramazione. La disponibilita di
una singola istruzione di incremento/decremento pih test e diramazione
& percid un vantaggio significativo per I'efficienza dellarealizzazione del
ciclo. Questo non ¢ disponibile nella maggior parte det microprocessori.
Sono disponibili seltanto diramazioni semplici. combinate con semplici
test. Questo naturalmetne complica la programmazione ¢ riduce I'effi-
cienza,

Ingresso/Uscita

Le istruzioni d'ingresso/uscita sono specializzate per la manipola-
zione di dispositivi ingresso/uscita. In pratica quasi tutti i microproces-
sori impiegano la mappa-memoria 1/0. Questo significa che i dispositivi
d'ingresso/uscita sono connessi al bus indirizzo proprio come chip di
memoria ed indirizzati come tali. Essi appaiono al programmatore come
locazioni di memoria. Tutte le operazioni tipiche della memoria possono
essere applicate al dispositivo richiesto. Questo & vantaggiosa per fornire
una grande varietd di istruzioni che possono essere applicate. Lo svan-
1aggio ¢ che le operazioni tipiche della memoria normalmente richie-
dono 3 byte ¢ sono percid lente, In queste condizioni per un'efficiente
manipolazione ingresso/uscita, ¢ desiderabile avere disponibile un mec-
canismo di indirizzamenio corto cosicché | dispasitivi [/0 con velocita
di manipolazione critica possano risiedere in Pagina 0. Comunque se ¢
disponibile Vindirizzamento in Pagina 0, questo viene normalmente
impiegato per Ja memoria RAM e percid previene I'effettivo impiego per
i dispositivi ingresso/uscita.

Istrozlonl di Controlle

Le istruzioni di controllo forniscono i segnali di sincronismo e pos-
sono sospendere oppure interrompere un programma. Esse possono
anche funzionare come un break oppure un interrupt simulato. (Gli
interrupt saranno descritti al Capitolo 6 suile Tecniche d'Ingresso/U-
scita),

ISTRUZIONI DISPONIBIL] SUL 6502

Istruzioni di Trasferimento Dati

11 6502 ha un set completo di istruzioni di trasferimentao dati, eccetto
che per il caricamento del puntatore dello stack che € ristretto in flessibi-
lita.

94

[contenuti dell'accumulatore possono essere cambiati con una loca-
zione di memoria con I'istruzione LDA (Carica) e STA (Immagazzina).
Le stesse istruzioni si applicano ai registri X ¢ Y. Queste sono rispettiva-
mente le istruzioni LDXX LDY ed STX STY. Non ¢'¢ invece un carica-
mento diretto per 5. Vengono naturalmente forniti i trasferimenti tra
registri: le istruzioni sono: TAX (irasferimentoda A ad X), TAY, TSX.
TXA, TXS, TYA. C'¢ una leggera asimmetria poiché i contenuti dello
stack possono essere scambiati con X ma non con Y.

Nan ci sono 2 indirizzi di memoria per le operazioni di memoria come
“somma i contenuti di LOCJ e LOC2".

Operazioni dello Stack

Sono disponibili due operazicni “introduci® ed “‘estrai'’. Quesle tra-
sferiscono A eppurt il registro di stato (P) alla sommita dello stack nella
memoria aggiornando il puntatore dello stack S. Queste sono PMA ¢
PHP. Le istruzioni inverse sono PLA e PLP (estrai A ed estrm P), che
trasferiscono la sommitd dello stack rispettivamente in A o P.

Elaborazfone Dati

Aritmetica

Sono disponibili le usuali funzioni di aritmetica in complemento,
logica e scorrimento. Le operazioni aritmetiche sono: ADC, SBC. ADC
¢ un'addizione con riporto e percid non esiste un‘addirione senza
riporto, Quesio ¢ un piccolo svantaggio che richiede un'istruzione CLC
prima di qualsiasi addizione, La sottrazione & eseguita da SBC.

E disponibile uno speciale modo decimale che consente Paddizione ¢
sottrazione diretta di numeri espressi in BCD. In molti altri micropro-
cessori ¢ disponibile solo una di queste istruzioni BCD con un codice
d'istruzione scparato. La presenza del flag decimale moltiplica per due
I'effettivo numero di operazioni aritmetiche disponibili.

Incremento/Decremento

Le operazioni di incremento/decremento sono disponibili sulla
memoria e sui registri X ed Y ma non sull’accumulatore, Queste sono
rispettivamente: INC e DEC, che operano con la memoria, INX, INY e
DEX, DEY, che operano con i registri X ed Y.

Operazioni Logiche N
Le operazioni logiche sono quelle classiche; AND, ORA, EOR. Verra

chiarito il ruole di ciascuna di queste istruzioni,

95

AND

QOgni operazione logica & caratterizzata da una tabella della verita che
esprime il valore logico del risultato in funzione degliingressi. La tabella
della veritd per un AND & Ja seguente:

DANDO=0D
DAND1=0
IANDG=0
IAND =1

L’operazione AND & caratterizzata dal fatto che I'uscita & *1" solo se
entrambi gli ingressi soro **1*. In altce parole se uno degli ingressi ¢ *0™
il risultato & sicuramente “*0%. Questa caratteristica viene impiegata per
azzerare una posizione di bif in una parola, Questo £ chiamato “masche-

ratura”.
Uno degli impicghi importanti dell’istruzione AND é1'azzeramento o

mascheratura di una o pi specifiche pasizioni di bit in una parola. Si
assuma per esempio di voler azzerare le quatiro posizioni di bit pid a
destra di una parola. Questo sara eseguito dal programma seguente:
LDA WORD WORD CONTENGA *10101010"

AND # % 11110000 *11110000° E LA MASCHERA

Si assuma che WORD sia uguale ad *1010101¢°, Il risultato di questo
programma & di lasciare nell’accumulatore il valore *10100000°. “S™
viene utilizzato per rappresentare un numero binario.

Esercizio 4.1: Si scriva un programma di due istruzioni che azzeriibit 1e 6
di WORD.

Eserclzio 4.2: Cosa succede con la maschera: MASK = "11111111°?
ORA

Questistruzione & I'operazione di OR inclusivo. Essa & caratterizzata
dalla seguente tabella di verita:

L'OR logico & caratterizzato dal fatto che se uno degli operandi & ™,
allora il risultarc & sempre “1”. Limpicgo ovvio dell’'OR & quello di

96

porre ad “*17 tutli i bit di una parola. Si pongano ad *'1'* i quartro bit pit
a destra di WORD. 1| programma &;

LDA # WORD
QRA # % 00001111

Si assuma che WORD contenga *1010101¢". [l valore finale dell®accu-
mulatore sara "10101111™.

Esercizio 4.3: Cosa succederebbe se si wiilizzasse Uisiruzione ORA # T
HaH TR g i

Esercizio 4.4: Qual'é l'effetio dell' OR con *FF esadecimale?
EOR

EOR significa “OR-esclusivo™. L'OR esclusivo differisce dall'OR
inclusivo appena desctitto in quanto il risultato £ *' 1" solo se uno degli
operandi, e sclo uno degli operandi, é uguale ad 1", Se entrambi gli
operandi sono uguali ad “1" il normale OR darebberisultato 1. L*'OR
esclusivo da un risultato "0". La tabella della verita &

DEORO=10
DEORI—1
1EORO=1
1EOR1=0

L’OR esclusivo & utilizzato per i confronti. Se qualsiasi bit é diverso
I'OR esclusivo di due parole sard diverso da zero. Inolize nel caso del
6502, 'OR esclusivo & wtilizzate per complementare una parola poiché
non csiste una specifica istrnzione di complemento. Questo viene attuato
eseguendo I'OR della paroia con tuiti uni. Il orogramema & il seguente:

LDA # WORD
EOR # % |1111111]

Si assuma che WORD contenga “10101010™. [l valore finale dell*ac-
cumultore sard “01010161". Si pud verificare che questo ¢ il comple-
mente del valore originale.

Esercizio 4.5: Qual'd l'effetto di EOR # § 007

Operazioni di Scorrimento

1l 6502 standard 2 equipaggiato con uno scorrimento a senistra, chia-
mato ASL (spostamento aritmctico a sinistra) ¢d uno scorrimento a

97

destra, chiamato LSR (spostamento logico a destra), Questi saranno
descritti in seguito.
Comunque il 6502 ha solo un’istruzione di rotlazione a sinistra (ROL)
Avvertimenio: nessuna versione del 6502 ha un’ulterigre istruzione di
rotazione. Si consultine i dati del costruttore per verificare Questo latta,
(ROR rotazione a destra}).

Confronii

1 registri X, Y, A possono essere confrontati con lamemoria mediante
le istruziomy CPX, CPY, CMP.
Test ¢ Diramazione

Poich? la verifica ¢ quasi esclusivamente eseguita sui registri dei flag, si
esaminino i Mag disponibili sul 6502. 1 contenuti del registro dei flag
appaiono nella seguente Figura 4-2.

Si esamini la funzione dei flag procedendo da sinistra a destra,

7 6543210
N|V|-[B|D|[I]|Z]|C
I | |

JEGND BREAX INTERRURT CARAY
NEGATIVO
OYERFLOW DECIMALE 2ERD

Figurs 4.2: || reglstro del flag

Segno

11 bit a sinistra & il bit segno, o bit negativo,
Ogni volta che N & 1 indica che il valore di un risultato € negativo nella
rappresentazione in complemento a 2. In pratica il flag N éidentico al bit
7 di un risultate. Esso ¢ comandato da tutte le istruzioni di trasferimento
ed elaborazione dati.

11 flag N & identico a! bit 7 dell’accumulatore, nella maggior parte dei
casi, Come risultato it bit 7 dell’accumulatore ¢ il solo bit che pud esserc
verificato convenientemente con una singola istruzione, Per verificare

928

qualsiasi altro bit dell'accumulatore & necessario fare scorrere i suoj
contenuti. In tutti i casi dove si vuole verificare velocemente i contenuti
di una parola, la posizione di bit preferita sard percid il bit 7. Questatla
ragione per cui i bit di stato ingresso/uscita sono normalmente connessi
aila posizione 7 del bus dati. Dalla lettura dello stato di un dispositivo
1/0 si leggerd semplicemente il contenuto del registro di state esterno
neil’accumulatore ¢ quindi il test del bit N.

Il bit successivo all'interno deli'accumulatore che ¢ pit facile da
verificare ¢ il bit Z (zerc). Comunque esso richiede uno scorrimento a
destra di | nel bit carry cosi de poter essere verificato. Questo indica se
un risultato & zerc. Il bit Z non pud essere posto al programmatore, Esso
¢ posizionato automaticamente dalle istruzioni.

Le istruzioni che pongono N sonc: ADC, AND, ASL, BIT, CMP,
CPY, CPX. DEC, DEX, DEY. EOR, INC, INY, LDA, LDX, LDY,
LSR, ORA. PLA, PLP, ROL, ROR. TAX, TAY, TXS, TXA, TYA.

Overflow

1l ruolo dell’'overflow @ gia stato discusso al Capitolo 3 nel paragrafo
sullc operazions aritmetiche. Esso € utilizzato per indicare che il risultato
dell’'addizione o sotirazione di numert in complemento a 2 pud essere
non corretto a causa di un overflow dal bit 6 al bit 7, ciod nel bit del
segno. Una speciale routine di correzione deve essere utilizzata se questo
bit vale 1", Se non si utilizza la rappresentazione in complemento a 2,
ma il binano diretto, il bit di overflow & equivalente ad un riporto dal bit
6al bit 7,

Uno speciale impiego di questo bit ¢ determinato dall’istruzione BIT.
Un risultato di questa istruzione ¢ di porre il bit V"' identico al bit 6 dei
dati da verificare.

Il flag V ¢ condizionato da ADC, BIT, CLV, PLP, RTI, SBC.

Break

Questo flag break ¢ posto automaticamenie dal processore se un
interrupt & causato dal comando BRK. Esso diflerenzia tra un break
programmato ed un interrupt hardware. Nessun' altra istruzione dell’u-
tente lo modifichera.

Decimale

L'uso di questo flag & stato gia discusso al Capitalo 3 nel paragrafo sui
programmi aritmetici, Ogni volta che D & posto ad "1™ il processore

99

opera ne! modo BCD ed ogni volta che € posto a **0™" esso opera in mode
binario. Questo flag € condizionato da quattro istruzioni: CLD, PLP,
RTI, SED.

Interrupt

Questo bit della maschera interrupt pud essere posto esplicitamente
dal programmatore durante il reset oppure durante un interrupt.

Il suo effetto & di inibire qualsiasi ulteriore interrupt.

Le istruzioni che condizionano questo bitsono: BRK, CLI, PLP, RTI,
SEIL.

Zero

It flag Z indica, quando & vguale ad *1", che il risuliato di un
trasferimento o di un’operazione ¢ zero. Viene anche influenzato dalle
istruzioni di confronto. Non esiste una specifica istruzione che ponga ad
| od azzeri il bit 0. Comunque lo stesso risultato pud essere ortenuto
facilmente. Per azzerare il bit carry si pud, per esempio, eseguire la
seguente I1siruzionc.

LDA #0

Il bit Z & condizionato da molte istruzioni; ADC, AND, ASL, BIT,
CMP, CPY, CPX, DEC, DEX, DEY, EOR, INC, INX, INY, LDA,
LDX,LDY.LSR,ORA,PLA PLP,ROL,ROR,RTI, SBC, TAX, TAY,
TXA, TYA,

Carry

Si & gia visto che il bit carry viene impicgato per un doppio scopo. 11
suo primo scopo & di indicare un riporto aritmetico oppure un prestito
durante le operazioni aritmetiche. 11 suo secondo scopo ¢ di immagazzi-
nare il bit “caduto fuori* da vn registro durante le operazioni di scorri-
mento e rotazione. | due ruoli non devono necessariamente essere con-
fusi e questi non sussistono sui calcolatori piti grossi. Comunque questo
approccio risparmia tempo nei microprocessori, in particolare per la
realizzazione di una moltiplicazione o di una divisione. Il bit carry pud
essere esplicitamente posto ad 1 od azzerato.

Lc istruzioni che condizioneranna il bit carry sono: AD, ASL, CLC,
CMP, CPX, CPY, LSR, PLP, ROL, ROR,RTI, SBC, SEC.

100

Istruzioni di Test e Diramazione

Nel 6502 non & possibile verificare se ogni bit del registro dei flag ¢ 1.
i sono 6 bit e ci sono percid 12 diverse istruzioni di diramazione. Queste
sono:

— BMI (dirama se meno), BPL {(dirama se pi). Naturalmentc
queste duc istruzioni verificano il bit Z,

— BCC (dirama se carry azzerato) ¢ BCS (dirama se carry posio ad
1}: esse provano C.

— BEQ {(dirama quando il risultato ¢ zero) ¢ BNE (dirama se
risultato non zero). Queste provano Z.

— BVS (dirama quando overflow ¢ posto ad 1) e BVC {dirama se
overflow azzevato). Esse provano V,

Queste istruzioni operano la verifica € la diramazione all'interno della
stessa istruzione. Tuite le diramazioni specificano uno spostamento
relative all'istruzione corrente. Poiché il campo dello spostamento & 8 bit
questo consente uno spostamento da — 128 4 + 127 (in complemento a
due). Lo spostamento é aggiunto all'indirizzo della prima istruzione
scguente la diramazione.

Poiché tutte le diramazioni sono lunghe 2 byte questa sirisolve in uno
spostamento effettivoda — 128 + 2= —126a + 127+ 2=+ 129.

Sono disponibili due uheriori istruzioni di salto incondizionato: JMP
¢ JSR. JMP 2 un salto ad un indirizzo a 16 bit, JSR ¢ una chiamata di
subroutine. Essa fa saltare ad un nuovo indirizzo e preserva automatica-
mente il contatore di programma nello stack. Essendo incondizicnate
queste due istruzioni sono normalmente precedute da un'istruzione di
‘*1est e diramazione™,

Sono disponibili due istruzioni di ritorno: RTI, ritorno da interrupt,
che sard discusso nel paragrafo degli interrupt, ed RTS, ritorno da
subroutine, che estrae un indinzzo di ritorno dallo stack (e lo incre-
menta).

Sono fornite due istruzioni speciali per la verifica di bit e per i
confronti.

L’istruzione BIT escgue un AND (ra ta locazione di memoria ¢
I'accumulatore. Un aspetto importante & che rssa non cambia i contenuti
dell’accumulaiore. 1l flag N & posto al valore del bit 7 della locazione di
memoria di prova, mentre il flag V uguale al bit 6. Infine il bit Zindica il
risultato dell’operazione AND. Z & posto ad 1" se il risultato & “0".
Tipicamente una maschera sard caricata nell'accumulatore ed i succes-

101

sivi valori di memoria saranno verificatiimpiegando l'istruzione BIT, Se
la maschera contiene un solo *1, per esempio, questo proverd se
qualsiasi assegnata parola della memoria contiene un 1" in quella
posizione, In pratica questo significa che una maschera potrebbe essere
utilizzata solo quando si stanno provando i bit di locazioni di memoria
da *“0" a “$". Si ricorderd che le locazioni di bit “6" ¢ “7" sono
immagazzinate automaticamente rispettivamente nei flag “V** ed “N*",
Quindi questi non necessitano di essere mascherati.

L’istruzione CMP confronta i contenuti della locazione di memoria
con I'accumulatore mediante la sua sottrazione dall’accumulatore
stesso. 1l risultato del confronto verra indicato, percid mediante i bit Ze
C. Si pud rivelare I'uguaglianza, il maggiore o minore di. Tl valore
dell’'accumulatore non viene cambiato dal confronto. CPX e CPY con-
fronteranno rispettivamente con X e con Y.

Istruzioni d'Ingresso/Uscita

Nel 6502 non esistono istruzioni dingresso/uscita specializzate,

Istruzioni di Contrullo

Le istruzioni di controllo comprendono le istruzioni per porread | ed
azzerare i flag. Queste sono: CLC, CLD, CLI, CLV che azzerano
rispetlivamente i bit C, D, 1 ¢ V; ¢ SEC, SED, SEI che pongono
nspettivamente i bit C, D e [,

L'istruzione BRK & equivalent¢ ad un intermupt software ¢ sard
descritta al Capitolo 7 net paragrafo degli interrupt,

L'istruzione NOP ¢ un’istruzione che non ha effetti e viecne comune-
mente utilizzata per estendere il timing di un ciclo. Infine due pin speciali
del 6502 faranno scattare un meccnismo di interrupt e questo Sard
spiegato al Capitolo 6 sulle tecniche d'ingresso/uscita,

Questa & una caratterigtica di controllo hardware (pin [RQ ed NMI).

Si csaminerd ora ciascuna istruzione in dettaglio,

Per capire a foendo i vari modi di inditizzamento si incoraggia il lettore
ad una prima lettura veloce del paragrafo seguente ¢ ad una lettura pit
apprcoiondita dopo aver studiato in dettaglio il Capitolo § sulle teeniche
di indirizzamento.

102

CAPITOLO 4

IL SET DI ISTRUZIONI
DEL 6502

PARTE [T - LE ISTRUZIONI

Accumulatore

Indirizzo specificato (memoria)
Registro di stato

Puntatore dello Stack

Registro Indice

Registro Indice

Dato specificato

Esadecimale

Contatore di Programma
Contatore di Programma alto
Contatore di Programma basso
Contenuti della sommita dello stack
OR logico

AND logico

CR esclusivo

Scambio

Riceve il valore (assegnazione)
Contenuti di

Posizione di bit 6 all'indirizzo M

103

ADC Somma con camry

Funzione: A — (A) + DATA + C

Formato: 311 okt LOURADATO ABOR !

Descrizione:

Somma i contenuti di un indirizzo di memoria o letterale all*accumu-
latore piv il bit carry. !l risultato rimane nell’ Accumulatore.

Note:

— ADC pud operare sia in modo decimale che binario: i flag devono
essere posti al valore corretto
— Per sommare senza carry j] flag C deve essere azzerato (CLC).

Percorso dei dati:

Modi di Indirlzzamento:

2SS /_;_9 /. S & / /¢°
f fi/ e ‘f' f LS VENE) .}f . / @’ﬁ/,ﬁy
L BIF | o - W - [l b4l »” I]
BeTES 1 * ? ' ' ? 1 H |
(=N B 1 ? Ll Y . 3" . |
tar. ¢ fm Jog o pie (e Jm | I

T ORI T EIELO BE 91 SUPERA LA PAQINA

Flag: o

[o]e] [[Te[e]

104

Codlci dl Istruzione:

* ASIOLLTT

PAGINA-ZERC

IMMEDIATO

AISOLUTO X

ASSOLUTD Y

(MDY, X

{INO), ¥

PAGINA ZERD X

T

V1011 1§ 87 \ INDIAL22D
histr = 011 HEK = 8D CIcL =4
[l ACUR
bRk = 001 HEX = &3 cicLl =4
G100 lala
b = 00 HEX u g CICL a2
T
pritag 16BIT INDFRIZZO
1
bbb = 114 HEX = 7D G = a
T
oo L% 1id wDIRIZXO
1
Bho ~ 110 HEX ~ 78 Qe - ¥
0110000 ALLK
bbb = 00D HER a 81 CiLl a e
01110001 B3
bbb = 100 HEX = 1 CieLl - §*
Crgg anhs
bbb = 101 HEX = 75 CICLI = 4

* Py 4 CICLD SE S1 SUPERA LA PAGINA

105

AND AND Logico

Funzione: A — (A) A DATO

Formato; 00V k) ADDR/ DATO ADDR]

Descriziene:

Esegue I'AND logico dell'accumulatore e di un dato specifico. 1
risultato rimane nell'accumulatore.

La tabella della veritad & |,,,

Percorso dei Datl:

Modi di Indirizzamento:

I 874 f*f;/

L2 1

» L] at i n

"Lal4) 3} L4 i 2 ¥ H 2 T

[-]-1] ']]] 4r 4 . 3 N

LEM an [) Dk 11} [&]-] [L- (L1

PIU 1 QICLO BE BI SUPERASM LA PAGIRA

¥] -] !

OEEEEOE

106

Codici di Istruzione:

ABSOLLITO

PAGINA-ZEAC

IMMEDIATD

ARSCLUTO X

ASSOLUTD Y

(INGI}. X

{IND), ¥

PAGINA ZERO &

L

oo gl 18 BT 'IMIﬁIZZO
Bob - M1 HEX = M) Clu =4
[T] s ADCR
bbb = G WEX = 2 oo = 1
01001 nato
ubb = D10 HEX = 28 CIEL = 2
1
QL 1a BIY {NDIRAZZO
1
bbby = 119 HEX =310 CICL = 4
L g
Da1110¢G! 14 BIT INDIRIZZD
]
bbb = 110 HEX = 8 CICY = 4
[ele)] AU
bebk = oo HEX = 2 [A
aonod! ADDE
bbb = 100 HEX = M Qacy ass
0010104 A5G0k
bbby = 1M HEX = 3% CICU =«

" PIJ T CIGLO SE 61 SUPEAA LA PAGIMA

107

ASL Scorrimento Aritmetico 2 Sinkstra

- — e —— oy y— —

Funzione: ,I.I,I‘I,I,I.Iu]—a

20 b 0 ADOR i ACOR .
Formate: L | _ .. e e :

Descrizione:

Muove { contenuti dell’Aecumulatore o diuna locazione di memoria a
sinistra di una posizione di bil. Da desira entra uno 0. Il bit 7 cade net
carry. 11 risultato & depositato nella sorgente cioé nell'accumulatore
appure nella memoria.

Percorse dei Dati:

w g A—bfreeas 3
peewwy M

Modi di Indirizzamento:

PSS S E e S S fa S S S S ES S
KL/ ESE)8/ 8854
o |« I .

1Y ot 1] 1
[T L] 1] »]
a1 H . L1 r .

[y oo | gu | om i al

M ¥ | 4 1] : g C

o [| | [ef®]

108

Codici di Istruzione:

ACCUMULATORE

ASSOLUTO

PAGINA ZERQ

ASEOLUTO &

PAGINA JERD X

OO0 BI10V0
bbb =00 HEK= 04 QoL = 2
T
Mmoo 10 INDIFLZZO
i
kb =01 HEX= OF == N
D00 DOY 0 ADDE
b — 00+ HEX = D& Q- b
T
w110 INDIRLZZO
1
bbb =11 HEX = 1L ccu- !
000 10Y Y0 ADDR
bbe = 1) HEX = b cleu = &

109

BCC Opera Diramazione se il Carry & Zero

Funzlone:

Va ad un indirizzo specificalose C =0

SPOATAMENTO
LT
o SUCLESSIVD

Formato: |_

Descrizlone:

Opera il 1es1 de! flag carry, opera la diramazione all'indirizzo atiuale
pid lo spostamento assegnato (fino a + 127 0 — 128). Se C = ! non opera.
Lo spostamento & sommato all'indirizzo della prima istruzione succes-
siva la BCC. Questo si risolve in uno spostamento effettivo da + 129 a
— 126.

Percorso dei Dati:

+17

Modi di Indirizzamento:

Soltanto implicato:

HEX = 90, byte = 2, cicli = 2 + | se si verifica la dirama-
zione
+ 2 se si passa ad un‘alira
pagina
Flag:

(JITTTT]

IWDM INTERVENGONDI

110

BCS Opera Diramazione se Carry ¢ posto ad 1

Funzione:
Va all’indirizzo specificatose C =1

Formato: 1110000 ey sy

Descrizione:

Opera il test del flag carry. Se C = | opera la diramazione all’indirizzo
attuale pii lo spostamento assegnato (finoa + 1270 —128).Se C=10
non opera. Lo spostamento ¢ sommato all’indirizzo della prima istru-
zione successiva a BCC. Questo si risolve in uno spostamento effettivo
da+129a — 126

Percorso dei Dati:

L ADDRY] sCC

=17

FLAG

Modi di Indirizzamento;

Soltanto relativo:

HEX = B0, byte = 2, cicli = 2 + | se si verifica 1a dirama-
zione
+ 2 se si passa ad un'altra
pagina.
Flag:

N W L] 2] 1 1

[TTLIIT]

(RON INTERVENGON D)

111

BEQ Opera Diramazione Uguale a Zero

Funzione:

Va ad un indirizze specificato se Z = | (risultato = Q)

Formato: SPOSTAMENTO
HHH0000 " CCESSY

Descrizione:

Opera il test del flag Z. Se Z = | opera la diramazione all’indirizzo
attuale pil lo spostamento assegnato (finoa+ 1270 ~ 128).Se Z=0non
opera.

Lo spostamento & sommato all’indirizzo della prima istruzione suc-
cessiva la BEQ. Questo si risolve in un effettivo spostamento da + 129a
— 126,

Percorso dei Dati:

» ARDRY —l [2¢]

+12

ol N
LA

Medi di Indirizzamento:

Solianto relativo

HEX = FO0, byte = 2, cich = 2 + 1 se si verifica la dirama-
zione
+ 2 sc passa ad un'alira
pagina
Flag:
|] o 1.

[(TITTIT]

{NON INT EAVENGONQ)

112

BIT Confronta i bit di memoria con 'accumulatore
Funzione:

Z~(A)A (M), N — (M), V = (M%)

Formato: 00106400 ADDR ADOR '

Descrizione:

Viene eseguito ma non immagazzinato I'AND di A ed M, 1 risultato
del confronio ¢ indicato da Z. Z = | se il confronto ¢ soddisfang,
altrimenti ¢ Z = 0. Inolire | bit 6 ¢ 7 del dato di memoria sono trasferiti
nei flag V ed N del registro dj stato.

Percorso dei Dati: <:::______:
"

N ¥ 1

=i

BITS & AND 7

Modi di Indirizzamento:

-:9}.1' s /e £r. - s - :o‘; &
S e[f6 81/

....r

snn: 3 ¥

1T .)

[T (L1} L1}

] L] L] 0 ' I [
Flag: l"' M’I L] [.[|
Codicl di Istruzione;
ASSDI.UTDI w00 [o :molmzzo —J

L ERE CICLL- +

PAQIINA IEHOE L) ' AN |
- I

CICL - 3

113

BMI Opera Diramazione se Negatlvo

Funzione:

Va ad un indirizzo specificato se N = 1 {risultato < Q)

' . SPOSTAMENTO
Formato 0110000 SUCLESSIVD

Descrizione:

Opera il test del flag N (segno). S¢e N = | opera la diramazione
all'indirizzo attuale pi0 lo spostameno assegnato {fino a + 1270 — 128},
Se N = 0 non opera.

Lo spostamento & sommato all'indirizzo della prima istruzione suc-
cessiva BEQ. Questo si risolve in uno spostamento effettivo da + 129a
- 126.

Percorso del Datl:

[ADDRY l Bt

NLx1 ALOR

FLAD

Modi di Indlrizzamento:

Soltanto relativo:

HEX = 10, byte = 2, cicli = 2 + 1 se si verifica la dirama-
zione
+ 2 se si passa ad un‘altra
pagina
Flag:

ol ¥ |) =] '

(TTITTIT]

INON INTESTVENGOND)

114

BNE Opera Diramazione se non uguale a zero

Funzione:

Ya all’indirizzo specificato se Z = 0 (risultato = ()

SPOSTAMENTO
Formato: 11Q10d SUCCESEVD

Descrizione:

Verifica il risultato (flag Z}. Se il risultato non ¢ uguale a zero (Z =),
opera ja diramazione all'indirizzo attuale pil lo spostamento assegrato
{fino a + 127 0 — 128). Se N = 0 non opera.

Lo spostamento é sommato all'indinzzo della prima istruzione suc-
cessiva la BEQ. Questo si risolve in uno spostamento effeitivoda + 129a
— 126

Percorso dei Dati:

+11

MEAT ADDR"

N

Modi di Indirizzamento:

Soltanto relativo:

HEX = D0, byte = 2, cicli = 2 <+ | se si verifica la dirama-
zione
+ 2 se si passa ad un‘altra
pagina
Flag

[(TITTIIT]

{NOW INTERVENGONS|

115

BPL Opera Diramazione se positivo

Funzione:

Va ad un indirizzo specificato se N = 0 (rsultato 2 ()

SPOSTAMENT
Formato: 003 0000 SUCCESSIVO.

Descrizione:

Opera il test del Mlag N (segno). Se N = 0{risultato positivo) opera la
diramazione all'indirizzo attuale pid lo spostameno assegnalo {fino a +
127 0 — 128). S¢ N = | non opera.

Lo spostamento ¢ sommato all'indirizzo della prima istruzione suc-
cessiva BEQ, Queslo si risolve in uno spostamento effettivo da + 129a
- 126.

Percorso dei Dati:

P AQOmY [10
12
MExT ADDRY
FLAG

Modt di Indirizzamento:

Soltanto relativo:

HEX = 10, byte = 2, cicli = 2 + | se si verifica la dirama-
zione
+ 2 se si passa ad un'altra
pagina
Flag:

(TITTIT]

(NON IHT EAVENGONGO|

116

BRK Break

Funzione:

STACK (PC) + 2, STACK (P), PC — (FFFE, FFFF)

Formato:

Descrizione:

Opera come interrupt: il contatore di programma ¢ introdotto nello
stack ¢ quindi il registro di stato P. I contenuti delle locazioni di memoria
FFFE ed FFFF sono quindi depositati rispettivamente in PCL e PCH. 1I
valore di P immagazzinato nctlo stack ha il flag B posto ad 1 per
differenziare BRK da IRQ.

Importante: diversamente da un interrupt, PC + 2 ¢é conservato.
Questa pud non essere I'istruzione successiva ¢ si pud rendere necessaria
una correzione. Questo & dovuto all'impiego normale di BRK per aggiu-
stare i programmi esistenti dove BRK sostituisce un®istruzione di 2 byte.

Percorso dei Dati:

. 7] L. PG PAGINA 1
— _] g
Pl——..__’—_ STACK
-] ‘
E L’

_ng;._q 1 FFFE
INDIRZZO | FEFE

Modi di Indirizzamento:

Scltanto implicato:
HEX = 00, byte = 2, ¢cichi = 7

Flag:

N v

ERCEUEE

INOTA: B E POSTO NELLO STACK)

117

BVC Opera Diamazione se Overflow & zero

Funzione:

Va all'indirizzo specificato se V=0

. GPOSTAMENTO
Formate: CHOVO0 * SUCCESSIVD

Descrizione:

Verifica il flag overflow (V). Sc non c¢'¢ overflow (V = () opera la
diramazione all'indirizzo attuale pii lo spostamento assegnato (finoa +
127 0 — 128). Se V = | non opera.

Lo spostamento & sommate all’indirizzo della prima istruzione suc-
cessiva la BEQ. Questo si risolve in unospostamento effettivo da + 129a
— 126.

Percorso def Datl:

PC ADDR1 e

12

I;] b

Modl dl Indirizzamenta:

Soltanto relativo:

HEX = 50, byte = 2, cicli = 2 + | se si verifica la dirama-
zione
+ 2 se si passa ad unaltra
pagina

Flag;

[TITITT]

{NDN INTERVENGOND)

118

BVS Opera Diramazione se overflow ¢ posto ad 1

Funzione:

Va all’indirizzo specificato sc V=1,

Formato: oM 10000 R REEen

Descrizione:

Verifica it Nag overflow (V). Se ¢i ¢ verificato un averflow {(V = 1),
opera un diramazione all'indiriz2o attuale pid lo spostamento assegnato
(finoa + 127 0 — 128). S¢ V = 0 non opera.

Lo spostamento & sommato all'indirizzo della prima istruzione suc-
cessiva BVS, Questo si risolve in uno spostamento effettivo da + 1292
= 126.

Percorso del Dati:

] ADDR I l BVS
+11
NEXT ADDRI
FLAG

Modl di Indirizzamento:

Soltanto relativo:

HEX = 70, byte = 2, cich = 2 + 1 se si verifica la dimma-
zione
+ 2 sc 5i passa ad un'altra
pagina
Flag:

(TITITT]

(MO INTERYENGONO)

119

CLC Azzera carcy

Funzione:

C-9

Formato: 0001 1 oo

Descrizione:

Viene azzerato il bit carry. Quesio é spesso necessario prima di una
ADC.

Modi di Indirizzamento;

Soltanto implicato:
HEX = 18, byte = I, cicli = 2

Flag:

EERERE

120

CLD Azzera il Mag decimale

Funzione:

D-@

Formato: 1100 0ot

Descrizione:

Viene azzerato il Nlag D preselezionando cosi il modo binario per
ADC ed SBC.

Modi di Indirizzamento:
Soltanto implicalo:
HEX = D8, byte = |, cicli = 2

Flag:

L] v L

(TTe T T

121

CLI Azzera la maschera di interrupt

Funzione:

1-@

Formato: Q1011000

Descrizlone:

1l bit della maschera inlerrupt viene posto a 0. Questo abilita gli
interrupt. Una routine di manipolazione degli interrupt deve sempre
azzerare il bit [, diversamente agli altri interrupt possono andare persi,

Modi di Indirizzamento:

Soltanto implicato:

HEX = 58, byte = |, cicli = 2
Flag:

L)

(TITTel 1]

122

CLV

Funzione:
V-
Formato:

Descrizione:

Azzera il flag di overfllow

10111000

Viene azzerato il flag di overflow

Modi dl Indirizzamento:

Soltanto implicato:

HEX = B, byte = 1, cicli = 2

Flag:

[1#]

[T17

123

CMP Confronta con I'accamulatore

Funzlone:
+ |A > DATO) - - & < BATO]
{A) — DATO — NZC: ol o .
FOI'II'I"O: 11 8obbl ADDE/OATQ T -AI;D_I_ T i
____________ 4
Descrizione:

I contenuti specificati vengono sottratti da A. Il risultato non &
immagazzinato ma vengono condizionati i flag NZC in dipendenza se il
risultato & positive, nullo o negativo. Il valore dell’accumulatore non
viene cambiato. CMP ¢ normalmente seguito da una diramazione: BCC
rivela A <DATO, BEQrivela A = DATO e BEQ seguito da BCS rivela
A =z DATO.

Percorso del Datl:

o

Mod! dl Indirizzamento:

fsf 'f' ‘fi{f fr ‘#. ;4 ‘t’a‘-‘ ‘?: ‘r‘fn :"a fspj

L O (4] o w -] L] m -]
avi 3 1 1 1 1 3 H
=V » H 2 P v | o ¥ i

L ol | ool | N0 1 1 110 000 | 100|101

*. P 1 CICLO SE Si SUPERA LA PAGINA

Flag:

L] o

OEEEE0D

124

Codici 81 Istruzione:

AJZOLUTO

PAGINA -0

'MMEDIATO

ASSOLUTO Y

{IND, X1

HHG Y

PAGINA O X

T

NI & BT INDIRIZZD
l
bk = ON HEX = D CicLi = 4
11000101 ADDR
pbo - QO S] [T= R]
neope! QATO
bok = OID HEX - (9 cicu - 2
T
e g 181 INDIRRZZO
L
Lok = 1) MEX © DO cicu = 4
T
11011061 15 BT INDIRRLZO
L
Bkh = |0 MK~ DR CICLr= a*
1 1000Q0! ACOR
teb = 000 HEX - L U - 8
1 16t00m abbw
bbo - 10D HEX - B ccu 5
Mo 0D
kbE - I o SO | CiCLr~ 4

* PIU 1 CICLO BE 31 SUPERA LA FAGINA

125

CPX Confronta col registro X

Funzione:

« (% > DATO) - = (A CQATCH
X — DATO — NZC: -0 an -m
Formato: 11300L00 oot a0 | A ;;u ————— J'
Descrizione:

I contenuti specificati sono sotiratti da X. Il risultato non viene
immagazzinate ma vengono condizionati i flag NCZ in dipendenza se il
risultato & positivo, negativo o nullo. Il valore dell’accumulators non
viene cambiato. CPX & normalmente seguito da una diramazione: BCC
rivela (X) < DATO, BEQ rivels (X) < DATO e BEQ seguito da BCS
rivela {X) > DATO. BCS rivela X= DATO.

C::::::;‘é

Percorso dei Datl:

X

Modi di Indirizzamento:

VLTI I P AT 2

LT
) K |w|m
g 3 H H
au 4 » ¥
b nlw |e

Flap:

O[T 11 [ele

126

Codlci di Istruzione:

AZSDLUTO

FAGNA ZERO

HAMEDIATO

(RN R[] 18. 0T 1NDIRIZZI
|
Lb- HEE = I CICLt = &
11100100 ADOR
bk~ O niX = E4 [ullo- 1 R §
11100000 DATD
bb= 00 HEX = O e 2

127

CPY Coofronta col registro Y

Funzione:

={¥> DATO! _ pp—
(Y) — DATO — NZC: -0 an —o0
Formato: +1000100 oo 177) -m:q“" -3
Descrizione:

1 contenuti specilicati sono sottratti da Y. 1l risultato non & immagaz-
zinato ma i flag NCZ sono condizionati in dipendenza se il risultato é
positivo, nullo o negativo. 1] valore dell’accumulatore nen viene cam-
biato. CPY & normalmente seguito da una diramazione: BCC rivela (Y)
<. DATO, BEQ rivela (Y) <DATO e BEQ seguito da BCS rivela (Y} >
DATO. BCS rivela X DATO.

Percorso del Datl:

Modi di Indirizzamenio:

—

]

i

p /R ~ N L I 3 .bp 2
FIE)T)8/E/E/5/ /6 /#

(7]

(11134 > ¥ 1

=1 4] 4

128

Codicl di Istruzione:

ASEOLUTO

PAGINA-ZERG

{MMEDIATO

1100 100

16-M1 WDIMZ2Z0
1
[HEX = OO CICLI = 4
11000100 ADDR
bo = Q1 HEX = C4 oo = A
11000000 aATO
ob - OO HEX = CO QcL = 2

129

DEC Decrementa

Funzione:
M~(M~—1

Formato: 110061 10 A0OR ANOR i

Descrizione:
I contenuti dell’indirizzo di memoria specificato sono decrementati di
1. Il risultato ¢ ri-immagazinato all‘indirizzo di memoria specificato.

Percorso dei Datl:

U s F
Mt PATO TIMTO-OATO-I

Modi di Indirizzamento:

NIV NN
Y,
L] <l [+ 3 [} (-
B"tsr 3 T] 1
b =] L]] ¥ a
bt o 1 1] 1] 1]
Flag:

130

Codici di Istruzione;

ASSOLYTD

PAQUNA ZERQ

ASEOLUTO X

PAGINA ZEAC X

Yiocoing INDIRIZIO
A
ko =01 rei= Ct CICLl =
11000110 AQDAR
&b -~ 00 HEX= Ca& CIcL
1
T g INDIRRTTO
i
whelt HEX = DF [l R
R le1]: 101] ADDE
bk =10 xR = Da CICLI =

131

DEX Decrementa X
Funzione:

X —(X)—)
Formato: 11001010

Descrizione:

I contenutidi X vengono decrementati di 1. Consente I'vtilizzazione di
X come contatore,

Percorso dei Dati:

2

N p—

Modi di Indirizzamento:
Soltanto implicato:
HEX = CA, byte = 1, cicli = 2

Flag:

=] L] 7 C

O [[[Jo[]

132

DEY Decrementa Y

Funzione:

Y—(Y)—1

Formato: 10001000

Descrixzlone:

I contenuti di Y vengono decrementati di |, Consente 'utilizzazione di
Y come contatore, .

' K37
Z

Percorso dei Dati:

Maodi di Indirizzamento:
Soltanto implicato:
HEX = B8, byte = 1, cicli = 2

Flag:

b 3 - ' ! i

O T 11 Tel]

113

EOR Or esclusiva con 'accumulatore
Funzione:

A — (A) VDATO

Formsato: TSRS
¢106obd ! AQDR/DATO AD0% JI

Descrizione:

Viene operato I'or esclusivo dei contenuti dell’accumulatare con il
dato specificato. La tabella della verita é:

Note;: I'EOR con “— 1" pud essere utilizzato per complementare.,

Fercorso dei Dati: |

3 ¢ e
U &

Modi dl Indirizzamento:
'-" §/2/F D Sxfa S &
/N *’A’fﬁ' 4 ei"{"/
HEX WO o |»w|[B]|» ol]|n B
Y E] H H] ? H) 2
oot a H F) o L L 5 1
- on Jan e | v e |em | @ | e

" P 1 CICLO 5E St SUPERA LA PAOMA

Flag:

¥] i 7 £

O [T Je[]

1M

Codici di Istruzlone:

ASB0LUTO

PAGINA-D

FMMEDIATC

ASSOLUTO X

ASSOLUTO v

PAGINA ZERO X

QrogtInl

13

T

IlNI:HHIIZO
o = 01t HEX = 40 CICLI = &
Gvanciot ADDE
"ob = HEX = 45 CicCU =]
mod19al TEAFY
pbb = 0 HEX = 48 CIcuL = 3
T
protLip: e Bt NDRIZZG
i
bl = 1M MEK = 5D [=[N PR)
T
oIov 0 eh" INDIRIZZO
1
bbb = 11} HEX — 5¢ oy B
01 00031 ADOR
bbb = OO HEX = 41 {10} -
G101 o ALDK
ot = 100 wEX = 0 [W L
SNl ATDR
bl = 101 HEX = 55 CICLE = 4

* PIS) CICLO SE SI SUPERA LA PAGINA

135

INC Incrementa la memoria

Funzione:
M—-M)+1

Formato: 111bb110 ADOA ADDR

Descrizione:

1 contenuti della locazione di memoria specificata sono incrementati
di uno e quindi riposizionati nella locazione stessa.

Percorso dei Dati:

3 >:::::;i
'l
M — DATO DATO-=-0ATO = 1
+1
Modi dl Indirizzamento;

H5? > 7 & =

£ fy f f; ; i/5/¢ ¢, *" ,f’ F*“ &
"X L1 L]
[1a]1Y]] 3 H
T L] T [
[1 » [] n »

[T ITel]

136

Codici di Istruzione:

ASSOLUTO

PAGINA-ZERC

ASSOLUTO X

PAGINA ZERQ X

BRI RE1H] INOIR 226
1
sl ~ie - EE cicLi- @
100G ALUE
Ly M RULTEN 11 cicu - 5
Ll
INIRRER T INDWRIZZO
1
AP wiw. FE CICU 2
[EYREAT: ATTE
ot ‘D nix 2.1 ClcL &

137

INX Incrementa X

Funzione:

X=(X)+1

Formato: 11101000

Descrizione:

I contenuti di X sono incrementati di uno, Questo consente I'impiego
di X come contatore,

Percorso dei Dati:

—

!

41

lL_._____

Modi di Indirlzzamento:
Soltanto implicato:
HEX = EB, byte = 1, cicli =2

Flag:

v L]

OEEREDE

138

INY Incrementa Y

Funzlone:

Y- (Y)+1

Formato: 11001000

Descrizione:

1 contenuti di Y sono inerementati di uno. Questo consente I'impiego
di Y come contatorc.

Percorso dei Dati:

Medi di Indirlzzamento:
Soltanto implicato:
HEX = C8, byte =], cicli = 2

Flag:

OEEEEDE

139

JMP Salta all'ledirizze

Funzione:
PC — INDIRIZZ0

Formatio: BLHON 100 INDIFIZZO
1

Descrizione:

Viene caricato un nuovo indirizzo nel contatore di programma origi-
nando un salto rispetio all'esecuzione sequenziale del programma. L'in-
dirizzo pud essere specificato in modo assoluto oppure indiretto.
Percorzo dei Dati:

P L

=

ASSOLUTD

Modl di Indirizzamento:

£

I,

Flag:
TITIrT

140

Codicl di Istruzione:

AS30LUTO oD INDIRIZZO
L
b=9 HEX = al Citai =3
L)
INQIRETTO [RIRL o WEMRIZZO
L
h=1 HEX = &(acL =35
P C JMP
4 — INQIRUZZO —
b (IMDIRI2ZD FINALE) ——i
[INDFRETTA)

141

JSR Sala alla subroutine

Funzione:

STACK — (PC) + 2
PC — INDHRIZZO

Formato: 00100000 INDIRIZZO
1

Descrizione:

I contenuti del contatore di programma + 2 sono conservaii nello
stack. (Questo &I'indirizzo dell'istruzione successiva la JSR). Lindirizzo
della subroutine & quindi caricato nel PC. Quest'operazione & anche
detta “chiamata detla subroutine”.

Percorso del Datl:

Modi di Indirizzamenta:

Sollanto assoluto:
HEX =20, byte = 3, cich = é

Flag:

EEEEEER

(NN INTERVENGONA)

142

LDA Carica I'Accumulaiore

Funzione:
A —DATO

Formato: 101 bisbBI ADDE: DATO ADDR I

Descrizlone:

L'accumulatore & caricato con un nuovo dato.

Percorsoe dei Dati:

Modi di (ndirizzamento:

F L/ Clefofofafof S8/ E
f"ff.-";f-*’ 7/E/8/E/E)E
=L1 Al Ay g m [] Al [1] [}
i3 a 1 i 3 ¥ 1 T 1
Cll.'l.‘l - 3 1 L - - Lo 4
rjl HY - - L L] LLL "y L] w L]

*OPIU Y CICLO B S1 JUPERA LA PAGINA
Flag:

v L] 3] 1 2 L

OEEEEON

143

Codici di Istruzione:

A33qLYTD

PAGINA 2ERD

HIMEDIATD

ASSQULUTO A

ASSOLUTD Y

RNDL X

{ING), ¥

PAGWA, ZEAQ X

144

T

* P 1 CICLO BE BI SUPERA LA PAGINA

010110 Wem INDIPZZO
i
heb = 011 HEX = ADY Cicl = 4
WP ot ALDR
bl = 001 HEX = A Ciculw 3
10101001 QATO
bhb = 010 HEX = A§ T oieu - ?
¥
gt Ie BIT INDIRLEZZO
1
tb = 119 MEX = 80 ciey = o
L)
1o 18 BIT INDIBIZZO
L
bbb = 110 HEX = PR CIELl » &
te1ooon | ADDR
bbb = Ot HEX = A1 CICLY = &
101 1003+ ADDE
b = 106 HEX ~ 61 CICL = 3
a0 Iy ADCR
bbb = 104 HEX = BS CIEL = 4

LDX Carlca il registro X
Funzione:
X - DATO

Formata: 1QPhEhI0 ADDR- DA TO ApDR

U N ——

Descrizione:

Il registro indice X viene caricato con un dato proveniente dall'indi-
rizzo specificato.

Percorso del Datl:

Mod| di Indirizzamento:

-« a | w]|m ™ -

L =1 L] 1 i

B‘el 2 mt g [g

TR 1 CICLD SE 51 JUPERA LA PADINA

Flag:

OEREEEON

145

Codici di Istruzione:

ASSOLUTO

PAGINA ZERQ

IMMERIATO

ABEQLUTO ¥

PAGINA ¥

146

IO TERINERL s lmulmo
bbb = A1 HEX = AE CiICLl = 4
ol Rl ADDR
bhb = 00) WEX = A8 Q=2
131000' 0 aarq
vhb — D0Q HEX = A2 Gt =2
T
g . arr INDIRZ2S
[
bbb = 111 HEM = BE Cicu =4
0y nULE
bob = 110 HEX = B8 CICLI = 4

* PIU 1 CICLG SE 6| BUPERA LA PAGINA

LDY Carlca il registro ¥

Funzione;
Y — DATO

- = A -

[]
. i
Formato: 10155600 ADDR/DATO ADDR h

Descrizione:

1! registro indice Y viene caricato con un dato proveniente dall’indi-
rizzo specificato.

Percorso dei Dati:

Modi di Indirizzamento:

2 7 e o 7o I3 ' /L

By £ e - " ¥ : 3 4 & Fa

faj,f .*f YA TETEAVE 3’? ‘f Iy f
L

=

L 1] ' [+ - L

i }] 7 b [

il L 3 1 A 4
1 ar | w um " L]

* FIDTY DICLO BE 51 SUPERA LA, PAGINA

147

Codici di Istruzione:

ASSOLUTD

PAGINA-Q

INMEDMATO

ASSOLUTO X

PAGINA ZEAOQ Y

148

13101100 l&-BIT INQI 20
L
bbb = 9N HEX = AL CiCr - 4
D 1ap ADOR
bbb =G HERK - Ad cieLn =3
10400000 DATO
bbb = DOO IEX = AD cicu -2
T
0111100 18-BIT INDIRLZZO
[
bub 1 WX wBC cWCLl = 4t
104 10100 ADDR
bbb = 101 HEX - B4 CigL - 4

*. PIUF 1 CICLO SE St SUPERA LA PAGINA

LSR Scorrimento logico a destra

Funzione: ¢—-—:asaaz.¢——‘
<
““““““““ T ———————
Formato: Olbbb!iE ADDRIDATO . ADDP '
Descrizione:

Fa scorrere a desira di una posizione di bit i contenuti specificati
(accumulatore o0 memoria). Uno 0" & forzato nel bit 7. 1] bit 0 &
trasferito nel carty. 11 dato che ha subito lo scorrimento é depositato
nella sorgente cicé nell’accumulatore o nella memoria.

Percorso dei Dati:

Modi di Indirizzamento:

X w M “ o

L o} ! 1 1 3 H

[1 ¥ ¥ T]
bt ao | a '

Flap:

2l 1T 1 Jele]

149

Codici di Istruzione:

ACCUMULATORE

ASSOLLITO

PAGINAD

ASSOLUTO X

PADIMA ZEAD X

150

[L1sT] R]
b = DVD HEX = &A CIcLI =2
¥
Qlgnn IMDIRIZZO
1
bbio =011 Hix= 4l CICLI= 4
D1Da1 1 YO ADDR
bk =00 HEX = 48 cicLI=%
T
ghyinng INDIPI2ZO
L
by = A1} +EX o SE clicu="7
FIGHI0 AGHR
bbb =101 HEX = 55 QoL = 4

NOP Nessuna operazlone

Fanzione:

Nessuna

Formato: 11101010

Descrizione;

Non opera per 2cicli. Pud essere utilizzata per temporizzare un ciclo di
ritardo 0 per riempire un programma.

Modi di Indirizzamento:
J

Softanto implicato
HEX = EA, byte = |, cicli =2

Flag:

L] | |

INON INTERYENGOND)

151

ORA OR nclusivo con Paccumulatore

Funzione:

A ~ (A) V DATO
Formato: DO0Lbb ADOR/DATO
Descrizione:

Esegue I'OR inclusivo logico di A con un dato specificato. Il risultato
immagazzinato in A. Pud essere utilizzato per forzare un 1" in una
locazione di bit selezionata.

Tabella della verita: a]

¢ g '

Percorso dei Dati:

L e

Modi di Indirizzamento:

\"-‘ " L

. f" 5
- o |lw|w | w|eo 0]y
gy 1] H H 1 3 2 7
28 * } H | oa [5| -
[T anjomeie] v 1o g | wo| 1o

" PIU 1 CICLO 3E S SUPERA LA PAGINA

Flag:

OEEEEOE

152

Codici di Istruzione:

ASSQLUTO

PACIKA 2ERD

IMMECHATO

ASSCRUTT X

ASSOLUTO ¥

k1~ |

{ND) ¥

PAGINAOQ X

T
ooxXnag 1t BT MOIRLIO
1
bkl -2 DI | REX = 00 GICLI - 4
Q0000 101 ADDOW
bob = 091 MEX - QS cicu - 3
oocaal OATC
bly - 010 rEx - 09 CloLL -2
T
boo) ¥ 1O 15 P INDIMZIO
i
bt =111 HEX - 1D CICLL = 4*
T
Qo oG 2-¥-1 INDHALEZO
i
Ebb = 110 mEX 19 CHLl - @
DOCOO FPht]
bk - QOB [T CIGLY o
000 100aH ADDR
bob ¢ 100 e | gLy 5"
omnaie YL
bbb - O L LEENE) QCul #

* MU 1 CHALD SE St SUPERA LA PAGINA

153

PHA Spingt A

Funzione:

STACK — (A)

S—(8)—1!
Formato: 01001000
Descrizione:

I conlenuti dell’accumulatore vengono spinti nello stack. Il puntatore
dello stack viene aggiornato. A & invariatc

Percorso dei Datl:

» AN

Modi di Indirizzamento:

Soltante implicato:
HEX =48, byte = 1, cicli= 3

Flag:

B '] ' 4

(TTITITT]

INDN INTERVENGOMNO}

154

PHP Spingi lo stato del processore

Funzione:

STACK — (P)
S—(8)—1

00001000

Formato:

Descrizione:

1 contenuti del registro di stato P sono spinti nello stack. [1 puntatore
dello stack viene aggiornato, A ¢ invariaro.

Percorso del Dati:

* RO

:W/%

Modi di Indirizzamento;
Sohtanto implicato:
HEX = 0B, byte = |, ¢icli = 3

Flag:

v 8 D i 1

EEREEN

INCH INTERYENGONO}

155

PLA Estrai I'Accumulatore

Funzione:

A — (STACK)
S—§+1

Formato: 01101000

Descrlzione:

Estrae la paraola alla sommita dello stack depositandola nell'accumu-
latore. Incrementa i} puntatore dello stack,

Percorso dei Dati:

Modi di Indirizzarnento:

Saltanto implicato:
HEX = 6B, byte = 1, cicli = 4

Flag:

-] ! 2 <

OEEEEOE

156

PLP Estral lo stato del Processore dallo stack

Fanzione:

P — (STACK)
S—-(8)+1

Formato: CO101000

Descrizione:

La parola alla sommitd dello stack vienc estratta e trasferita nel
registro di stato P. Il puntatore dello stack & incrementato.

Percorso dei Dati:

Modi di Indirizzamento:

Sollanwo implicato:
HEX = 28, byte = |, cicli= 4

Flag:

[e]e]e[e[e]e[e]

157

ROL Rotazione a Sinistra di un bt

Funzione: -—
r [3 d 3 2] Q
C
e .
Formato: Ol | bbb! D ADDR | Avor :
1 —
Descrizione:

I contenuti dell'indirizzo specificato (accumulatore o memoria) sono
ruotati a sinistra di una posizione. 1l contenuto del carry va nel bit 0, 11
bit 7 pone bn nuove valore nel carry. Questa ¢ una rotazione a 9 bit.

Percorso del Datl:

Modi & Indirizzamento;

/{‘FD . 33 f'; jc . N a7/ AW 7
& j ; cIF YAIAS é.p l‘f q"‘f i ;
m|n 3 I

L 3]

»]

[TR 1Y ' a H a ?

(5141 ¥ L] 3 * a

(1 oHy mi m L m

Flag:

158

Codlci di Istruziome

ACCUMULATCRE ! oo
bbb =10 HEX =24 Qtyi=12
Li
ASSOLUTO 0010110 16011 INWRIZZO
- L
bbb =ph1 HEX = X ccu- e
PAGINA-O 00100710 ADDR
Iy = Q1 EX = CICLi =5
L]
ASSOLUTO X oI 16 M- INDIRIZZO
L
bbb = 171 HEX= 36 cicLl = 7
PAGINA O X DO I0 ADUR
bbby =101 HEX = 14 Cicu = &

159

ROR Rotazione 2 Deatra di un bit

Attenzione; Questa istruzione pud non essere disponibile sui 6502 pid
vecchi. [noltre cssa pud esistere ma non essere elencata.

Funzione: —
7l el s ||| 2 0
¢
________ e
Formato: B4 bbbl O ApDR | ADDS JI
[
Descrizione:

I contenuti dell*indirizzo specificato (accumulatore 0 memoria) sono
ruotati a simistra di una posizione di bit.. Il carry va nel bit 7. 11 bit 0 pone
un nuovo valore nel carry, Questa & una rotazione a 9 bit.

Percorso def Dati:

Modl di Indirizzamento:

_‘-_F + 30 5 20, . - Sa v 5 + £
/f /L 1F) ’/ﬁ e f/
“ !

L5 L] L n L
LN 2Y !] 2 3 7
[} =N ? * 3 r Loe
Lo o oM am e o I
Flag:

160

Codici di Istrozione:

ACCUMULATORE

ASICLUTO

PAGIINA ZERD

ATI0LUTO ¥

PAGINA D A

1
]
angi;o 1
[]
bbb =310 HEX = 8A CHoLI =2
T
ononip 16 KT INCIAILZZO
1
bbe =011 HEX = 8 CICLE = &
¢ ADPR
bbb = 001 HEE® b Gcu=-5
L]
pnmg 14 AIT-INQIRLIZO
L
bbg=1t1 HEK ~ 7% L =7
olenp AOCR
bbt= 01 wWEK = 7% CICLI~ &

161

RTI1 Rltorno da Interrupt

Funzlone:

P -~ (STACK)
§ —(S)+)
PCL — (STACK)
S —(S)+1
PCM — (STACK)
S —(S)+1

Formato: 01000000

Descrizione:

Ri-immagazzina il registro di stato ed il Contatore di Programma (PC)
che erano conservati nello stack. Apgiusta il punitatore dello stack.

Percorso dei Datl:

Modi dl Indirizzamento:

Soltanto implicato;
HEX =40, byte = 1, cicli = 6

Flag:

[eele[e[e]e]e]

162

RTS Ritorno da Subroutine

Funzione:

PCL ~— (STACK)
§ —(S)+1
PCH — (STACK)
s —(5+

PC —(PC+ 1)

Formato: 01100000

Descrizione;

Ri-immagazzina il Contatore di Programma dello stack e lo incre-
menta di uno. Regola il puntatore dellio stack.

Percorso dei Dati:

1

Modi di Indirizzamento:

Soltanto implicato:
HEX = 60, byte = |, cicli = 6
Flag:
N L L] [] 1 3 <
LI [[[[]]

TNON INTEAVENGOND)

163

SBC Sottrae con Carry

Funzione:
A — (A) — DATO — C (C ¢ il prestito)

Formato:; 1) b

Descrixione:

Sottrae dall'accumulatore il dato all'indirizzo specificato, con pre-
stito. Il risultato rimane in A, Nota: SEC 2utilizzato per una sottrazione
scnza prestito.

SBC pud essere utilizzato in mado decimale o binario, in funzione del
bit D del registro di stato.

Percorso dei Dati:

17)/’?/ T /f/ LAt
’ L L

Modi d&i Indirizzamento:

a« -
Kl

£ i AN AVEVE &
f J Fb y/f g ‘é" "‘f .Fspf?

. Dl | w | |w | o

e [t ?] 1 H ! 1

eu " T R B R B I T

[F¥Y -0 @ =0 m g o L o

' PIU 1 CICLO SE St SUPERA LA PAGINA

Flag:

[o[e[T T [e]®]

164

Codici di Istruzione

AG30LUTO

PAGINA-ZERD

IMMEDLATC

ASSOLUTO X

ASSOLUTC ¥

JIND, X!

1'NOI Y

PAGINA ZERO X

T

ALY It Bt INDERIZZO
|
bbb = M1 HEX = EO CICR) -4
1 Heei ot ADDT
Mo - COF HEX - &8 Cicu 3
1121001 DATO
bbt = 010 HEX = EB adu -2
T
FINRTAL1)] st INDIRLZZO
1
bk m 114 HEK = FQ ocL) ar
T
ipgt 4 M1 INDVRIZZO
L
bt = 11D HEX = F3 e - 40
YY" vl ADCR
Hub = 000 HEX o Et cicu @
LT (oL Abor
bizh = 100 HEX = F{ QIcLr 2"
g ADOE
bbb = 101 HEX = /3 [=le D]

*- PFIU 1 CICLD SE S SUPEMS LA PAGINA

165

SEC Set Carry

Fonzione:

C—1

Formato: 00111000

Descrizlone:

11 bit carry viene posto ad 1. Questa istruzione ¢ utilizzata prima di
SBC per eseguire una sottrazione senza carry.

Modi di Indirizzamento:

Soltanto implicato:
HEX = 38, byte = 1, cicli = 2

Flag:

166

SED Predisponi il modo decimale

Funzione:

D-—1

Fomatu: 1111]Cﬂ)

Descrizione:

1! bit decimale del registro di stato & posto ad 1. Quando esso & 0 il
modo & binario, Quando esso ¢ 1 il modo & decimale per ADC ed SBC.

Modi di Indirizzamento:
Soltanto implicato:
HEX = F8, byte =], cicli = 2

Flap:

1] 1 1 C

(TTITT]

167

SEI Set Disabilitazione Interrupt

Funzione:

I—1

Formato: L 01111000

Descrizione:

La maschera di interrupt é posta ad |, Viene utilizzata durante un
interrupt oppure un ripristino del sistema,

Modi di Indirizzamenio:

Soltanto implicato:
HEX =78, byte = |, cich = 2

Flap:

168

STA Immagazzina 'accumulatore nella memoria

Funzione:
M —(A)

Formato:

1 DObDbit INOWRIZIC

Descrizione:

e . ———— —

— e ar mr e — = = — e — ———

T contenuti di A vengono ricopiati alla locazione di memoria specifi-
cata. | contenuti di A non vengoeno cambiati.

Percorso dei Dati:

"

Modi di Indirizzamento:

<1 1=

L1} L] -

v ! Y

F] L 1 1 2

4

1 R I T T TR |

|
ml o

4

Y
e L g - R e H
1 " | |

Flag:

INOM INTERYENGO1

149

Codicl di Istruzione:

ASSDLUTO

PAGINA ZERC

ABSOLUTE, X

ASSOLUTD Y

{IND, X}

fiNDY Y

PAGINA O X

170

L
1a.811 INDIALZZO

L2 R R
1
kb= 0N MK = BD CicLi=4
100000V ADDR
bob = QoI x- s R CICu =3
T
10011 14817 WDIRIZZO
L
bk = 111 HEX - CICLI - 3
T
11001 4Bt INDWRIZZO
L
bbb - 110 MK - ocu = 5
[re e es]] ADOR
bbb -+ OQ wix - A1 cley : &
10010001 ADDR
hab W0 HEx -9 CHoLI [
10010t Dr ADDR
Lot - 1Q1 HEx - 99 Qcu 4

STX Immagazzina X nella memoria

Funzione:

M= (X)L

Formato: 100LL110 NOIRIZZO)

Descrizione:

Copia i contenuti del registro indice X nella locazione di memoria
specificata. I contenuti di X rimangoao invariati,

Percorso del Dati:

M . i A
Modi di Indirizzamento:
/tJP] §U¢’ £/ WANEVAYEYE
5 & . e FIE
JESESESESES rSESESESESE
- | " - -
L] |'.: 3] 1
(=1} a 2 d
L' w W
- [(TTTITT]
INON IMTERVENQD)
Codict d§ Istruzione:
A350LLITD [= I INDIRIZZO
- “E G
PAGINA ZERD [- } win !
- . O = 3
PAQMNA ZERD Y | xww: E s J
oo “ CiCL =4

mn

STY Immagazzina Y nella memoria

Funmzione:
M —(Y)

Formato: 1006k 196 INDIRIZZO !

A e — - ———

Descrizione:
Copia i contenuti del registro indice Y nella locazione di memoria
specificata. [contenuti di Y rimangono invariati.

Percorso dei Dati:

Modi di Indirizzamenszo:

.3'! [N A 3 SR A S 1'.“,“3:
7 Z/F i/ /e fE/2/5/F

L [4 L]
!"M:] ¥ a
um:. & 3 .
Dl [0 o] |
Fl - N v B [} \ H [4

{NON INTERVENGO)

Codicl di Istruzione:

ASSOLUTO I (- [ING!:HI.Z.ZO |
o ek GICU =4
PAQINAD| ma l' w |
- .- CIcLl - 3
vacinaox | ame s |
-ty LIER ClCLl = 4

172

TAX Trasferisce A in X

Funzione:
X —(A)

Formato: 10101010

Descrizione;

Copia i contenuti dell’accumulatore in X, I contenuti di A rimangono
invarian.

Percorso dei Dati:

X

Ny
N

o
N

R
i

o 7

AN
R

!
I

Modi di Indirizzamento:

Soltanto implicato:
HEX = AA, byte = 1, cicli = 2

Flag:

173

Trasfesisce 'accumnlatore in ¥

TAY

.
.

Funzione

10101000 |

Y — (A)

Formato:

Descrizione

Trasferisce i contenuti dell’accumulatore nel registro Y. I contenuti di

A rimangono invariati,

‘Q
[b

Percorso dei Dat

.
.

dirizzamento

Mod! di In

1, cicli = 2

AR, byte

Soltanto implicato:

HEX

Flag

@ | { [[of |

174

TSX Trasferisce S in X

Funzione:
X —(8)

Formato:

10111010

Descrizione:

[contenuti del puntatore dello stack S sono trasferiti nel registro
indice X.] contenuti di S rimangono invariati.

Percorso dei Dati:

A
s B
i

Modi di Indirizzamento:

Seltanto implicato:
HEX = BA, byte = 1, ¢cicli = 2

Flag:

OEEREOE

175

TXA Trasferisce X nell'Accumulatore

Funzlone:
A~ (X)
Formato: | 10001010 J

Descrizione:
1 contenuti del registro indice X sono trasferiti nell’accumulatore. |
contenuti di X sono invanati.

Percarso dei Dati:

Modi di Indirizzamento:

Soltanto implicato:
HEX = 8A, byte = 1, cicli = 2

Flag:

176

TXS Trasferisce X in S

Funzione:
S—(X)
Formato: | 1ootioio |

Descrizione:
[contenuti del registro indice X sono trasferiti nel puntatore dello
stack, I contenuti di X sono invariati.

Percorso dej Dati:

Modl di Indirizzamento:

Sollanto implicato:
HEX = 9A, byte = I, cicli = 2

Flag:

o 1] <

TITTIT]

(NON INTERYENGO)

177

TYA Trasferisce Y in A

Funzione:
A—(Y)

Formato: [1001 1000]

Descrizione:
I contenuti del registro indice Y sono trasferiti nell’accumulatore, |

contenuti di Y sono invariati.

Percorso del Dati:

Modi di Indirizzamente:

Soltanto implicato:
HEX = 98, byte = 1, cicli=2

OEEERON

178

CAPITOLO 5

TECNICHE DI INDIRIZZAMENTO

INTRODUZIONE

Questo capitclo presenterd 1a teoria generale dell'indirizzamento con
le varie tecriche che sono state sviluppate per facilitare il recupero dei
dati, Nel secondo paragrafo saranno analizzati in modi specifici di
indirizzamento che sono disponibili nel 6502 coniloro vantaggieditoro
limin, dove esistono. Infine per familiarizzare il lettore con le varie
possibilitd di compromesso tra le diverse tecniche di indirizzamento si
studieranno programmi specifici di applicazione.

Poiche il 6502 non ha regisiri a 16 bil, tranne il contatore di pro-
gramma, che pud essere impiegato per specificare un indirizzo, & neces-
sario che I'utente de) 6502 conoscea i vari modi di indirizzamento ed, in
particolare, I'impiego dei registri indice. 1 modi di recupero complessi,
come una combinazione dell'indiretto ed indicizzato possono essere
omessi a questo stadio iniziale. Comunque tuttii modi di indirizzamento
sono utili per sviluppare programmi per questo microprocessore. Si
studieranno ora le varie alternative disponibili,

MODI DI INDIRIZZAMENTO

Lindirizzamento fa niferimento alle specifiche all'interno di una istru-
zione della locazione dell'operando su cui interviene I'istruzione stessa,
Verranno ora esaminati i metodi principali.

Indirizzamento Implicito

Le istruzioni che operano esclusivamente su registri normalmente
utilizzano lindirizzamenro implicito. Questo # illustrato in Figura 3-1.
Un'istruzione implicita deriva il suo nome dal faito che essa non con-
tiene specificamente V'indirizzo dell’operando su cui opera. Invece il suo
codice operativo specifica uno o pid registri {normalmente I'accumula-
tore od anche qualsiasi altro registro/i). Poiché i regisiri interni normal-
mente 50n0 poco numerosi (diciamo un massima di 8) questo richiedera
un piccolo numere di bit. Per esempio tre bit dentro I"istruzione punte-

17%

Q
|

(MPLICITOVIMPLICATO copice operaTivo A | R
1

INMEDIATO CODICE OPERATIVO

DMAETTQUAEVE CODICE OPERATIVO

INDIRIZZD BREVE

ESTESO-ASSCLUTO COPICE OPERATIVO

6T PHENG

INDIR2 2]

INDIEIZZATC CORICE OPERATIVG | X REG

SPOSTAMENTD

Figura 5.1: Indirizzamento

ranno da 1 ad 8 registri interni. Tali istruzioni possono percid essere
normalmente codificate all'interno di 8 bit. Questo ¢ un vaniaggio
importante poiche un'’isiruzione ad B bit normalmente viene eseguita pia
velocemente di qualsiasi istruzione a due o tre byte,

180

Un esempio di istruzione implicita del 6502 ¢ TXA che specifica
“trasferisoe i contenuti di A ad X",

[ndirizzamento Immediato

L'indinzzamento immediato & illustrato in Figura 5-1. Il codice opera-
tivo & seguito da un letierale ad 8 o 16 bit (una costante). Questo tipo di
istruzione & necessario per esempio per caricare un valore ad 8 bit. Se il
microprocessore & equipaggiato con registri 4 16 bit pud essere necessa-
rio caricare letterali a 16 bit. Questo dipende dall"architettura interna del
processore. Un esempic di un'istruzione immediata é&: ADC # 0.

La seconda parola di questa istruzione contiene il letterale 0™ che &
sommato all'accumulatore.

Indirizzamento Assolulo

L'indirizzamento assoluto ¢ i) modo in cui i dati sono normalmente
recuperati dalla memoria, dove un codice operativo ¢ seguito dz un
indirizzo a 16 bit. L'indirizzamento assoluto peecid richiede istruzioni di
3 bit. Un esempio di indirizzamento assoluto &: STA § (234,

Questa istruzione specifica che i contenuti dell’accumulatore devono
essere memorizzati alla locazione di memoria *1234" esadecimale,

Lo svantaggio dell’inditizzamento assoluto é di richiedere un'istru-
zione di 3 byte. Par migliorare |'eflicienza del microprocessore pud esse-
re reso disponibile un altro modo di indirizzamento nel quale per ['indi-
rizzo viene utilizzata una sola parola; indirizzamento diretto.

Indirizzamenta Direfto

In guesto modo di indirizzamento il codice operativo & seguito da un
indirizzo ad 8 bit. Questo ¢ illustrato in Figura 5-1. Il vantaggio di questo
approccio ¢ di richiedere solo 2 byte invece dei 3 dell'indirizzamento
assoluto. Lo svantaggio & la limitazione di tutti gli indirizzamenti all'in-
terno di questo modo per indirizzare da 0 a 255. Questa é 1a Pagina 0.
Questo ¢ anche chiamato I'indirizzamento breve od indirizzamento in
Pagina 0. Ogni volia che & disponibile 'indirizzamento breve, I'indirizza-
mento assoluto ¢ spesso chiamato indirizzamento esteso per contrasto.

Indirizzamento Relativo

Le normali istruzioni di salto o diramazione richiedono 8 bit per i)

15’

codice operativo piul I'indirizzo a 16 bit al quale deve passare I'esecu-
zione del programma. Come nell’esempio precedente questo ha I'incon-
venicente di richiedere tre parole ciot 3 cicli di memoria. Per fornire una
diramazione piu efficiente I'indirizzamento relativo utilizza un formato
di sole due parole. La prima parola ¢ la specifica della diramazione,
normalmente assieme al test che si sta realizzando. La seconda parola é
uno spostamento. Poich2 lo spostamento pud essere pasitivo o negativo
un'istruzione di diramazione relativa consente una diramazione diretta
fino a 128 locazioni (7 bit) oppurc una diramazione inversz fino a 128
locazioni {pili o0 meno 1 in dipendenza delle convenzioni). Poiche la
maggior parte dei ¢icli tendono ad essere brevi 1a diramazione relativa
pud essere utilizzata quasi sempre esi risolve in un significativo migliora-
mento di esccuzione di tali roufine brevi. Come esempio & gia stata
utilizzata listruzione BCC che specifica “‘operazione diramazione se
carry & zero” alla locazione all'intermo di 127 parole dall'istruzione di
diramazione stessa,

Indirizzamento Indiclzzato

L'indirizzamento indicizzato & una tecnica specificamente pratica per
accedere successivamente agli elementi di un blocco o di una tabella.
Questo sara illustrato mediante esempi nel corso di questo capitolo. Il
principio dell'indirizzamento indicizzato & che l'istruzione specifica sia
un registro indice che unindirizzo. Nello schema piit generale i contenuti
del registro sono sommati all’indirizzo per forire I'indirizzo finale. In
questo mode I'indirizzo potrebbe esszere poi utilizzato per accedere
successivamente a tutti gli elementi di una tabella in modo cfficiente. In
pratica esistono spesso restrizioni ¢ si pud limitare la dimensione del
registro indice o la dimensione dell'indinizzo o campo di spostamento.

Pre-indicizzazione ¢ Post-indicizzazione

Si possono distinguere due modi di indicizzazione, La pre-
indicizzazione ¢ il modo di indicizzazione usuale dove l'indirizzo finale @
la somma di uno spostamento od indirizzo o dei contenuli del registro
indice,

La post-indicizzazione traita i contenuti del campo di spostamento
come Findirizzo delio spostamento effettivo, piuttosto che lo sposta-
mento stesso. Questo & illustrato in Figura 5-2. Nella post-indicizzazione
lindirizzo finale ¢ la somma dei conlenuti del registro indice pid i
contenuti della parola di memoria designata dal campo di spastamento,
Questa carutteristica utilizza infalti una combinazione dell'indirizza-
mento indiretto e della pre-indicizzazione. Si noti che non & stato ancora

182

definito 'indirizzamento indiretto. E quello che si fard immediatamente.

CODICE OPERATIVD
— FUNTATQRE —

PACINA ZERO Y inpice

MEMOAIA
PUNTATORE = BASE
HDIRIZ20
FINALE
A1-0eT
DATO N

Figura 5.2: Indinzzamento Indicizzalo (ndiretto

Indirizzamento Indiretto

E gia stato visto il caso in cui due subroutine devono scambiarsi una
grande quaniitd di dati immagazzinati nella memoria. Pil in generale
diversi programmi ¢ diverse subroutine, possona richiedere di accedere
a blocchi comuni di informazioni. Per preservare la generalita del pro-
gramma ¢ desiderabile non mantenere tale blocco ad una fissata loca-
zione di memoria. In panticolare Ia dimensione di questo blocco pud
crescere o diminuire dinamicamente e pud risiedere in varie aree di
memoria, in funzione della sua dimensione. Sarebbe percid impratica-
bile in generale cercare di avere accesso a questo blocco impiegando
I'indinzzamento assolwto.

La soluzione a questo problema sta nel depositare l'indirizzo di par-
tenza del blocco ad una fissata locazione di memoria. Questo ¢ analogo
alla situazione in cui diverse persone devono entrare in una casa ed esiste
solo una chiave. Per convenzione)z chiave della casa sari nascosta sotto
il vaso, Ogni ulilizzalore conoscera dove guardare (sotto il vaso) per
trovare la chiave della casa (ovvero per trovare Iindirizzo della lista

183

richiesta, per analogia). L’indirizzamento indiretto percid utilizza un
codice operativo di 8 bit seguite da un indirizzo a 16 bit. Queste indirizzo
& utilizzato semplicemente per recuperare una parola dalla memoria.
Normalmente sard una parcla a 16 bit {nel nostro caso due byte} all’in-
terno della memoria. Questo ¢ illustrato dalla figura 5-3). I due byte
all'indirizzo specificato A,. Aj sono quindi interpretati come indirizzo
effettivo dei dati ai quali si desidera accedere.

ISTAUZIONE MEMORIA

CODIGE QPERATIVG

Al
INDIRL22 O ¢ - INDIRIZZD
f— INDIRETTO A, FINALE (4,
A, DATO |

Figura 5.3: Indirlzzamento indireita

L'indirizzamento indirello ¢ particolarmente conveniente tutte le
volte che sono utilizzati i puntatori. Varie aree del programma possono
percié fare riferimente a questi puntatori per accedere conveniente-
mente ed elegantemente ad una parola o ad un blocce di dati.

Combinazione dei Modi

1 precedenti modi di indirizzamento possono essere combinati. [n
particolare sarebbe possibile, in uno schema di indirizzamento comple-
tamente generale utilizzare molti livelli di indirizzamento indiretto.
L'indirizzo A: potrebbe essere interpretato come un ulteriore indirizzo
indiretto e cosi via.

, L'indirizzamento indicizzato pud essere anche combinato ¢on ac-
cesso indireito. Questo consente I'accesso efficiente alla parola n di un
blocco di dati forniti una volta che si conosce dove ¢ indirizzato il
puntatore all'indirizzo di partenza,

184

Si ¢ cosl divenuti familiari con tutti i modi di indirizzamento usuali che
possono essere disponibili in un sistema, La magpior parte dei sistemia
microprocessere, a causa della limitaziooe sulla complessita della MPU,
che deve essere realizzata all'interno di un singolo chip, non forniscono
tutti i modi possibili ma soltanto un piccolo sottinsieme di questi. 11 6502
fornisce un sottinsieme non comunemente largo di possibilita. Si esami-
neranno ora queste possibilitd.

MODI DI INDIRIZZAMENTO DEL 6501

Indirizzamento Implicato (6502)

L'indirizzamento implicato ¢ utilizzato da wn'istruzione a singolo byte
che opera sui registri interni. Ogni volta che le istruzioni implicite
operano esclusivamente sui registni interni, queste richiedono soltano
due cicli di clock per essere eseguite. Ogni volta che esse accedono alla
memoria richiedono tre cicli,

Le istruzioni che operano esclusivamente sui registri interni sono
CLC, CLD, CL1, CLV, DEX, DEY, INX, INY, NOP, SEC, SED, SEI,
TAX, TAY, TSX, TXA, TXS, TYA.

Le istruzioni che richiedone 1'accesso alla memoria sono; BRK, PHA,
PHP, PLA, PLP, RTI, RTS.

Queste istruzioni sono slate descritte al capitolo precedente ed il loro
modo di operare dovrebbe essere chiaro.

Indirizzamento Immediate (6502)

Poiché i] 6502 ha soltanto registri di lavoro ad 8 bit (il PC non & un
registro di Javore) I'indirizzamento immediato nel caso del 6502 & limi-
tato alle costanti ad 8 bir, Tutte le istruzioni nel modo ad indirizzamento
immediato sono percid lunghe due byte. Il primo byte contiene il codice
operativo ed il secondo byte contiene la costante od il letterale che deve
essere caricato nel registro od utilizzato in congiunzione con uno dei
registri per un'operazione aritmetica o logica.

Le istruzioni che utilizzano questo modo di indinzzamento sono:
ADC, AND, CMP, CPX, CPY, EOR, LDA, LDX, LDY, ORA, SBC.,

Indirizzamento Assoluto (6502)

Per definizione l'indirizzamento assoluto richiede 3 byte, [l primo byte
¢ il codice operativo ed i due byte successivi sono I'indirizzo a 16 bit
specificante la locazione dell’operando. Eccetto il caso di un salto asso-
luto, questc modo di indirizzo richiede quattro cicli,

18%

Le istruzioni che possono utilizzare I'indirizzamento assoluto sono:
ADC, AND, ASL, BIT, CMP, CPX,CPY, DEC, EOR, INC, JMP, ISR,
LDA, LDX, LDY, LSR, ORA, ROL, ROR, SBC, STA, STX, STY.

Indirizzamento in Pagina Zero {6502)

Per definizione I'indirizzamento in pagina zero richiede due byte: il
primo & per il codice operativo: il secondo & per I'indirizzo breve ad 8 bit,

L'indinzzamento in pagina zero richiede tre cicli. Poiché l'indirizza-
mento in pagina zero offre significativi vantaggi in velocitd in virtd del
codice pill breve, esso dovrebbe essere utilizzato dovunque possibile,
Questo richiede un‘aitenta gestione delta memoria da parie del program-
matore. Parlando in gencerale le prime 256 locazioni di memoria possono
essere viste come un set di regisiri di lavoro per il 6502. Qualsiasi
istruzione sard essenzialmente eseguita su questi 256 “registri' in appena
tre cicli. Questo spazio dovrebbe percid essere attentamente riservato
per i dati essenziali che necessitano di essere recuperati ad alta velocita,

Le istruzioni che possono utilizzare !"indirizzamento in pagina zero
sono quelle che possono wtilizzare lindirizzamento assoluto eccetto
JMP e JSR (che richiedono un indirizzo a 16 bit).

La lista dellc istruzioni consentite é quindi;: ADC, AND, ASL, BIT,
CMP, CPX, CPY, DEC, EOR, INC, LDA, LDX, LDY, LSR, ORA,
ROL, ROR, SBC, STA, STX, STY.

Indirizzamento Relativo (6502)

Per definizione l'indirizzamento relativo utilizza due byte, 1l primo ¢
un’istruzione di salto mentre il secondo specifica lo spostamento ed il
suo segno. Per differenziare questo modo dall'istruzione di salto essc
sono indicate qui come diramazione. Le diramazioni, nel caso del 6502,
utilizzano sempre il modo relativo. 1 saiti utilizzano sempre il modo
assoluto {pid naturalmente gli altri sotto-modi che possono essere com-
binati con gueste come Indicizzato ed Indiretto). Da un punto di vista
del timing questa isituzione dovrebbe esserc esaminata con cautela.
Ogni voita che un test é soddisfaito, cio¢ ogni volta che non ¢'¢ dirama-
zione, questa istruzione richiede solo duc cicli, Questo perche la succes-
siva istruzione da eseguire & puntata dal contatore di programma. Invece
ogni veolta che il test & soddisfatto, questa istruzione richiede tre cicli:
deve essere calcolato un nuovo effettivo indinizzo. L'aggiormamento del
contatorc di programma richiede un ulieriore ciclo. Comunque se si
verifica una diramazione olire ai confini di una pagina, un ulteriore

186

aggiornamento & necessaric per il contatore di programma ¢ la lun-
ghezza effettiva dell’istruzione diviene di quattro cicli.

L'utente non deve precccuparsi da un punto di vista logico dell’attra-
versamento della frontiera di una pagina. Si prende cura di questo
I'’hardware. Comunque, poiché un ulteriore riporto o prestito & generato
ogni volta che si attraversa la frontiera di una pagina, il tempo di
esccuzione della diramazione cambiera. Se questa diramazione fa parte
di un esatto ciclo di timing occorre fare attenzione.

Un buon assemblatere dird normalmente al programmatore, all'i-
slante in cui il programma & assemblato, se una diramazione provoca
I'attraversamento della frontiera di una pagina nel cui caso il timing pud
essere critico.

Ogni volta che non si & sicuri se si verificherd una diramazione si deve
tener conto che aleunc volte la diramazione richiederd due cicli ed altre
volte tre, Spesso viene calcolato un tempo medio.

Le sole istruzioni che realizzano un indirizzamento relativo sono le
situazioni di diramazione. Ci sono B istruzioni di diramazione che
operano il test di ciascun flag all’interno del registro di stato per i valori
“0" ed **1", pit 'istruzione BIT, Lalista &: BCC, BEQ, BMI, BNE, BPL,
BVC, BVS.

Indirizzamento Indicizzata (6502)

11 6502 non fornisce una capacita completamente generale ma soltanto
una limitata. Esso & equipaggiato con due registri indice. Comunque
guesti registri sono limitati ad 8 bit. T contenuti di un registro indice sono
sommati al campo indirizzo dell’istruzione. Normalmente il registro
indice & utilizzato come comatore per accedere agli elementi successivi di
un blocco o di una tabella. Quesio perché sono disponibili istruzioni
specializzate per incrementare o decrementare ciascuno dei registri
indice separatamente, Inolire esistono due istruzioni specializzate per
conlrontare i contenuti dei registri indice con una locazione di memotia,
un'importante possibilitd per I'effettivo impiego dei cegistri indice per
operare 1) Lest rispetto ai limiti consentiti.

In pratica, poiché 1a maggior parte delle tabelle dell’utente sono
normalmente pid corte di 256 parole [a limitazione dei registriindice ad 8
bit ¢ normalmente una limitazione non significativa.

1l modo di indirizzamento indicizzato pud essere utilizzato non solo
con 'indirizzamento assoluto regolare, ¢io# con un campo di indirizzo a
16 bit, ma anche con il modo di indirizzamento in pagina zero, ticécon i
campi indirizzo ad § bit.

C'é soltanto una restrizione. 1l registro X pud cssere utilizzato da

187

entrambi i tipi di indirizzamento. Invece il registro Y consente solo
Iindirizzamento assoluro indicizzato ¢ non quello indicizzato in pagina
zero. (Eccetto per le istruzioni LDX ed STX che possono essere modifi-
cate dal registro Y).

L'indirizzamento indicizzato assoluto richiedera quattro cicli, se non
si attraversa la frontiera di una pagina, nel cui caso saranno richiesti
cinque cicli.

Le istruzioni indicizzate assolute possono utilizzare sia il registro X
che Y per fornire il campo di spostamento. La lista delle istruzioni che
possono utilizzare questo modo sono:

—con X: ADC, AND, ASL, CMP, DEC, EOR, INC, LDA, LDY,
LSR, ORA, ROL, ROR, SBC, STA (non STY).

—con Y: ADC AND, CMP, EOR, LDA, LDX, ORA, SBC,
STA (non ASL, DEC, LSR, ROL, ROR).

Nel caso di indirizzamento indicizzato in pagina zero il registro X ¢
solo registro di sposiamento consentito. Le istruzioni consentite sono:
ADC, AND, ASL, CMP,DEC, EOR, INC, LDA, LDY, LSR, ORA,
ROL, ROR, SBC, STA, STY.

Indirizzamento Indiretto (6502)

11 6502 non ha la capacita di indirizzamento indiretto completamente
generale. Esso limita il campo jndirizzo ad 8 bit. In altre parole wunti gli
indirizzamenti indiretti utilizzanc il sotto-modo di indirizzamento indi-
retto in pagina zevo. L'indirizzo effettivo su cui opera il codice operativo
sone quindi 1 16 bit specificati dalt'indirizzo in pagina zero dell’istru-
zione. Inolre non si pud utilizzare un indiretto di ordine superiore.
Questo significa che un indiriz2o recuperata dalla pagina zero deve
essere usato come tale e non pud essere utilizzato come ulteriore indire-
zione.

Infine tutti ghi accessi indiretti devono essere indicizzati, eccetto JIMP.

Per imparzialild si potrebbe notare che pochissimi microprocessori
forniscono qualsiasi indinzzamento completamente indiretto. Tnoltre é
possibile realizzare un indirizzamento indirztto pit generale utilizzando
una definizione macro.

Sono possibili due madi di indirizzamento indiretto: indirizzamento
indiretto indicizzato ed indirizzamento indicizzato indiretto (eccetlo
JMP che utilizza Pindiretto puro).

188

Indirizzamento Indiretto Indicizzato

Questo modo somma i comenuti del registro indice X all’indirizzo in
pagina zero per calcolare V'indirizzo finale & 16 bit. Questo & un modo
efliciente per recuperare uno dei diversi dati possibili per dati puntati
mediante puntateri il cui numero ¢ contenuto nel registro indice X.
Questo & illustrato in Figura 54,

In questa illustrazione la pagina zero contiene una tabella di punta-
tori. Il primo puntatore é all'indirizzo A che fa parte dell'istruzione, Sei
conteauti di X sono 2N allora questa istruzione accederd al numero N di
puntatori di questa tabella ¢ recupererd i dati puntati.

L’indirizzamento indiretto indicizzato richiede 6 cicli. Esso é natural-
mente meno efficiente come impiego di tempo di qualsiasi modo di
indirizzamento diretto. il suo vantaggio ¢ la flessibilitd che pud risultare
ncllz codifica ovvero il miglioramenio globale di velocita.

CAODICE
OPERATIVO (X x PALGINA O

INDIRIZZO (A} I E]

WOIRIZZO A

INGRESSD W N E_L!_H&TOFIE
alND A 18 BT

RESTO DELLA
MEMCAIA

Figura 5.4: Indlrizzamenlo indicizzato

Le istruzioni consentite sgno: ADC, AND, CMP, EOR, LDA, ORA,
SBC, STA.

Indirizzamento Indicizzate Indireito
Questo corrisponde al meccanismo della post-indicizzazione che &

stato descritte al paragrafo precedente, In quella sede l'indicizzazione

189

era eseguita dopo lindirezione, piutiosto che prima. In alte parole
I'indirizzo corto che ¢ parte delle istruzioni ¢ utilizzato per accedere ad
un puntatore a 16 bit in pagina zero. [contenuti del registro indice Y
50n0 quindi semmati come uno spostamento a questo puntatore. [l dato
finale ¢ quindi recuperato.

In questo caso il puniatore contenute in pagina zero indica la base di
una tabella nella memoria. 1 registro Y fornisce uno spostamento.
Questo & un vero indice all'interno di una tabella, Questa istruzione &
particolarmente potente per far riferimento alt’ennesimo elemento di
una tabelia, premesso che I'indirizzo di partenza della tabella & conser-
valo in pagina zero, Si pud fare questa io soli due byte.

Le istruzioni consentite sono: ADC, CMP, EOR, LDA, ORA, SBC,
STA.

Eccezione: Istruzione di Salteo

L'istruzione salto pud usare I'assoluto indiretto. E la sola istruzione
che pud usare questo modo.

UTILIZZAZIONE DEI MO DI INDIRIZZAMENTO DEL 6502

Indirizzamento Lungo ¢ Breve

Sono gid state utilizzate le istruzioni di diramazione in vari programmi
tra quelli sviluppati. Essi sono auto csplicativi. Una domanda interes-
sante & la scguente: cosa si pud fare se il range consentito per la dirama-
zione non ¢ sufficiente per richieste particolart? Una semplice soluzione ¢
di utilizzare la cosiddena diramazione Junga. Quesia & semplicemente
una diramazione alla locazione che contiene una specifica di salto:

BCC +3 OPERA LA DIRAMAZIONE ALLINDIRIZZO
EFFETTIVO
+ 3 SE C'E ZERO

JMP FAR ALTRIMENTI SALTA A FAR

(ISTRUZIONE SUCCESSIVA)

1l precedente programma di due istruzioni si risolverd nella dirama-
zione alla locazione FAR ogni volta che il carry & zero. Questo risolve il
problema della diramazione lunga. Si considering percio ora | modi di
indinzzamento piit complessi cioé I'indicizzazione e l'indirezione.

Utilizzazione dell'indicizzazione per I'accesso di blocchi sequenzlali

L'indicizzazione ¢ innanzitutto utilizzala per indirizzare locazioni

190

successive all'interno di una tabella. La restrizione consiste nel fatto
che il massimo spostamento deve essere minore di 256 cosicché esso
possa risiedere in un registro indice ad B bit.

Si ¢ imparato a controllare il carattere “**. Ora si cerchera in una
tabella di 100 elementi il carattere "***". L'indirizzo di partenza di quesia
tabella & chiamata BASE. La tabella ha soltanto 100 elementi. Questi
sono minofi di 256 e si pud quindi utilizzare un registro indice. Il
programma Appare come seguc:

SEARCH LDX #0
NEXT LDA BASE, X
CMP "o
BEQ STARFOUND
INX
CPX # |00
BNE NEXT
NOTFOUND
STARFOUND

1! diagramma di flusso di questo programma appare in Figura 5-5, Si
potrebbe facilmente verificare |'equivalenza tra it diagramma di flusso
cd il programma. La logica del programma é abbastanza semplice. 1!
registro X & utilizzato per puntare all'elemento all'interno della tabella.
La seconda istruzione del programma:

NEXT LDA BASE, X

utilizza l'indirizzamento indicizzato assoluto. Esso specifica che I'accu-
mulatore deve essere caricato all'indirizzo BASE {indirizzo assolutoa 16
bit) pit1 i contenuti di X. All'inizio i contenuti di X sono 0. 1l primo
elemento da accedere sard quello all'indirizzo BASE. §i pué vedere che
dopo l'interazione successiva, X avra il valore "1™ e si accederi all’ele-
mento sequenzialmente successivo della tabella, all’indirizzo BASE + 1,

La terza istruzione del programma CMP **" confronta il valore del
carattere che é stato letto nell’accumulatore con il codice di *“*™. La
successiva istruzione opera il test dei risultati del confronto. Se ¢ stato
trovato un accordo si verifica una diramazione alla label STAR-
FOUND:

BEQ STARFOUND

Altrimenti viene eseguita listruzione sequenzialmente successiva:

INX

191

1l contatore indice & incrementato di 1. Con riferimento al diagramma di
_ flusso della Fig. 5-3, si trova esaminando la parte bassa di quest’ultimo
che il valore del registro indice a questo punto deve essere controllato per
assicurarsi di non oltrepassare i confini della tabella (in questo caso 100
elementi). Questo ¢ realizzato dall’istrurzione seguente:

CPX # 100

INIZIALIZZA
ALLEAEMENTO O

[

LEGGE L'ELEMENTO
SUCCESSIvD

|
0 Y e sTARFOUND

NO

PAUNTA ALUELEMENTD
SUCCESSIVO

NO| (L TIWG ELEMENTC

NOT FOUND

Figura 5.5: Ricerca dl un carattare in una tebella

Questaz istruzione confronta il valore del registro X col valore § 100, Seil
test non & soddisfatto si deve prelevare ancora il carattere successivo.
Questo é quanto succede con:

BNE NEXT

Questa istruzione specifica una diramazione alla tabel NEXT se il test
non ¢ stato soddisfatto (la seconda istruzione del programma). Questo
ciclo sara eseguito finché non & stato trovato un *“¢** oppure finché non &
stato raggiunto il valore dell'indice ** 100", Quindi sar} eseguita I"istru-
zione sequenzialmente successiva "NOT FOUND™. Questo corrisponde
al caso in cu) non & stato Lrovalo un **,

Le azioni intraprese nei casi di **” trovato ¢ non trovato qui sono
irrilevanti e dovrebbero essere specificate dal programmataore.

Si & cosi imparato ad utilizzare il modo di indirizzamento indicizzato

192

per accedere agli elementi successivi di una tabella. Si utilizzera ora
gquesta nuova abilita e si assumera leggermente la difficolta. Sisviluppera
un programma di utilitd notevole capace di copiare un blocco da un’area
della memoria ad un'altra, Si assumera inizialmente che it numero di
elementi all'interno del blocco sia minore di 256 cosicché sia possibile
utilizzare il registro indice X. Quindisi considerera il caso generale in cui
il numero di elementi del blocco sia maggiore di 256.

Una Routine di Trasferimend| di Blocco per meno di 256 elementd

Si chiamera “NUMBER" il numero di elementi del blocco da trasfe-
rire, Il numero ¢ assunto essere minore di 256, BASE é I'indirizzo base
del blocco. DESTINATION ¢ la base dell'area di memoria dove si
muoverad il bloceo. L'algoritmo & abbastanza semplice: si muovera una
parola alla volta, mantenendo la traccia della parola che si sta muo-
vendo, immagazzinando 1a sua posizione nel registro indice X. Il pro-
gramma & il seguente:

LDX # NUMBER

NEXT LDA BASE X
STA DEST. X
DEX
BNE NEXT

Si esamini questo prograrmama:;

LDX # NUMBER

Questa riga del programma carica il numero N di parole da trasferire nel
registro indice. L istruzione successiva carica la parola # N del blocco
all'interno del’accumulatore ¢ la tevza istruzione la deposita nell’area di
destinazione. Si veda la figura 5-6.

ATTENZIONE: questo programma lavorerd correttamente solo se il
registro di base ¢ assunto puntare proprio sotte il blocco come il registro
di destinazione. Diversamente & richiesto un piccolo aggiustamento a
questo programma,

Dopo che una parola & stata trasferita dall'origine all*area di destina-
zione il registro indice deve cssere aggiornato. Questo ¢ escguito dall'i-
struzione DEX che lo decremenia. Quindi il programma opera semplice-
mente il test se X & stato decrementato a §. Se si il programma termina.
Diversamente ¢sso cicla ancora ritoenando alla locazione NEXT.

193

M | |SORGENTE BLOGC

|]

TRASFERIMENTO

DEST —aul
Ll DESTINAZIONE

Figura 5.6: Crganizzazione ¢ memoria per (| tresterimento di blocco generale

PAGINA D

MEMORIA

IR O A TE L P
AREA DI PARTENZA:,
R L

Figure 5.7: Mappa di memoria per un trastar/mento dl biocco generate

194

Si noterd che quande X = 0il programma aon cicla. Percid esso non
trasferird la parola alla locazione BASE. L'ultima parota trasferita sara
quella a BASE + 1. Questo perché € stato assunto che la base puntasse
proprio sefie il blocco.

Esercizio 8.1: Si modifichi if programma precedente assumendo che BASE
¢ DEST puntino proprio al primo ingresso del bloceo.

Questo programma illustra anche 'uso dei contatori del ciclo, Si
noterd che X & stato caricato con il valore finale quindi decrementato e
verificato. A prima vista potrebbe sembrare pill semplice iniziare col
valore 0" in X ¢ quindi incrementarlo fino a che esso raggiunge il
massime valore. Comunque per operare il test se X ha raggiunto il suo
massimo valore sarebbe necessaria un’ulteriore istruzione (I'istruzione
di confronto). Questo ciclo richiederebbe quindi 5 istruzioni invece di 4.
Poiché questo programma di (rasferimento saré ulilizzato normalmente
per numeri elevati di parole, ¢ significativamente importante ridurre il
numero di istruzioni del ciclo. Questa ¢ la ragione per cui, almeno per
cicli brevi, 1l registro indice & normalmente decrementato piutiosto che
incrmentaio.

Una Routine di Trasferimento di Blocco (pid di 256 elementi)

5i consideri ora il caso generale di movimento di un blocco che pud
contenere piv di 256 clementi. Non ¢ possibile utilizzare un singolo
registro indice ad B bil perché insufficiente per immagazzinare un
numero maggiore di 256. L'organizzazione della memoria per questo
programma & illustrata in Figura 5-7. La lunghezza del blocco di memo-
ria da trasferire richiede 16 bit e percid ¢ immagazzinato in memoria. La
parte di ordine elevato rappresenta il numero di blocchi di 256 parole:
“BLOCKS". Il resto & chiamato “REMAIN" ed & in numero di parole
da trasferire dopo che tuttii blocchi sono stati trasferiti. L’indirizzo della
sorgente a destinazione sara alle Jocazioni di memoria FROM ¢ TO
rispettivamente. Si assumerd innanzi tutto che REMAIN sia zero cioé
che si stiano trasferendo blocchi di 256 parole. 1 programma é i
seguente:

LDA # SOURCELO

5TA FROM

LDA # SOURCEHI

5TA4 FROM +1 IMMAGAZZINA L'INDIRIZZO SORGENTE

195

LDA # DESTLO

5TA TO
LDA #& DESTHI
STA TO +1 IMMAGAZZINA L'INDIRIZZO DEST
LDX # BLOCKS QUANTI BLOCCHI
LDY #0 DIMENSIONE BLOCCO
NEXT LDA (FROM). Y LEGGE ELEMENTO
STA (TO), Y LO TRASFERISCE
DEY AGGIORNA 1L PUNTATORE DELLA PAROLA
HNE NEXT FINITQ?
NEXBLK INC FROM +1] INCREMENTA IL PUNTATORE DEL BLOCO
INC TO +1 LO STESSO
DEX CONTATORE BLOCCO
BMJ DONE
BNE NEXT
LDY # REMAIN
BNE NEXT

L'indirizzo sorgente a 16 bit ¢ immagazzinatg dalle prime quattro
istruzioni all’indirizzo di memoria “FROM"™. Le successive quattro
istruzioni fanno [a stessa cosa per la destinazione che ¢ immagazzinata
all'indirizzo “TO". Poich# si deve trasferire un numero di parole mag-
giore di 256 si utilizzeranno semplicemente due registri indice ad 8 bit.

L'istruzione successiva carica il registro X con il numero di blocchi che
devono essere trasferiti. Questa & I'istruzione 9 del programma. L'istru-
zione successiva carica il valore 0 nel registro indice Y. per imzializzarlo
al trasferimeno di 256 parole.

Si utilizzerd ora l'indirizzamento indiretto indicizzato. Si dovrebbe ri-
cordare che I'indiretto indicizzato si risolvera prima in una indirezione
all'interno della pagina zero quindi in un accesso indicizzato all'indiriz-
zo a 16 bit specificato dal registro indice. Si osservi il programma:

NEXT LDA (FROM), Y

Questa istruzione carica 'accumulatore con i contenuti della loca-
zione di memoria il cui indirizzo & la sorgente pill i contenuti ded registro
indice Y.

Si psservi 1z Figura 5-7 per la mappa di memoria, Qui il contenuto del
registro Y & inizialmente 0. “*A" sara percid caricato dall'indirizzo di
memoria “"SOURCE". Si noti che qui, diversamente dall'esempic prece-
dente, si assume che “SOURCE" & I'indirizzo della prima parola all®in-
terno del blocco.

196

Utilizzando la stessa tecnica I'istruzione successiva depositerd i conte-
nuti dell’accumulatore (Ja prima parola del blocco che si vuole trasferire)
all'appropriata locazione di destinazione:

STA (TO) Y

Proprio come nel caso precedente si deceementa semplicemente il
registro indice quindi si cicla 256 volte. Questo ¢ realizzato dalle due
istruzioni successive:

DEY
BNE NEXT

Auenzione: un artificio di programmazione viene qui utilizzalo per una
programmazione compatta. 1l lettore attento noterd che il registro indice
Y é decremeniato. La prima parola ad esserc trasferita sard percid la
parola in posizione 0. Quella successiva sarad la parola 255, Questo
perché decrementando {) si ottengono tutti uni nel registro (oppure 255).
1l lettare dovrebbe anche accertare che qui non ci sono errori, Ogni volia
che il registro Y decrementa a 0 non si verificherd un trasferimento.
L'istruzione successiva da eseguiresard: NEX BLK. Percid saranno state
trasferite esartamente 256 parole. Chiaramente questo stesso artificio
potrebbe essere utilizzato nei vari programmi precedenti per scrivere un
programma pib breve.

Una volta trasferito un blocco completo si tratta semplicemente di
puntare la pagina successiva all'interno del blocco originale e del blacco
di destinazione. Questo si ottiene aggiungendo *1" alla parte di ordine
piil elevato dell'indirizzo della sorgente ¢ destinazione. Questo ¢ eseguito
da due istruzioni successive del programma:

NEXBLK INC FROM +)
INC TG + 1

Dopo avere incrementato i) puntatore della pagina si controlla
semplicemente se ¢ stato trasferito il numero sufficiente di blocchi
decrementando il blocco contatore contenuto in X. Questo & eseguito
da:

DEX
Se tutti i bloechi sono stati trasferiti si esce dal programma mediante [a

diramazione alla locazione DONE:

197

BM1 DONE

A questo punto si hanno due possibilitd: X non decrementato a 0
oppure esattamente decrementato a zero. Se non & stato decrementato a
0 si ha la diramazione alla locazione NEXT:

BNE NEXT

Se & stalo decrementato esattamente a 0 si ha il trasferimento delle
parole specificate da REMAIN. Questa & I'ultima parte del trasferi-
mcnto. Questo & seguito da:

LDY # REMAIN

che carica |'indice Y con il conteggio del trasferimento.
Quindi si ha la diramazione alla locazione NEXT:

BNE NEXT

Il lettore dovrebbe accertare che durante quest'ultimo ¢iclo dove &
escpuita istruzione di diramazione a3 NEXT, la volta successiva si
rientra a NEXBLK e quindi si uscird da questo programma. Questo
perché I'indice X ba i) valore 0 prima di entrate in NEXBLK. La terza
istruzione di NEXBLK lo cambierd a — 1 ¢ si uscird a DONE.

Somma di due Blocchi

Questo esempio fornird una semplice illustrazione deif utilizzazione di
un registro indice per I'addizione di due blocchi di meno di 256 elementi.
Successivamente il programma che seguira fard uso della caratteristica
di indicizzazione indiretta per indirizzare i blocchi | ¢ul indirizzi sono
noti risiedere ad una data locazione, ma i cui indirizzi effettivi assoluti
non sono noti. 1l programma & 1) seguenie;

BLKADD LDY # NBR —1| ——— CARICA IL CONTATORE

NEXT CLC
LDA PTRL Y —— LEGGE L'ELEMENTO SUCCESSIVO
ADC PTR2 Y L1 SOMMA
S§TA FPFTRLY IMMAGAZZINA IL RISULTATO
DEY DECREMENTA IL CONTATORE
BPL NEXT FINITO?

L'indice Y & utilizzato come contatore indice ¢d € caricato col numero
di elementi meno uno. Si assumera che il puntatore PTR! punti al primo
elemento del Blocco |, PTR2 al primo elemento del Blocco 2 ¢ PTR3

198

punti all'area di destinazione dove dovrebbe essere immagazzinato il
risultato.

Il programma & autoesplicativo. L'ultimo elementa el Blocco | &
letto nell’accumulalore ¢ quindi sommato al'"uiiimo elemento del
Blocco 2. Esso ¢ immagazzinato alla locazione appropriata del Blocco 3.
L'elemento sequenzialmente successivo viene sommato e cosi via,

Alcuni esercizi utilizzanti V' Indlrizzamento Indiretto Indicizzato

Qui si assuma che gli indirizzi PTRI, PTR2, PTR3 non siano inizial-
mente noti. Comunque si conosce che essi sono immagazzinati in pagina
0 agli indirizzi LOC {, LOC 2, LOC 2.

Questo ¢ un meccanismo comune per il passaggio delle informazioni tra
subroutine. [l programma cotrispondente appare di seguito:

BLKADD LDY # NBR —)
NEXT CLC
LDA (LOC)) Y
ADC (LOCH. Y
STA 4 (LOCH. Y
DEY
BPL NEXT

La corrispondenza tra questo nuovo programma ed il precedente
potrebbe non essere ovvia. Esso illustra chiaramente 'uso del
meccanismo indiretto indicizzato ogni volta che I'indirizzo assoluto
non & noto all'istante in cui viene scritto il programma, ma & nota la
locazione dell'informazione. Si pud notare che i due programmi
hanno esaitamente lo stesso numero di istruzioni. Un interessante
esercizio & ora {a determinazione di quale sard eseguito pil
velocemente.

Esercizio 5.2: 5i cafcoli it numero di byte ed il numero di cicli per ciascuno
di questi due programmi, utitizzando le tabelie riporiate nella sezione delfe
appendici.

SOMMARIO

E stata presentata una descrizione completa dei modi di indirizza-
mento. E stato mostrato che il 6502 offre la maggior parte dei mecca-
nismi possibili e sono state analizzate le sue carattcristiche. Infine sono
statt presentati alcuni programmi di applicazione per dimaostrare il
valore dei meccanismi di indirizzamento. La programmaziane del 6502
richicde la comprensione di questi meccanismi.

199

ESERCIZI

Escrcizio 5.3:

Esercizio 5.4

Esercizio 5.5:

Esercizio 5.6:

Esercizio 5.7:

200

Si scriva un programma per sommare { primi 10 byte diuna
inbella immagazzinata alla locazione "BASE". Il risultato
avrg 16 bit. (Questo ¢ un calcole di tipo checksum).

Si pud risolvere o siesso problema senza utilizzare it modo
di Indicizzazione.

Si invertq l'ordine dei 10 byte di questa tabellg. St imma-
gazzini il risuttato all’ indirizzo "REVER".

Si cerchi Felemenio pit grande della siessa tabella. Lo si
fmmagazzini alf' indirizzo di memoria "LARGE".

Si sommino insieme gli element corvispondenti di tre
tabelle le cui basi sone BASEL, BASE2, BASE3. La lun-
ghezza di queste iabelle é immagazzinata in pagina zero
all'indirizzo "LENGTH™.

CAPITOLO 6

TECNICHE D’INGRESSO/USCITA

INTRODUZIONE

Si & imparaio come scambiare i'informazione tra la memoria ed i vari
registri del processore. Si é imparato a dirigere i registri ¢ ad utilizzare
una quanlitd di istruzioni per manipolare i dati. St deve imparare ora a
comunicare i dati col mondo esterno. Questo é chiamato ingresso/u-
scita.

L'ingresso fa riferimento alla cattura di dati dalle periferiche esterne
(tastiera, disk oppure sensore fisico).

L'uscita fa riferimento al trasferimento di dati dal microprocessore o
dalla memoria at dispositivi esterni come una stampante, un CRT, un
disk oppure relé o sensori effettivi.

St procedera in duc fasi. Prima si imparerd ad eseguire le operazioni
d'ingresso/uscita richieste dai dispositivi comuni. In seguito siimparera
2 dirigere diversi dispositivi d'ingresso/uscita contemporancamente
scheduling. Questa seconda parte coprird in particolare la scelta in
funzione degli interrup.

INGRESSO/USCITA

In questo paragrafo si imparerd a rivelare od a generarc segnali
semplici come impulsi. Quindi si studierannao le tecniche per imporre o
misurare un timing corretto, Si sard quindi pronti per tipi pitt complessi
di ingresso/uscita come i trasferimenti seriale o parallelo ad alta velo-
citd,

Generazione di on Segnale

Nel caso pii1 semplice un dispositivo d'uscita sara spento (o acceso) dal
calcolatore. Per cambiare lo stato del dispositivo d'uscita, il programma-
tore cambierd semplicemente un livello da uno *0" logico ad un *1*
logico oppure da "1™ a **0™. $i assumera che un relé esterno sia connesso
al bit “0™ di un registro chiamato “OUT I*. Per eccitarlo si scriverd
semplicemente un 1" nella posizione di bit appropriata del registro. Qui

201

si assumerd che QUT | rappresenti I'indirizzo di questo registro d’uscita
all'interno del sistema. It programma che eccita il relé &:

TURNON LDA # % (0000001
STA ouTI

E stato assunto che lo stato degli altri sette bit del registro OUT] siano
trascurabili. Comunque spesso non & cosi. Questi bit devono essere
connessi ad altri relé. Si migliorerd percid questo programma semplice,
Si vuole commutare ['eccitazione del relé senza cambiare lo stato di
qualsiasi altro bit all'interno di guesto registro. Si assumerd che sia
possibile leggere o scrivere i contenuti di questo registro. Il programma
migliorato diviene:

TURNON LDA OUT! LEGGE [CONTENUTI DI QUTI
ORA ¥ G 00000001 FORZA AD "1™ 1L BIT ¢
STA OUTI

Questo programma legge prima i contenuti della locazione OUTI
quindi csegue un OR inclusivo dei suai contenuti. Questo cambia solo ad
*I" la posinione di bit { e lascia intatto il resto del registro. (Per ulteriori
dettagli sull'operazione QRA sifaccia riferimento al Capitolo 4), Questo
¢ illustrato dalla Figura 6-1.

DaPQ

Figura B.1: Eccitazlone di un relé

Impulsi

La gencrazicene di un impulso & eseguita esattamente come nel caso del
livello precedente. Un bit di uscita ¢ prima commutato on € successiva-
mente commutate off. Questo origina un impulso. Questo &illustratoin
Figura 6-2. Per quanto riguarda questo tempo occorre risolvere un
problema aggiuntivo: si deve generare I'impulso per la lunghezza di
tempo correlta. Si studierd percid la generazione diun ritarde calcolato.

102

POATA DUSCITA
AEGISTRO

_J ’— SEGMALE
s
= 1] T

S

— NSEL —

e - ar—— b
- -

L AROGEAMMA SELEZFONA LA PORTA QUSCITA CARICA COM LA STRUTTUAA IL

REGIZTRD DELLA POWTA D'USCITA. ATTENDE {AMCHE PER M vBEC|. CARICA LA PORTA
OUSCITA CON ZERD. RITORNA

[TT LT LIT]

Figura 6.2: Un impulso pragrammato

Generazione e Misura di Ritardo

Un ritardo pud csserc generato mediante metodi software oppure
hardware. 8i studierd qui il modo per eseguirlo mediante un programma
e successivamente si mostrerd come essQ possa essere realizzato con un
contatore hardware, detto temporizzatore ad intervatlo programmabile
(PIT).

I ritardi programmati sono ottenuti mediante contcggio. Un registro
contatore & caricato ¢on un certo valore ¢ quindi decrementato.
programma cicla su sé stesso ¢ si decrementa finché il contatore rag-
giunge il valore *'0". La lunghe22a totale di tempo utilizzata da questo
processo realizzera il ritardo richiesto. Come esempio si genererd un
ritardo di 37 microsecondi.

DELAY LDY # 07 Y E IL CONTATORE
NEXT DEY DECREMENTA
BNE NEXT TEST

Questo programma carica il regisiro indice Y col valore 7, L'istruzione
successiva decrementa Y e Iulteriore istruzione successiva ¢ausa una
diramazione a NEXT finché Y non é decrementato a “*0”". Quando infine
Y édecrementato a “*0" il programma uscira da questo ciclo ed eseguird
qualunque istruzicne successiva. La logica del programma ¢ semplice ed
appare ne! diagramma di Musso delta Figura 6-3,

203

Si calcolera ora il ritardo effettivo realizzato dal programma. Osser-
vando il paragrafo di appendice del libro si trovera il numero di cicli
richiesto da ciascuna di queste istruzioni,

CONTATORE — VALORE

1§

QECREMENTA WL CONTATORE

>

1]

usSCITA

Figura 8.3: Diagramma di flusse di un ritarda

LY, nel modo immediato, richiede 2 cicti. DEY utilizzerd 2 cicli.
Osservande il numero di cicli nella tabefla per BNE si verifica la dirama-
zione BNE richiedera solo 2 cicli. Se si venifica la diramazione, chesara il
caso normale durante il ciclo, & richiesto un ulteriore ¢iclo. Infine se si
deve attraversare il confine della pagina allora & richiesto un ciclo
ulteriore, Qui si assume che non si debba attraversare la fronticra della
pagina.

1l timing & percid 2 cicli per la prima istruzione, pia 5 cicli per le 2
successive moltiplicazioni per il numero di volte di esecuzione del ciclo;
Ritardo =2+ 5x7 =137

Assumendo un tempo di ciclo di ! microsecondo questo ritardo
programmato sard di 37 microsecondi.

Si pud vedere da questo esempio semplice che la massima definizione
con cui 5i pud regolare la lunghezza del ritardo & 2 microsecondi. 11
ritardo minime & 2 microsecondi.

Eserclzio 6-1: Qual'é il massimo ritarde che pué essere realizzato con
quesie fre istruzioni?

204

Esercizio &2: Si modifichi il programma per ottenere un ritardo di circa
100 microsecondi.

Se si desidera realizzare un ritardoe piQi lungo, una soluzione semplice é
di aggiungere ulteriori istruzioni nel programma, tra DEY ¢ BNE. I1
modo pid semplice per fare quesio & di aggiungere istruzioni NOP
('istruzione NOP non opera per 2 cicli).

Ritardi pid lunghi

La generazione di ritardi pio lunghi mediante software pud essere
ottenuta utilizzando un contatore pil large. Due registri interni, o
meglio due parole della memoria, possono essere utilizzati per conser-
vare un conteggio a 16 bit, Per semplicita si assuma che il conteggio pin
basso sia **0".]l byte pil basso sard caricato con *255", il conteggio
massimo e quindi si entra nel ciclo che lo decrementa. Ogni volta che esso
& decrementato a “0" il byte superiore del conteggio sard decrementato
al valore 0" il programma termina. Se ¢ richiesta pit precisione nella
gcnerazione del ritardo, il conteggio piid basso pud avere un valore aon
zero. In questo caso si scriverebbe il programma come spiegato ¢ si
aggiungerebbe alla fine il programma di tre righe di gencrazione del
ritardo che & stato appena descrilto.

Naturalmente ritardati ancora pil lunghi possono essere generati
utilizzando pil di due parole. Questo ¢ 2nalogo al modo in cui opera un
contachilometri su una automoebile.

Quando 1a ruota all’estrema destra va da ‘9" a *'0" la ruota che la
precede a sinistra viene incrementata di (. Questo ¢ il principio generale
del conteggio con unita discrete multiple

Comunque 'obiezione principale & che conteggiando ritardi il micro-
processore non fard nient’altro per centinaia di millisecondi od anche
secondi. Se il computer non ha nient’altro da fare & perfettamente
acceltabile. Comunque, nel caso generale, il microprocessore dovrebbe
essere disponibile per altri compiti cosicché i ritardi pitt lunghi non sono
normalmente realizzati mediante software, Infatti anche 1 rmardi piit
corti possono essere accetlabili in un sisterna sc questo deve fornire
risposte in tempo garantito in assegnate situazioni. Qccorre utilizzare i
ritardi hardware. Inoltre sesi utilizzano gli interrupt, la precisione del
timing pud andare perduta se il ciclo di conteggio ¢ interrotto.

Esercizio 6-3: Si scriva un programma per realizzare un ritardo di 100 ms
fper ung telescrivente).

20§

Ritardi Hardware

I ritardi hardware sono realizzati utilizzando un temporizzatore di
ritardo automatico o brevemente “temporizzatore’’. Un rtegistro del
temporizzatore viene caricato con un valore. La differenza & che questa
volta il temporizzatore decrementerd automaticamente ¢ periodica-
mente questo contatore. 1l periodo é normalmente regolabile o selezio-
nabile dal programmatore. Ogni volta che il temporizzatore sara decre-
mentato a 0" esso invieri normalmente un interrupt al microproces-
sore. Esso porrd anche un bit di stato che pud essers rivelato
periodicamente dal contatere. L'impiego degli interrupt sara spiegato
successivamente in questo capitolo.

Altni modi di funzionamento del temporizzatore possono compren-
dere la partenza da “'0" ed il conteggio della durata de! numero di
impulsi ricevuti, Quando sta funzionanda come un temporizzatore ad
un intervallo si dice che funziona in un modo one-shor. Quando sta
contando impulsi si dice che funziona in un modo a conteggio d'imputso.
Alcuni dispositivi temporizzaton possono anche comprendere registri
multipli ed un certo numere di possibilita a scelta che sono preselezio-
nate dal programma. Questo ¢ il caso, per esempio, dei temporizzatori
contenuti ncl componente 6522, un chip 170 che sara descritto al capi-
tolo successivo.

Rivelazione di impulsi

La rivelazione di impulsi & il problema inverso della gencrazione di
impulsi con in pid un’vlteriore difficoltd: mentre un impulso di uscita
generato sotto il controllo del programma, I'impulso d'ingresso si veri-
fica in modo gsincrono col programma. Per rivelare un impulso si
possono utilizzare due metodi: registrazione ed interrupt. Gli interrupt
saranno descritti in seguito in gquesto capitolo. Si consideri oralatecnica
di registrazionc. Utilizzando questa Lecnica il programma legge il valore
di un dato registro d'ingresso in modo continug, verificando una posi-
zione di bit, forse il bit 0. Si assumera che il bit 0sia originariamente (",
Ogni volta che viene ricevuto un impulso questo bit assumera il valore
1", 11 programma osserva comtinuamente il bit 0 finché esso assume il
valore *'1*'. Quando si trova un *1”, I'impulso & stato rivelato. 1! pro-
gramma ¢ il seguente;

POLL LDA # 301
AGAIN BIT INPUT

BPL AGAIN
ON

206

[nversamente si assuma che la linea d’ingresso sia normalmente *1" e
che si voglia rivelare uno 0. Questo £ il caso normale di rivelazione del
bit START, quando si sta osservando una linea connessa ad una telescri-
vente. 1| programma é il seguente:

FOLL LDA #* 801
NEXT BIT INPUT

BMI NEXT
START e

Controlla della Dorata

1l controllo della durata dell'impulso pud essere realizzata allo stesso
modo del calcolo della durata di un impulso di uscita. Si pud utilizzare
una tecnica hardware oppure software. Quando si sta controllando un
impulso mediante software un contatore & regolarmente incrementato di
1 quando @ verificata la presenza dell’impulso. Se 'impulso ¢ ancora
presente il programma cicla ancora su sé sesso. Ogni volta che I'impulso
scompare, il conteggio contenuto nel registro contatore & utilizzato per
calcolare 1a durata effettiva dell’impulso. 1l programma ¢ il seguente:

DURTN LDX &0 AZZERA IL CONTATORE
LDA # 501 CONTROLLO BIT O
AGAIN BIT INPUT
BPL AGAIN
LONGER INX
BIT INPUT
BMI LONGER

Naturalmente si assumera che la massima durata dell’impulso non
origini I'overflow del regisiro X. Se succedesse questo il programma
dovrebbe esserc pill lungo per tener conto di questo {(oppure questo
potrebbe essere un errore programmato!).

Poicht ora si conosce come rivelare ¢ generare gli impulsi si consideri il
trasferimento di grandi quantita di dati. Si distingueranne due casi: dati
scriali e dati paralleli. Quindi si applicherd questo ai dispositivi d'ingres-
so/uscita effettivi,

TRASFERIMENTO PARALLELO DI PAROLA

Qui si assume che ghi otto bit dei dati del trasferimento siano disponi-
bili in parallelo all’indirizzo “INPUT". Il microprocessore deve leggere
la parola dei dati in questa locazione ogni volta che una pacola di stato
indica che essa 2 valida. L’informazione di stalo sara assunta contenuta

207

CONTEQGIO [0 ooln. il

PAGINA

PAGINA

YALIDO

sravg |7 _

AT

WGRESSD] -

Figura 6.4; Trasferimento parallelo di parofa; la memorla

nel bit 7 dellindirizzo “STATUS". Qui si scriverd un programma che
leggera e conservera automaticamente ogni parola dei dati entranti. Per
semplicita si assumera che il numero di parole da leggere sta inizialmente
noto ¢ sia contenuto nella locazione “COUNT™, Se quest’informazione
non fosse disponibile si dovrebbe verificare il cosidetto caratrere di
rotiura, come una cancellazione, oppure il carattere ***. Si é gid impa-
rato a fare questo.

Il diagramma di flussc appare in Figura 6-5. E abbastanza diretto. Si
verifica I'informazione di stato finché essa diviene 1" indicando che
una parola & pronta. Quando la parola é pronta viene letta ¢ conservata
in un‘appropriata locazione di memoria. Si decrementa quindi il conta-
tore ¢ si verifica se esso & stato decrementato a """ In questo caso si é
terminato; altrimenti si legge la parola successiva. 1l programma che
realizza questo algoditmo ¢ il seguente:

208

PARAL LDX COUNT CONTATORE

WATCH LDA S5TATUS IL BIT 7 E 1 SE IL DATO E VALIDO
BPL WATCH DATO VALIDO!
LDA INPUT LO LEGGE :
PHA LO CONSERVA NELLO STACK
DEX
BNE WATCH

Le prime due istruzioni del programma leggono l'informazione di
stato e causano l'instaurarsi di un ciclo non appena il bit 7 del registro di
stato & 0", (Esso ¢ il bit segno cioé il bit N).

WwATCH LDA STATUS
BPL. WATCH

REOISTRAZIONE O FOCHIESTA DI SERVITIQ

l

LEQQE CONTEGGIO

PAROLA PRONTAT

TRASFERIMENTD
PAROLA

{

CECREVENTO
CONVATORL

ND

CONTEGGID = 07

=l

usCcITA

Figura 6.5: Trasferimento parallelo di parola: diagramma di lusso

209

Quando BPL non & soddisfatta il dato ¢ valido e si pud leggerlo:
LDA INPUT

La parola che & stata letta dall'indirizzo INPUT dove si trova, deve
essere conservata. Assumendo che il numero di parole da trasmettere sia
abbastanza piccolo si utilizza:

PHA

Se To stack fosse pieno ovvero fosse grande il numero di paroie da
trasferire non si potrebbe spingerlo nello stack e si dovrebbe trasferirlo
ad un’assegnata area di memoria utilizzando, per esempio, un'istruzione
indicizzata, Comunque questo richiederebbe un'ulteriore istruzione per
incrementarc o decrementare il registro indice. PHA & piu veloce,

La parola de) dato € quindi stata letta e conservata. Si decrementera
semplicemente il contatore di parole ¢ si verifichera se si ¢ finilo:

DEX
BNE WATCH

Si rimarra nel ciclo finché il contatore eventualmente decrementa a
“0". Questo programma di 6 istruzioni pud essere chiamato un banco dj
prova. Un programma banco di prava ¢ un programma atientamente
ottimizzato progeutato per verificarce le possibilitd di un dato processare
in una situazione specifica. I trasferimenti paralleli sono una di tali
situazioni tipiche. Questo programma & stalo progettato per una mas-
sima velocitd ed efficienza. Si calcolerd ora la massima velocitd di
trasflerimento di questo programma. Si assumerd che COUNT sia conte-
nuto in pagina 0. La durata di ogni istruzionc ¢ determinata dall'ispe-
zione della 1abella alla fine del libro ¢ si trova cssere la seguente:

CICLI
LDX COUNT 3
WATCH LD STATLIS 4
BPL WATCH 2/3 {INSODDISFATTO/
SODDISFATTO)
LDA INPUT 4
FHA]
DEX 2
BNE WATCH 211 (INSODDISFATTO/

SQDDISFATTO)

Il tempo mimimo di ¢secuzione € ottenuto assumendo che il dato sia
disponibile ogni volta che si campiona STATUS. In altre parcle la prima

210

BPL non sara soddisfatta tutte le volte. Il timing & quindi: 3 +(d4+2+4
+ 3+ 2+ 3) x COUNT.

Trascurando i primi 3 microsecondi necessari per iniziatizzare il regi-
stro contatore, il tempo impiegato per trasferire una parola é {8 microse-
condi.

La massima velocita di irasferimento ¢ percid:

m: 55 K byte al secondo.

Esercizio 6-4: Si assuma che il numero di parole da trasferire sia maggiore
di 256. Si modifichi il programma di conseguenza e si determing I'influenza
sulla massima velocita di trasferimento.

Si & vista l'esecuzione di trasferimenti pacalleli ad alta velocitd, Di
seguito si considera un caso pill complesso.

TRASFERIMENTO SERIALE DIl BIT

Un ingresso ¢ seriale se i bit dcll'informazione (zeri ed uni) entrano
successivamente su una linea. Questi bit possono entrare ad intervalli
regalari. Questa € chiamata normalmente trasmissione sincrona. Oppure
essi possono cntrare come raffica di dati ad intervalli casuali. Questa &
chiamata trasmissione asincrona. Si svilupperd un programma che possa
lavorare in entrambi i casi. Il principio della cattura sequenziale di dati ¢
semplice; si osserverd una linea d'ingresso che sard assunta essercia linea
0. Quando un bit dei dati sara rivelato su questa linea si leggera il bit di
ingresso e lo si sposterd in un registro per conservarlo. Ogai volta che si
sono accumulati 8 bit si preservera il byte di dati nella memoria e si
costrrisce quelle suceessivo. Per semplicita si assumerd che il numero di
byte da ricevere sia inizialmente noto, Diversamente occorre, per esem-
pio, osservare uno speciale carattere di interruzione ed arrestare il trasfe-
rimento seriale di bit a questo punto. Si & gid imparato a fare questo. 11
diagramma di flusso & riportato in Figura 6-7. Il programma é il
seguente:

SERIALE LDA # 30

STA WORD]
Loop LDA INPUT IL BIT 7 & LO STATO, “0" E IL DATO

BPL LOOP RICEVUTO IL RIT?

ISR A LOSPOSTAINC

ROL WORD CONSERVA (L BIT IN MEMORLA
BCC LOOP CONTINUA SE CARRY = “07

LDA WORD

FHA CONSERVA JL BYTE ASSEMBLATO

21

LDA #3501 RIPRISTINA IL CONTATORE DI BIT

5TA WORD

DEC COUNT DECREMENTA IL CONTEGGIO D1 PAROLA
BNE LOOP ASSEMBLA LA PAROLA SUCCESSIVA

Questo programma & stato progettato per un'alta efficienza e si uti-
lizza una nuova tecnica che si spieghera. (Vedere Figura 6-6).

Le convenzioni sono le seguenti: si assume che la locazione di memo-
ria COUNT contenga un conteggio del numero di parole da trasferire.
La locazione WORD sard utilizzata per assemblare 8 bit entranti conse-
cutivi. L'indirizzo INPUT fa riferimeno ad un registro d’ingresso. Si

D)
L.
i)
e wv—

Flgure 6.6: Conversione da seriale a paralietg

assuma che la posizione di bit 7 di questo registro sia un flag di stato
oppure un bit di clock. Quando esso € “0" il dato non ¢ valido. Quando
esso ¢ 1" il dato ¢ valido. Il dato stesso sara assunto apparire nella
posizione di bit { di questo stesso indirizzo. In molti casi I'informazione
di stato apparira su un registro diverso dal registro dati.

Sarebbe quindi abbastanza semplice modificare conseguentemente
questo programma. Inoltre si assumerd ¢he il primo bit dei dati che
questo programma riceve sia garantito essere un *1**, Questo indica che

212

segue il dato effettivo. Se non fosse cosi si considerera successivamente
vna ovvia modifica. Il programma corrisponde esattamente al dia-
gramma di flusso della Figura 6-7. Le primissime righe del programma
realizzano un ciclo di attesa che verifica se un bit & pronto. Per determi-
nare se un bit @ pronto si legge il registro d’ingresso che verifica il bit
segno (N). Finché questo bit & “0" I'istruzione BPL & soddisfattacsiavra
12 diramazione di ritorno del ciclo. Ogni volta che il bit di stato (oppureil
clock) diverrd vero (*1"") BPL sard insoddisfatta e sard escguita |'istru-
zione sequenzialmente successiva.

Si ricordi che BPL significa “opera la diramazione se Positivo”, ciod
quando il bit 7 (il bit segno) & “0™. La sequenza iniziale di istruzioni
corrisponde alla freccia | in Figura 6-6.

REGISTRAZIONE O RICHIESTA DI SEAVIZIO

}

LEGQI 1L CONTEGRIO DI PARCLA

BT PRONTD?

|RMAGAZTINA 1L NT
IRCAEMENTA IL CONTEQGIO

BARDLA COVPLETA P

IMMAGATZINA LA PARTLA

RIPRISTINA L BT CONTATORE

DECREMENTA o, CONTEGE 1D
o) PAROLA

CONTEQGIO D PARQLA--D

FATTO

Figura 8.7: Traslerimenio serisle d| bit: dlagramma di flusso

213

!&I“

A questo punto 'accumulatore contiene un *“ 1™ nella posizione di bit 7
ed il dato effettivo nella posizione di bit 0. Il primo bit dati che arriva
deve essere un 1", Comunque quelli successivi possono essere sia 0"
che *1". Si desidera ora preservare il bit dato collocato in posizione 0.
L'istruzione:

LSR A

fa scorrere i contenuti dell'accumulatore a destra di una posizione.
Questa fa cadere il bit pil a destra di A, che ¢l bit dato, ne! bit carry. Si
preserverd ora questo bit dalo nella locazione di memoria WORD:
(questo ¢ illustrato dalle frecce 2 ¢ 3 nella Figura 6-6).

ROL WORD

L'effetto di questa istruzione & {a lettura de!l bit carry nella posizione di
bit pit a destra dell’indirizzo WORD. Nello stesso tempo il bit pid a
sinistra di WORD cade nel bit carry. (Se si ha qualche dubbio sull'opera-
zione di rotazione.si faccia riferimento al Capitolo 4).

E importante ricordare che un’operazione di rorazione salvera il bit
carry, qui nella posizione estrema destra, ed anche il ripristine del bit
carry col valore del bit 7,

Qui uno 0" cadrd nel carry. L'istcuzione successiva:

BCC LOOP

verifica il carry ed opera la diramazione indietro all'indirizzo LOQP
finché il carry ¢ "0". Questo & il contatore di bit automatice. Si pud
immediatamente vedere che, come risultato della prima RQL, WORD
conterrd *'00000001™, Ono scorrimenti dopo 11" cadra finalmentc nel
bit carry e si arrestera 12 diramazione. Questo ¢ un modo ingegnoso per
realizzare un contatore di ciclo automatico senza dover sprecare un'i-
struzione per decrementare i contenuti di un registro indice. Questa
tecnica & uiilizzata per abbreviare il programma e migliorare le sue
caraticristiche,

Ogni volta che BCC infinc non ¢ soddisfatta, & bit sono stati assem-
blati nella locazione WORD. Questo valore dovrebbe essere prescervato
nella memoria. Questo ¢ realizzato dalle istruzioni successive:

LDA WORD
PHA

Qui si stanno conservando i dati di WORD (8 bit) nello stack, La
conservazione nello stack ¢ possibile solo se & disponibile lo spazio
sufficiente. Supponendo che Questa condizione sia soddisfatia questo é il

214

modo pid veloce per preservare una parola nella memoria. Il puntatore
delio stack viene aggiornato automaticamente. Se non si ponesse una
parola nello stack si dovrebbe utilizzare un'ulteriore istruzione per
aggiornare un puntatore della memoria. Si potrebbe cquivalentemente
eseguire un indirizzamento indicizzato ma questo comprendercbbe Iin-
cremento ed il decremento dell'indice, utilizzande un tempo uiteriore,

Dopo che la prima WORD di dati é stata conservata non si ha nessuna
garanzia che il primo bit dei dati che entreranno sard un “1". Potrebbe
cesere qualsiasi. Si deve percid ripristinare i contenuti di WORD a
«0000000!™ cosi da poterla utilizzare come un bit contatore, Questo ¢
escguito dalle due istruzioni successive:

LDA # 801
$STA WORD

Infine si deerementera il contatore di parola poiché una parola é stata
assemblata ¢ si verificherd se si ¢ raggiunta la fine del trasferimento.
Queslio & esepuito dalle due istruzioni successive:

DEC COUNT
BNE LOOP

I programma precedente ¢ stato progettato per alta velociti cosicché
£550 possa calturare una corrente d'ingresso veloce di bit daui. Una volta
che il programma termina occorre naturalmente leggere immediata-
mente dallo stack le parolc ivi conservate e trasferirle dovunque nella
memoria. Si & gid imparato ad eseguire un tale trasferimento di blocco
nel Capitolo 2.

Esercizio 6-5: Si calcoli la velocitd massima con cul quesio programma
sard in grado di leggere i bil seriafi. Per calcolare questa velocitd s assuma
che glf indirizzi WORD ¢ COUNT siano mansenuii in Pagina 0. i assuma
inoftre che it progamma compleio risieda ail'Interno della siessa paging. Si
consulti il numera di cicli richiesto da ciascuna istruzione nella tabelic alla
fine di quesio libro e quindi si calcoli il tempo che trascorrerd durante
l'esecuzione di questo programma. Per calcolare la lunghezza del tempo
uitlizzato da un ciclo. espressa in microsecondi, per il numera di volte che
e5so sard eseguito. fnolire nel caleolo della massima velocité si assuma che
un dato sia pronto ogni volia che viene rivelata fa locazione &ingresso.

Questo programma é molto pid difficile da capirc rispetto ai prece-
denti. Lo si osservi ancora (riferimento alla Figura 6-6) in dettagli
ulteriori esaminando alcuni compromessi,

Un bit dei dati entra nella posizione di bit 0 di *INPUT™ di volta in

115

lll!!

volia. Potrebbero esserci per esempio tre in successione, Si deve
percid differenziare tra i bit entranti successivi. Questa £ Ja [unzione del
segnale di clock.

Il segnale di clock (dello STATUS) dice che il bit d’ingresso & ora
valido. Se lo stato & *0" si deve attendere. Seesso ¢ *'1' allora il bit dati ¢
valido.

Si assumera qui che il segnale di stato sia connesso al bit 7 del registro
INPUT.

Esercizio 6-6: ST saprebbe spiegare perché il bit 7 é utilizzato per o stato ed
it bir 0 per i dati?

Una volta che si & catturato un bit dati si deve preservario in una
locazione sicura ¢ quindi farlo scorrere a sinistra cosicché si possa
prendere i) bit successivo.

Sfortunatamente 1'accumulatore ¢ utilizzato per legpere ¢ verificare i
dati e lo stato in questo programma. Se si vuole accumulare | dati
rell’accumulatore, la posizione di bit 7 dovrebbe essere liberata dal bit di
stato,

Esercizio 6 T: Si saprebbe suggerire un modo per verificare lo stato senza
liberare i contenuti dell' accumulaiore (un’istruzione speciale)? Se questo
pud essere fatio, si poirebbe utilizzare I'accumulatore per accumulare i bit
entrantl successivi?

Esercizio 6-8: Si riscriva il programma utilizzande I'accumulatore per
memorizzare i bit eniranti. Lo si confronti col precedente in terminé di
velocitd e numero di istruzioni.

Si considerino due possibili variazioni:

E stato assunto che, nell'esempio particolare considerato, il primis-
simo bit entrante dovrebbe essere un caratiere speciale, garantita essere
un “1"". Comunque nel caso generale esso pud essere yualsisi,

Esercizio 6-9: St modifichi il pregramma precedente assumendo che il
primissimo hit entrante sia un doio valido (da non seartare) e possa essere
" ed 1, Suggerimento; il “contatore di bit” lavorerebbe corrertamente
se lo si inizializza col valore corretio.

Infine ¢ stata consevata la parola asscmblata nello stack per guada-
gnarc tempo. Si potrehbe naturalmente conservarla in una specificata
arca di memoria.

Esercizio 6-10: Simodifichi il programma precedente ¢ 5i conservila parola
WORD assemblata nell area di memoria iniziando ¢ BASE.

216

Esercizlo 6-11: St modificki il programma precedente cosicché il trasferi-
mento si arresti quondo il carattere 'S™é rivelato nel flusso dingresso.

L'Alternativa Hardware

Come avviene di solito per molti algoritmi convenzionali d'ingres-
sa/uscita, & possibile realizzare questa procedura mediante hardware. I
chip si chiama UART. Esso accumulerd automaticamente i bit. Comun-
que quando si desidera ridurre il conteggio di componenti questo pro-
gramma, od una sua vanazione, sard conveniente utilizzarlo,

Esercizio 6-12; Sf modifichi il programma assumendo che i dati siano
disponibili nefia posizione di bi1 Qdeila locazione INPUT mentre I'informa-
ciane di stare é disponibile nella posizione di bis Odell’ indirizzo INPUT + 1,

SOMMARIO 1/0 D1 BASE

Si ¢ ora imparato ad eseguire operazioni d'ingresso/uscita elementari
ed a dirigere un flusso di dati paralleli o di bit seriali. Si & ora pronti per
comunmicare con i dispositivi d'ingresso/uscita effettivi,

COMUNICAZIONE CON 1 DISPOSITIVI 1/0

Per scambiare dati con i dispositivi d'ingresso/uscita si dovrd innanzi
tutto accertare se sono disponibili i dati, se si vuole leggerli oppure se il
dispositivo & pronto ad accertare dati, se si vuole inviarglieli. Si possono
usare due procedure: handshaking ed interrupl. Si studierd prima
I"handshaking.

Handshaking

L'handshaking & generalmente utilizzato nella comunicazione tra duc
dispositivi asincroni, cioé tra duc dispositivi che non sono sincronizzati.

Lnou'rc-’ —‘
LEGGE REGISTAO |
STATQ: D1 5TATO

SIND

DEM]5: TG0
OUSCiTa

4 REGISTRC
DUSCITA

CHIP 11O

Figura 6.8: Handshaking (uscita)

217

Per esempio se 51 vuole inviare una parcla ad una stampante parallela ci
si deve prima assicurare che sia disponibile il bulfer d'ingresso di questa
stampante. Si chiedera percid alla stampante: Sei Pronta? la stampante
dira "Si"” oppure *No™. Se essa non & pronta si attenderd. Se essa &
pronta si invieranno i dati (Vedere Fig. 6-8).

Inversamente, prima della lettura di dati da un dispositivo d'ingresso
si verifichera se i dati sono validi. Si chiederd: 11 dato & valido?”". Ed il
dispositivo dird “Si"" oppure “No™. I “Si" oppurc *No” pud essere
indicato dai bit di stato, oppure da altri mezzi. (Vedere Figura 6-9).

WP

REGISTAQ

Ds

INGRESS5Q
CISPOBITIVD
DINGRESTO

CARAT
REGISTRO
PRONTO? [»]]
__|SI.'HD STATO

!

Figura &9; Hanasheking (ingressa)

In breve ogni volta che si desidera scambiare informazioni con qual-
cuno che ¢ indipendente e deve fare qualcos’altro si deve accertare che
esso sia pronto alla comunicazione, La regola di cortesia usuale & di
stringergli l[a mano e di qui segue il nome handshaking. Pud quindi
avvenire lo scambio di dan. Questa & la procedura normalmente utiliz-
zata nefla comunicazione con i dispositivi d'ingresso/uscita,

Si illustrerd ora questa procedura con un semplice ¢sempio,

Invio dl un Caratiere ad una Stampante

Si assumecra che il caratiere sia contenuto nella locazione di memoria
CHAR. Il programma per stamparlo ¢ il seguente:

CHARPR .LDX CHAR LEGGE I[. CARATTERE
WAIT LDA STATUS IL BIT 7E “PRONTO"
BPL WAIT
TXA
STA PRINTD

T} registro X vicne prima caricalo dalla memoria con il carattere da
stampare, Quindi si verifica il bit di stato deila stampante per determi-
nare che essa sia pronta ad accettare il carattere. Comunque fino a che

218

essa non ¢ pronta per stampare, si hala diramazionc all'indietro all'indi-
rzzo WAIT e si cicla. Ogni volta che la stampante indica che cssa &
pronta a stampare ponendo ad I il suo bit pronto (gqui convenzional-
mente §i & assunto il bit 7 dell'indirizzo STATUS) si pud inviare il
carattere. Si trasferisce il carattere dal registro X al registro A:

TXA

¢ lo si invia all'indirizzo del registro di vscita della stampante, qui
indicato PRINTD.

STA PRINTD

Esercizio 613 S7 modifichi il programma precedente per stampare una
siringa di n carareri, dove n sard assunto essere minore di 255.

Esercizio 6-14: Sf modifichi il programma precedente per stampare una
swringa di coraciert finché non si inconrra un codice di “'ritorno carrello”.

Sicomplichera ora la procedura di uscita richiedendo una conversione
di codice e mediante alimentazione contemporanca di alcuni dispositivi:

A
AX A
-
AL A
F B
~S A
~
G
A ~S
E C
AS AL
AL A
Figura 6.10: LED a sette segmenti —.f_n-’_-

Uscita su un LED a 7-Segmenti

Un tradizionale dicdo-emettitore-di-fuce (LLED) a 7-segmenti pud
mostrare le cifre da 0™ a *'9" od anche i digit esadecimalida *0" ad "“F"
tlluminando le combinazioni dei suoi 7segmenti. Un LED a 7segmenti &
Mmaostrato nell’illustrazione 6-10. T caratteri che possono essere generati

119

,/G/_/ /__/_/x/_///;
E/__/ C N oo
Y

o S

/
[/ T L
R I~
P

Figura 8.11: Caratleri ganerall ¢on un LED a 7-3egment]

con questo LED appaiono in Figura 6-11.

I segmenti di un LED sono contrassegnati da *'A™a **G™ nella Figura
6-10. Per esempio 0" sard mostrato illuminando i segmenti “ABC-
DEF". S assuma ora che il bit 0" di una porta d'uscita sia connesso al
segmento “A", che "1™ sia connesso al segmento “B* eccetera. 11 bit 7
non viene utilizzato. 1) codice binario richiesto per illuminare
“FEDCBA" (per mostrare “*0") ¢ percid “01§1111". Questo in esadeci-
male ¢ “*3F™. Si escgua V'esercizio seguenie:

Esercizio 6-15: Si calcoli 'equivalenie a 7 segmenti del digit esadecimali da
“O' ad "'F. Siriempia la rabella seguente.

Esa~ | Codice | Esa- | Codice | Esa- | Codice | Esa- | Codice
dec. LED dec. LED dec. LED dec. LED

0 3F 4 8

MmO 0

| 5 9
2 6 A
] 7 B
Si mostreranno ora i valort esadecimali su LED diversi.

Pilotaggio di LED multipli

Un LED non ha memoria. Esso mostrera il dato solo finche le sue linee
segmento sono attive. Per mantenere basso il costo di un display LED il
microprocessore mostrera I'informazione a turnto in ciascuno dei LED, La

220

rotazione tra i LED deve essere veloce sufficientemente da non provo-
care lampeggiamente apparente. Questo implica che il tempo consu-
malo nel passagio da un LED al successivo sia minore di 100 millise-
condi.

Si progetierd un programma che realizzi questo. Il registro Y sard
utilizzato per puntare il LED su cui si vuole mostrare un digit. Si assuma
che I'accumulatore contenga il valore esadecimale da mostrare sul LED,
Iniziafmente occorre convertire il valore esadecimale nella sua rappre-
sentazione a T-segmenti. Al paragrafo precedente & stata costruita la
tabella di equivalenza. Poiché sista accedendo ad una tabella si utilizzera
il modo di indirizzamento indicizzato dove I'indice di spostamento sard
fornito dal valore esadecimale. Questo significa che il codice a 7 segmenti
per il digil esadeciale # 3 & ottenuto osservando il terzo elemento della
1abella a partire dalla base. L'indirizzo della base sard chiamato SEG-
BAS. [l programma ¢ il seguente:

LEDS TAX UTILIZZA TL VALORE ESADECIMALE CO-
ME INDICE
LDA SEGBAS.X LEGGE Il CODICE IN A
LDX # $00

STX SEGDAT SPEGNE | DRIVER DE! SEGMENTI
STA SEGDAT MOSTRA IL DGIT

LDX #3570 QUALSIASI NUMERO GRANDE
STY SEGADR

DELAY DEX
BNE DELAY
DEY PUNTA AL LED SUCCESSIVO
BNI: ouT
LDY LEDNBR

nuT RTS

1l programma assume che il registro Y contenga il numero del LED
che sara successivamente illuminato e che il registro X contenga il digit
da mostrare.

Il programma prima osscrva il codice a 7 segmenti corrispondente al
valore esadecimale conlenuto nell’accumulatore con le sue prime due
istruzioni. Le due istruzioni successive caricano 00" come il valore dei
scgmenti da mostrare, ciod L spegne, L'istruzione successiva seleziona
Quindi gli appropriati segmenti LED da mostrare ;: STY SEGADR.

Viene quindi realizzato un ciclo di ritardo di tre istruzioni prima della

commutazione del LED successivo. [nfinc il puntatore LED viene decre-
Mentato. (Esso potrebbe anche essere incrementato).
_Seil puntatore LED decrementa a 0" esso deve essere ricaricato con
il numero 1.ED pil alto. Questo & eseguito dalle due istruzioni succes-
sive, Qui si & assunto che questa ¢ una subroutine ¢ quindi 'ultima
I5truzione ¢ un RST: “ritorno da subroutine™.

o

Esercizio §-16: Assumendo che il programma precedente sig una subrou-
tine, si nolerd che esso utilizza internamente i registri X ed Y € modifica i
Toro contenuti. Assumendo che la subroutine possa utilizzre fiberamente
'areq di memoria indicara dagli indiriz2i T1, T2, T3, T4, TS, si aggiungano
isiruzioni all'inizio ed alla fine dei programma in medo da garantire che,
quando si ho if ritorno dalla subroutine, i contenuti deiregisiri X ed Y siano
ancora gli stessi che si avevane all’inizio della subroutine.

Esercizio §17: Esercizio analogo al precedente ma si assuma che {'area di

* memoria Tl, ecc. non sia disponibile per la subroutine. (Suggerimente: si
ricordi che esisie un meccanismo incorporato in ogmi calcolatore per
preservare I'informazione in ordine cronelogica),

Sono stati cosi risolti alcuni problemi d'ingresso/uscita.
Si consideri il caso di una periferica cffettiva: la telescrivente.

Ingresso-Uselia di Telescrivente

La telescrivente & un dispesitivo seriale. Essa invia e riceve parole di
informazione in un formato seriale. Opni caraitere & codificato in for-
mato ASCI! ad £ bit (la tabella ASCII appare alta fine di questo libro).
Inoltre ogni carattere ¢ preceduto da un bit di “inizio" ¢ termina con due
bit di “‘stop™. Nella cosiddetta interfaccia 20 mA current loop utilizzata
molto frequentemente, lo stato della linea & normalmente ad 1. Que-
sto & utilizzato per indicare al processore che la linea non ¢ stata tagliata,
L'inizio ¢ una transizione da "0 ad "I". Questo indica al dispositivo
ricevente che seguonc i bit dei dati. La telescrivente convenzionale é un
dispositivo a 10 caratteri al secondo. Si & gis stabilito che ogni carattere
richiede 1! bit, Questo significa che la telescrivente trasmetterd | 10 bit al
secondo. 5i pud anche dire che & un dispositivo a [10 baud. Si progettera
un programma per fare uscire bil seriali della telescrivente alta velocita
corretta.

STEI'llSIEPZ
MARE = = —
SPAZID= = = = . 1718
200 M8 —4—1

Figura 6.12: Formata di una parola di telescrivente

Centodicci bit al secondo implica che i bit siano separati da 9,09
millisecondi. Questo dovrd essere la durata del ¢iclo di ritardo che sara
realizzato tra bit successivi. I formato della parola di una telescrivente

122

HIT D'NLGO?

&l

ATTENDE 4.5 ma
ECO BIT DINIZIO

)

ATTENDE 9.09 me

1

SCCARE L ECN
™ BT [AT:

CARATTERE
ASSEMBLATO

ATTENCE 909 ™

LECITA AT STOR

ATTENDE 1349 ma

Figura 6.13 ingresso con ECO alla telescrivente

223

appare in figura 6-13. Il programma ¢& il seguente:

TTYN LDA STATUS
BPL TTYIN REGISTRO USUALE DI STATO
J5R DELAY ATTENDE 9.09 M$S
LDA TTYBIT BIT D'INIZIO
S5TA TTYBIT RITORNO ECO
JSR DELAY
LDX ® $08 BIT CONTATORE
NEXT LDA TTVBIT SALYA L'INGRESSO
STA TTYBIT RITORNO ECO
LSR A CONSERVA IL BIT IN CARRY
ROL CHAR CONSERVA [L BIT IN CHAR
ISR DELAY
DE?. BIT SUCCESSIVO
BRE NEXT
LD4 TTYBIT STOP BIT
STA TTYBIT
JSR DELAY
RTS

Figura 6.14: Ingresso da telescrivante

Si noti che questo programma differisce dal diagramma di Nusso
di Fig. 6-13.

It programma dovrebbe esserc csaminato con attenzione, La logica é
abbastanza semplice. 1l fatto nuovo ¢ che se un bit & letto dalla telescri-
vente (all'indirizzo TTYBIT) esso rimanda I"eco alla telescrivente. Que-
sta ¢ una caratieristica convenzionale della 1elescrivente. Ogni volta che
un ulente preme un tasto l'informazione & trasmessa al processore e
quindi ritorna al meccanismo stampante della telescrivente. Questo
verifica che le lince di trasmissione sono operative ¢ che il processore sta
funziorande quando un caratiere viene slampate correttamente su
carta.

Le prime due istruzioni costituiscono il ciclo di attesa. Il programma
attende che il bit di stato divenga vero ¢d inizia la lettura dei bit in
ingresso. Come al solito il bit di stato & assunto entrare nella posizione di
bit 7 poiché questa posizione pud essere verificsta in una sola istcuzione
da BPL (opera diramazione se positivo ¢ questo & it bit segno).

JSR ¢ it salto alla subroutine. Si utilizza una subroutine DELAY, per
realizzare un ritardo di 9,09 ms, Si noti che DELAY pud essere un ciclo
di ritardo oppure pud utilizzare un temporizzatore hardware se il
sistema ne & dotato.

224

MEMORIA - LO

L} -~ [

[CDN‘II‘IOME] l '

- all

$atus |4 4

'y ' ‘?‘4.

Figura 6.15: Ingresso telescrivente

1l primo bit ad entrare & il bit d'inizio. Deve arrivare I'cco alta
telescrivente alirimenti viene ignorato. Questo viene fatto dalle istru-
zioni 4 ¢ 5.

Ancora, si attende il bit successivo, ma questa volta é un bet dativeroe
s1 deve conservarlo. Poiché tutte le istruzoni di scorrimento fanno
cadere un bit nel flag carry, occerrono dee istruzioni per preservare il bit
duti. {(L'X nella Figura 6-15): uno cade in C (“LSR A"}, ¢d un altro per
preservarlo nella locazione di memoria “CHAR™ {ROL),

WGAESSD INGRESSG
PCNI 2017
Rl L Tn] a
ot DiNDO - C%TTB‘;‘.}' 0aE
¥ -
INYIO UsCIta
817 EAT) O UN BT
* RArT g O
IRV 1 MG
BIT STOR
} ND
usCITa 0
gl
i |
BITARYO

Figura 6,96. Uscita telescrivents

225

Attenzione ad un problema: I'istruzione “ROL" distruggera i conte-
nuti di C. Se si vuole che I'eco de) bit dati ritorni occorre prendere la
precauzione di preservarlo prima che esso scompaia in CHAR.

[nfine si ha I'eco del bit dati: (STA TTY BIT) ¢ si attende per quello
successivo: (JSR DELAY) finché si accumulano wutti gli otto bit dati:
{DEX).

Ogni volta che si decrementa a zero, tutti gli 8 bit sono in CHAR.
Rimane da otienere ['eco dei bit STOP ed ¢ finito.

Esercizio 6-18: Si scriva fa routine di ritardo che origina un ritardo di 9,09
millisecondi. (Subroutine DELAY).

Esercizio 6-19: Urilizzando I'esempie del programma precedente svilup-
pato si scriva un programma PRINTC che stampi su una telescrivente i
contenuti della locazione di memoria CHAR.

Esercido §-20: S/ modifichi il programma in modo che esso antenda un bit
START invece di un bit STATUS,

Stampa di una Stringa di Caratteri

Si assumera che la routine PRINTC (Vedere Esercizio 6-19) si occupi
della stampa di un carattere su stampante, oppure display o qualsiasi
dispositivo d'uscita. Qui si stamperanno i contenuti delle locazioni di
memona da (START + N} a (START).

Si utilizzera naturalmente il modo di indirizzamento indicizzato ed il

MEMCRIA

CONTATOM

ATARY =N

ALLA STAMPA
nefm-— "

Figura 8.17. Stampa di un blocco di memorls

226

programma si ottiene direitamente:

pSTRING LDX #N NUMERI DI PAROLE
NEXT LDA START+N

JSR PRINTC

DEX

BPL NEXT

SOMMARIO SULLE PERIFERICHE

Sono state descritte le teeniche di programmazione di base utilizzate
per comunicare con dispositivi d'ingresso/uscita tipici. Inoltre per il

k‘— ‘ BUS bamn

LT

win) INFERRRJPT
:
OO
L N1 T
)

WO |)

e e e -

Figura 6.18: Tre metodi di controtio VO

trasferimento di dati sard necessario condizionare uno o pit registri di
controllo all’interno di ogni dispositivo 1/0 per condizionare corretta-
mente le velocitd di trasferimento, il meccanismo di interrupt ¢ varie
altre scelte. Si dovrebbe consultare il manuale di ciascun dispositivo.
(I_’er tmaggiori dettagli sugli algoritmi specifici per scambiare l'informa-
Z1onc con tutte Je periferiche pitt comuni si faccia riferimento al libro:
“Tecniche di Interfacciamento per Microprocessori'.

227

Si ¢ ora imparato a dirigere dispositivi singoli. Comunque in un
sistema reale tutte ¢ periferiche sono connesse ai bus ¢ possono richie-
dere contemporaneamente il servizio. Come si pud cseguire lo schedu-
ling del tempo del processore?

SCHEDULING D'INGRESSO/USCITA

Poiche le richieste d’ingresso/uscita possono verificarsi contempora-
neamente occorre realizzare in ogni sistema uno scheduling per determi-
nare in quale ordine sard concesso il servizio. Yengono utilizzate tre
tecniche di base di ingresso/uscita che possono essere combinate con
qualunque altra.

Essi sono: polling (registrazione), interrupt, DMA. [l polling ¢ I'inter-
rupt saranno descritte di seguito. 1l DMA & una tecnica puramente
hardware e come tale non sard descritta qui.

Registrazione (polling)

Concettualmente la registrazione & il metndo pil semplice per la
direzione di periferiche multiple. Con questa strategia il processore
interroga i dispositivi connessi ai bus a turno. Se un dispositivo richiedc

[
574 RICHIEDENDO
SERVITIO?

AQUTINE O/ SERVIZIC
PER IL NSPOSTIVO &

a
STA RRCHIECEND D
RVIZID?

AQUTINE DI SERVIZH0
PERIL DNSPRSITIVO B

C
ST& RICHEDENDO
SERWIZIO

ACUTINE D) SERWZIC
PEA (L OIEPORITWO C

e

Figura 6.19: Diagramma di fluaso del ciclo di regislrazione

128

ACCENDE ABILITAZIONE
LETTORE

LEGGE CARATTERE

Figura 6.20: Lettura da un leltore di nasiro di carta

PRONTO?

CARICS 1L BUFFEN
DI PERFDRAZIONE
0 STAMPANTE

TRASWETTE
Qati

|

Figura §.21: Slampa su una perforatrice o stampante

Scrvizio questo viene concesso. Se non richiede servizio vienc csaminata
12 periferica successiva. La registrazione non viene utilizzata per i dispo-
SIvi bensi per qualsiasi routine df servizio del dispeositive.

Per escmpio, sc un sistema & equipaggiato con una tclescrivente, un
registratore ed un display CRT, la routine di registrazione dovrebbe

29

interrogare la telescrivente: “hai un carattere da trasmettereT . Essa
interrogherebbe la rowtine di uscira detla telescrivente chiedendo “haiun
carattere da inviare? Quindi, assumendo che la risposta sia negativa essa
dovrebbe interrogare la routine del registratore nastro ed infine il display

CRT.

Nel caso di un solo dispositivo connesso al sistema, la registrazione
sarcbbe utilizzata per determinare se ¢ necessario il servizio. Come
esempio nelle figure 6-20 e 6-21 appaiono i diagrammi di flusso per la
lettura da un lettore di nastro di carta e la stampa su una stampante.

Esempio: un ciclo di registrazione per idispositivi 1, 2, 3, 4, (vedere fig.
6-18):

POLL4 LA STATUS LA RICHIESTA DI 5ERVIZIO
EIL BIT?
BM) ONE
LDA STATUS? DISPOSITIVD 2?
BMI TwO
Lba STATUS] DISPOSITIVO 3t
BM! THREE
LDA STATUS 9 DISPOSITIVO 47
EM1 FOUR
JMP POLL4 ALTRA VERIFICA

Il bit del registro di stato di ciascun dispositive ¢ *1"* quando si
richiede servizio. Quando @ rivelata una richiesta questo programma
opera una diramazionc al dispositivo opcratare, all'indirizzo ONE peril
dispositivo 1, TWO per il dispositivo 2, ccc.

I vantaggi della registrazione sono ovvi: essa & semplice, non richiede
nessuna assistenza hardware ¢ mantiene tutti gli ingressi e le uscite
sincroni caon il funzionamento del programma. Il suo svantaggio &
altrettanto ovvio; la maggior parte del tempo def microprocessore &
sciupato osservando dispositivi che non richiedeno servizic. [noltre il
microprocessore pud fornire il servizio ad un dispositivo troppo tardi,
sciupando cosi molto tempo.

E percid desiderabile un altro meccanismo che garantisca I'utilizza-
zione del tempo del processore per eseguire calcoli pratici piutiosto che
la registrazione di dispositivi non richiesti tutte le volte, Comunque si
sottolinea che la registrazione viene usata ¢stensivamentc quando un
processore non ha nient'altro di meglio da fare ¢ che essa mantiene
semplice 'organizzazione globale. Siesaminera ora Ialternativa princi-
pale alla registrazione: gli interrupt,

230

Interrupl

I! concetlo di interrupt & illustrato in figura 6-18, E disponibile una
speciale linca hardware, la linea interrupt, che ¢ connessa ad un pin
specializzato del microprocessore.

AQ

ISTALUZIONE
TERMINAT A

L]
5
—_— o ONODA
INTERRUFT
HO
ETACH PC.P
[
PONE {
J
CAMICA PO DA
{FFFE. FFEF|
SALTA

Figure 6.22; Elsborazlone detl'interrupt

221

I dispositivi d'ingresso/uscita multipli possono essere connessi a questa
linea di interrupt. Quando uno qualsiasi di questi richiede servizio esso
invia un livello oppure un impulso su questa linea. Un segnale di inter-
rupt & la richiesta di servizio da un dispositivo d'ingresso/uscita al
processore. Si esaminerd ora la nsposta del processore a questo inter-
Tupt.

In ogni caso i processore completa I'istruzione che stava eseguendo
od anche che potrebbe creare confusione all'interno del microproces-
sore, Successivamente il microprocessore opera la diramazione ad una
rautine di manipolazione di interrupt che elaborerd interrupt stesso. La
diramazione a tale subroutine implica che i contenuti del comatore di
programma devono essere conservati nello stack, Un interrupt deve
pereio causare [immagazzinamento automalico del contatore di pro-
gramma nello siack. Inoltre il registro di stato (P) dovrebbe essere
automaticamene preservato poiché i suoi contenuti saranno alterati da
qualsiasi istruzione successiva. Infine se la routine di manipolazione
interrupt modificasse qualsiasi registro interno, questo dovrebbe essere
automaticamente preservato nello stack,

Dopo che questi registri sono stati preservati si pud operare la dirama-
zione all'appropriato indirizzo di manipolazione interrupt. Alla fine di
questa rouline tutti i regisiri saranna ri-immagazzinati ¢d une speciale
ritorno da interrupt verrd eseguito cosicché il programma principale
riassuma I'esecuzione. 81 esamineranno in maggior dettaglio le due linee
di interrupt del 6502

Interrupt del 6502

[l 6502 & equipaggiato con due linee di intetrupt IRQ ed NMI. IRQ¢é1a
Tinea di interrupt regolare mentre NMI ¢ un interrupt non mascherabile a
priorita pin elevata. Si esaminera questo funzionamenta.

IRQ ¢ I'interrupt a livello attivato. Lo stato della linea [RQ sard
rivelato oppure ignorato dal microprocessare dipendentemente dal
valore del suo flag interno | (flag della maschera interrupt). Si assumerd
inizialmente che gli interrupt siano abilitati. Ogni volia che TR(Q sara
attivato Pinterrupt sara riveiato dal microprocessore. Non appena l'in-
terrupt & accettato {dopo il completamento dell’istruzione in corso di
esecuzione), il flag interno 1 & posto ad 1™ automaticamente.Questo
preverrd un'ulieriore interruzione del microprocessorc quando si sta
manipolando i registri interni. 11 6502 quindi preserva automaticamente
i contenuti di PC (il contatore di programma} e P (il registro di s1ato)
nello stack.

232

Figura 6.23: Stack oel 6502 dopo interrupt

L'aspetto dello stack dope che ¢ elaborato un interrupt ¢ ilfustrato in
Figura 6-23.

Successivamente il 6302 preleverd automaticamente il contenuto delle
tocazioni di memoeria "FFFE™ ¢d “FFFF™. Quesia locazione di memo-
riz a 16 bit conterra il vertore-fnterrupt. 11 6502 preleverd i contenuti di
questo indirizzo ¢ Quindi operera la diramazione all'indirizzo specificato
dal vettorc a 16 bit. L. utente & responsabile della deposizione di questo
indirizzo di vettore ad “FFFE"” - “FFFF". Comunque diversi dispositivi

FFFA |-

FFFB
FFFC RES
FFFD vETTORE

FFFE

Foee o

FFFF L GEeToRe

Figura 6 24: Vetior: Imtarrupi

possono essere connessi alla linca IRQ. Ia questo caso siavri la dirama-
zione ad una singola routine di manipolazione di interrupt. Come si pud
differenziare tra i vari dispositivi?

Questo sard studiato al paragrafo successivo.

L'interrupt NMI 2 essenzialmente identico ad [RQ eccetlo che esso
non pud essere mascherato dal bit 1. E un interrupt a priorita pid elevata
usato tipicamente per i guasti di alimentazione. Il suo funzionamento é
altimenti identico eccello che il processore opera automaticamente la
diramarione ai contenuti di FFFA"™ - “FFFB”, Questo & illustrato in
Figura 6-24,

Il rdtormo da interrupt & esepuito dall’isiruzione RTI Questa istru-
zione Tritrasferisce nel microprocessore le tre parole di sommita dello
stack che contengono P e PC (il contatore di programa a 16 bit). [l
programma che era statginterrotto pud quindi essere nassunto. Lo stato
interno della macchina ¢ esattamente identico a quello che si ha all'i-
stante in cui si & verificato I'interrupt. L'effetto & stato quindi di intro-
durre un ritardo neil’esecuzione di un programma.

Prima de) ritarno da interrupt il programmatare & responsabile di
chiarire che 'interrupt ¢ stato asservito e del ri-immagazzinamento del
Mag di disabilitazione interrupt. Inoltre se la routine di manipolazione
interrupt modificasse i contenuti di qualsiasi registro come X od Y, il
programmatore é specificamente responsabile per preservare questi regi-
stri nello stack prima dell'esecuzione della routine di manipolazione
interrupt. Diversamente i contenuti di questi registri saranno modificati
e quando il programma interrorto riassumera l'esecuzione essi non
saranno corretti.

Assumendo che la routine di manipolazione utilizzi i registri A, X ed
Y, saranno necessarie cinque istruzioni all'interno del manipolatore di
interrupt per preservare questi registri. Esse sono:

SAVAXY PHA INTRODUCE A NELLO STACK
TXA TRASFERISCE X AD A
FHA LG INTRODUCE
TYA TRASFERISCE Y AD A
PHA LO INTRODUCE

Sfortunalamente il 6502 pud sollanto introdurre direttamente i conte-
nuti di A o P nello stack. Ne risulta che preservare X ed Y vuol dire
impicgare tempo; questo richiede 4 istruzioni,

Questo & illustrato in Figura 6-25,

Dopo il completamento della routine di manipolazione intertupt

questi registri devono essere ri-immagazzinati ed il mampolatore di

234

jnterrupt termina con la sequenza di sei istruzioni.

PLA ESTRAE Y DALLO STACK
TAY RI-IMMAGAZZINA Y
FLA ESTRAE X
TAX RI-IMMAGAZZINA X
PLA RI-IMMAGAZZINA A
L 9] USCITA
e 5
Y
X
A
p
PCL
PCH
STACK

Figura 8.25: Conservaziane di lutt | registri

Esercizio 6-21: Uritizzando la 1abella che indica il mumero di cicli per
Istruzione, riporiata in appendice, si calcoli quanto tempao si impiegherd per
salvare e gquindi ri-tmmagazzinare i registri A, X ed V.

Per un confronto grafico det processo di registrazione in funzione di
quello di interrupt si faccia riferimento alla Figura 6-18 dove il processo
di registrazione € illustrato in alto ed il processo di interrupt in basso. Si
pud vedere che, nella tecnica di registrazione, il programma impiecga
molio tempo in attesa. Utilizzando gli interrupt il programma viene
interrotto, interrupl viene asservito e quindi ripristinato il programma.
Comunque lo svantaggio ovvio di un interrupt ¢ di introdurre alcune
istruzioni addizionali allinizio cd alla fine risolvendosi in un ritardo
Prima che possa esere eseguita la prima istruzione del dispositivo mani-
Polatore, Queste ¢ un altre svantaggio meno evidenle,

235

Avendo chiarito il funzionamento delle due linee di interrupt si consi-
derino ora due problemi importanti:

1. Come sirisolve i) problema di dispositivi multipli che fanno scattarce
un interrupt allo stesso istante?

2. Come si risclve i] problema di un interrupt che si verifica mentre si
sta asservendo ad un altro interrupt?

Dispositivi Multipli Connessi ad una Singala Linea di Interrupt

Ogni volta che si verifica un interrupt il processore opera automatica-
mente la diramazione ad un indirizzo contennto in “FFFE-FFFF" {per
un IRQ) o ad “FFFA-FFFB™ (per un NMI). Prima che esso possa fare
qualsiasi elaborazione effettiva la routine di manipolazione interrupt
deve determinare qual'? il dispositivo che fa scattare I'interrupt. Sono
disponibil due metods per identificare il dispositivo nei casi pitt comuni:
un metodo softwarc ed un metodo hardware.

IM] HEGISTRAZIDNE INTERR,ET VETTORE
[— r T J
ouse <2 l KOUTINE 21 1 \

REGIST ;
DISP ogn,y&! r—_.lz_'%'—] .
‘ 1

L. AQUMKE i
{ SEAVIRIO P

ROUTINE D)
SEAVIZIO —] ‘

ROUTINE Dr .
~ SERVIZIO N

Figura 6.28: Inlerrupt registrato In tunzione dell'interrupt medlante vettore

1

|

Nel metodo softwarc viene ubilizzato il metodo di registrazione: il
microprocessore inlerroga a turno ciascun dispositivo e chiede: “Hai
fatto scattare linterrupt?”™. Se no, esso interroga quello successivo.
Questo processo é illustrato in figura 6-26. Un programma campione &:

LDA STATUS |
BM1 ONE
LDA STATUS 2
BMI TWO

236

11 metodo hardware utilizza componenti addizionali ma fornisce
jmmediatamente 'indirizzo del dispositivo che richiede Pinterrupt,
assume alla stessa richiesta di interrupt. 1l dispositivo ora universal-
mente utilizzato per fornire questa possibilita & chiamato “PIC™ ovvero
controllore della priorita di interrupt. Tale PIC posizionera automatica-
mente sul bus dati il richiesto indinzzo effettivo di diramazione per la
periferica che richiede interrupt. Quando il 6502 andra adl“FFFE-
EFFF* prelevera questo vettore indirizzo. Questo concetio & 1llustrato
in Figura 6-26.

Nella maggior parte dei casi la velocita di reazione ad un interrupt non
: cruciale ¢ vienc utilizzato un approccio a registrazione. Se invece il
tempo di risposta & una considerazione primaria occorre utilizzare un
approccio hardware.

‘1’} ’*.P .

&, £

MEU B, Tua gﬁ*

INT “o Jee, °{,'¢¢;-,‘
1 .] INT 1 ‘ WiN

Figura 6.27: Diveral dispositivi possono utllizzare |e stessa linga di imlerrupt

{nterrupt Simultanei

L'altro problema che pud venificacsi ¢ che un nuovo interrupt possa
essere fatto scattarc durante 1'esccuzione di una routine di manipola-
zione interrupt. Si csamincri cosa accade ¢ come viene utilizzato lo stack
per risolvere il problema. E stato indicato al Capitolo 2 che questo & un
altro ruolo essenziale dello stack ed ¢ giunto il momento di dimostrare il
suo impiego, Ci si riferird alla Figura 6-28 per illustrare gli intertupt
multipli, Nell'illustrazionc il tempo trascorre andando da sinistra a
destra, I contenuti dello stack sono mostrati in fondo afl'illustrazione.
Guardando a sinistra, allistante T0, & in esecuzione il programma P.
Spostandosi a destra, all'istante T1, si verifica I'interrupt I, Si assumera
che la maschera di interrupt sia abilitata, autorizzando cosi TI. 1l
programma P sara sospeso. Questo ¢ mastrate in fondo all'illustrazione.
Lo stack conterra il contatore di programma ed il registro di stato del
programma P, almeno, pill qualsiasi registro a scclta che deve essere
conservate dal manipolatore di interrupt o da [stesso.

All'istante T1 inizia I'esecuzione dell'interrupt T1 fino all'istante T2.
All'istante T2 si verifica 'interrupt 12. Si assumerd che l'interrupt 12
abbia ypa priorita pia elevata dell'intercupt 11, Se esso avessc una

237

prioritd pid bassa sarebbe ignorato fino a che [1 non é stato completato.
All'istante T2 i registri per 11 sono depositati nello stack e questo appare
in fondo ali"illustrazione.
Anche i conteggi del contatore di programma ¢ di Psono introdotti nello
stack. Inolire Ja routine di 12 deve decidere se immagazzinare alcuni
registri addizionali. 12 sard eseguito fino al completamento fino all'i-
stante T3

Quando I2 termina | contenuti alla sommitd dello stack sono estratti
automaticamenle nel 6502 e questo €illustrato in fondo alla Figura 6-28.

TRMPD . 1, 1, r, 1, [1
PROGRAMMA § e e i R I _—

INTERRL*T | Jr—— e~ = m e - —f e = = - E——

WTERRUPT) . ———

INTERRUPT 1, _——

0
= @E Do

Figura 5.28: Stack duranie gli Intarrupt

Cosi automaticamente, I'interrupt 11 riassume I'esecuzione, Sfortunata-
mente, all'istante T4 si verifica ancora un altro interrupt a prioritd pidl
alta. §i pud vedere in fondo all’illusirazione che i registri per Il vengono
nuovamenite introdotti nello stak. L interrupt 13 ¢ eseguitloda T4a TS e
teeming a T5. In questo istante i contenuti dello stack song estratti dal
6502 e l'interrupt 1! riassume |'esecuzione. Questa volta si ha il comple-
tamento ed cs50 termina a T, A T6 i registni rimanenti che sono stati
conservati ncilo stack sono estratti dal 6502 ed il programma P pud
riassumere 'esccuzione. 1} lettore verificherd che lo stack & vuoto a
questo punto. Infetti il numero di linee tratteggiate, indicanti 1a sospen-
sione del programma, mostra allo siesso tempo quanti livelli si trovano
nello stack.

Esercizio 6-22: Se si assume che ogni valta che siverifica un interrupt siane
conservati # contatore di programma PC, il registro P e Maccumulatore
questi impiegheranno almeneo quatiro locazioni. (In pratica X ed ¥ necessi-
fano spesso di essere conservali e si wiitizzano sei locazioni). Assumendo

238

p;-m‘é che nello stack siano conservali soltanto tre registri quanti livelli di
interrupl consente il 65022 (Siricordiche lo stack élimitaio a 256 locazioni
gt inierno della Pagina 1),

Fsercizio 6-23: Assumendo questa volta che nello siaek possono essere
Preservan‘ 3 registri, qual’é il massimo numero di interrupt simuftanei che
pussono essere manipelati? Quale altro fastore contribuird a ridurre ulte-
rinrmenie il numero di interrupt contemporane;?

Si deve soltolineare comungue che in pratica i sistemi a microcalcola-
tore sond normalmente connessi ad un piccolo numero di dispositivi
wtilizzanti gl interrupt. Quindi ¢ improbabile che in tale sistema si
verifichi un numerc elevato di interrupt contemporanei.

Sono slati ora risolti tutti i problemi normalmente associati con gli
interrupt, Il loro impiego ¢, infatti, semplice ¢ dovrebbero essere utitiz-
7dti vantaggiosamente anche dai nuovi programmatori. Si completerd
I*analisi delle risorse del 6502 introducendo un ulteriore istruziong i cui
effetti sono identici ad un interrupt sincrono.

Break

Il comando BRK ncl 6502 & V'equivalente di un interrupt software,
Esso pud essere inserito nel corso di un programma e si risolve, proprio
come nel caso IRQ, nel salvataggio automatico di PC ¢ P ed in una
diramazione indiretta ad “'FFFE-FFFF™. Questa istruzione pud esserc
vantaggiosamente utilizzata per penecrare interrupt programmali
durante il ¢collaude di un programma. Questo origincra la creazione di
punti di diramazione, arrestando il programma ad una determinata
locazione ed operando la diramazione ad una routine che conscntird
tipicamente all’utente di analizzare il programma. Poiche I'effetto nctto
di un break e di un interrupt & identico dopo la toro esecuzione occorre
fornire un significato al programmatore per determinare se & stato
utilizzato un interrupt cppure un break. 11 6502 porra il flag B del
regisiro P (conscrvalo nello stack)ad * (™" se ¢ra un break ed a 0" seera
un interrupt. La vetifica dello sialo di quesio bit pud essere eseguita dal
semplice programma szguente:

BTESY PLA LFGGE IN A LA SOMMITA” DELLO STACK
PHA RISCRIVE
AN 510 MASCHERA DEL BIT B
BNE BRKPRG VA AL PROGRAMMA BREAK

139

Questo programma di verifica viene normalmente inserito alla fine
della sequenza di registrazione che determina la natura del dispositivo
che fa scattare 1'interrupt.

Attenzione: una caratteristica del break é di preservare automatica-
mente i contenuti del contatore di programma pid 2. Poiché il break &
una istruzione di un solo byte il programmatore deve talvolta aggiustare
i contenuti del comatore di programma nello stack utilizzando un'istru-
zione di incromento o decremento per riassumere 'esecuzione dell'indi-
rizzo corretto. In particolare il break & utilizzato estensivamente durante
il collaude scrivendolo su un'altra istruzione del programma. Se il
programma & riassemblato prima delt’esecuzione, i contenuti del conta-
tore di programma che sono stati salvati dovranno essere normalmente
incrementati di {.

ESECUZIONE
ISTAUZIONE

AICHIESTA
INTERRUPY
]

HUDYA S TRUZICNE

hNI ADY L.; MASCHB\i

PRESERVA 1 REGISTAY
©6 Neceun no}

METTERE FUORI POSTO
LA MASCHERA
DENTIFICA OLEPA STV
[38 ASCEYIBFID)

r E3EQUE LA AQUTINE I

I’ Q- [WMAGALZIMA
| REGISTAI |

|

AITOAND

Figura €.29: Loglca dell'interrupt

240

SOMMARIO

[stato presentato in questo capitolo I'insieme delle tecniche utilizzate
per comunicare col mondo esterno. Dalle routine elementari d'ingres-
so/uscita ai programmi pi complessi per comunicare con periferiche
effcttive, si ¢ imparato a sviluppare tutti i programmi usuali e si & anche
csaminata I'efficienza di programmi tipici nel caso di ua trasferimento
parallelo e di una conversione da parallelo a seriale. Infine si é imparato
a classificare il funzionamento di periferiche multiple utilizzando regi-
struzione & d'interrupt. Naturalmente molti altri dispositivi d'inpres-
so/uscita devono essere connessi al sistema. Con I'insieme delle tecniche
che sono state presentate ¢ con la comprensione delle periferiche coin-
voltc é possibile risolvere la maggior parte dei problemi comuni.

Al capitolo successivo si esamineranno le caratteristiche cffettive dei
chip di interfaccia ingresso/uscita normalmente connessi al 6502,
Quindi si considereranno le strutture dati di base di cui il programma-
tore deve conoscere |'utilizzazione.

ESERCIZI

Esercizio 6-24: Un display LED a 7 segmenti pud mostrare anche digit
diversi da queili dell alfabeio esadecimale. Sicalcoline icodicidi: H. I 1, L,
Ors UYghijlnoprtuy

Esercizio 6-25: If diggramma di flusso per Ia direzione di interrupt appare

nella Figura 6-29. Si risponda alle seguenti domande:

d- Che cosa é fatto dall’hardware e cosa dal software?

b- Quul'é I'impicgo della maschera?

- Quanii registri dovrebbero essere preservati?

d- Come viene ideniificato il dispositive che origing Iinterrupt?

e~ Cosa fa P'istruzione RTI? In cosa differisce da un ritorno da subroutine?

F- Si suggerisca un modo per manipolare una situazione di overflow dello
Stack. .

&~ Qualé lo svantaggio (‘tempo perso’) introdotio dal meccanismo di
interrupt?

241

CAPITCGLO 7

DISPOSITIVI D’INGRESSO/USCITA

INTRODUZIONE

Si ¢ imparato come programmare il microprocessore §502 nella maggior
parte delle situazioni pidt comuni. Comunque & necessaria una Iratta-
zionc particolare dei chip d'ingresso/uscita normalmente connessi al
microprocessore. A causa del progresso dell’integrazione 1.51 sono stati
introdotti nuovi chip prima inesistenti. Ne risulta che la programma-
zione di un sistema richiede, naturalmente, prima di programmare, il
microprocessore stesso ¢ poi anche di programmare i chip d'ingresso/u-
scita. Infatti & spesso molto pit difficoltoso ricordare come program-
mare le varie scelte di controllo di un chip d'ingresso/uscita che pro-
grammare il microprocessore stesso! Questo non perché !a programma-
zione in sé é prb difficoltosa ma perché ciascuno di questi dispositiviha le
sug pecentricild.

S$1 esaminerd di seguito prima il dispositive d'ingresso/uscita piu gene-
rale, il chip d'ingresso/uscita programmabile (in breve un *PIO") ¢ poi i
“miglioramenti” di quesio PIO convenzionale ora utilizzato frequente-
mente con il 6502; 11 6520, 6530, 6522 ¢ 6532,

11 PIO CONVENZIONALE (6520)

Non esiste il “PIQ Convenzionale”. Comunque 1! dispositivo 6520 &
essenzialmente analogo nella funzione a wuiti « PIO similan prodotti
dagli altri costruttori per lo stesso scopo. Lo scopo di un PLO & difornire
Una connessione mulliporta per i dispositivi d’ingresso/uscita. (Una
“porta™ ¢ semplicemente un sct di B linee d'ingresso/uscita). Ogni PIO
fornisce almeno due set di linee ad 8 bit per dispositivo 1/0. Ciascun
dispositivo 170 richiede un buffer dati per stabilizzare i contenuti del bus
dati almeno in uscita. Percid il PIO sari cquipaggiato almeno di un
buffer per ogni porta.

Inoltre & stato stabilito che il microcalcolatore utilizzerd una proce-
dura handshaking od anche inrerrupt per comunicare con il dispositivo
[7Q. 1l PIO utilizzera anche una procedura simile per comunicare con la

213

periferica. Ogni P10 deve, percid, essere equipaggiato con almeno die
finee di controfle per porla per realizzare la funzione handshaking.

1l microprocessore richiedera anche la capacita di leggere lo stato di
ciascuna poria. Ogni porta deve cssere equipaggiata con uno o pia bit di
stato. Infine all’interno di ogni P10 esisterd un certo numero di scelte per
configurare le sue risorse. I} programmatore deve essere in grado di
accedere al registro speciale all’interno del PI1O per specificare le scelte di
programmazione. Questo & il registro di controllo. Nel casa del 6502
I'informazicne di stato ¢ parte del registro di controllo.

. LA
D084,
| p, V]
82 -5 311 4
e om _p"?! :
S8 oo =g
BUS DATI 33 Eeg Agia <::_|") PARTA &
e =93 L
=1-} me $5o
cep DORY PORe
—ﬂ 1]
53 —
SELEZIONE DI| ——ed 250 24 poaT4 B
REGISTRD | __ | pst A
L
WOA — 3 e B2
ﬁ -— e ——"-LJ

Figura 7.1: PIO tipico

Una caratterisiica essenziale del PIO & il fatto che ogni linca deve
essere configurata come linea d'ingresso oppure d'uscita. Lo schema di
un PIO appare in Figura 7-1. 1l programmatore deve specificare per
qualsiasi linea se sard d'ingresso o d'uscita. Per programmare la dire-
zione di una linea viene fornito un registro di divezione dati per ciascuna
porta. Uno "0 in una posizione di bit del registro di direzione dati
speciftea un ingresse. Un "1™ specifica un'uscita.

Pud essere sorprendente osservare che uno 0" & utilizzato per un
ingressn ed un 1™ per un'uscita quando in realtd 0" dovrebbe corri-
spondere all'Uscita ed **I™ all'Ingresso. Questo é abbastanza deliberato:
ogni volia che viene applicata Palimentazione al sistema & di grande
importanza che tutte le linee 1/0 siano configurate come ingresso.

14

Diversamente se il microcalcolatore ¢ connesso ad alcunc periferiche

uaste esso potrebbe attivarle accidentatmentc, Quando viene applicato
un reset tutti i registri sono normalmente azzerati € questo risulterd nella
configurazione come ingressi di lutie le linee det PIO. La connessione al
microprocessore appare sulla sinistra dell’illustrazione. [l PIO connette
naturalmente al bus dati ad 8 bit, al bus indirizzi del microprocessore ed
al bus di controllo del microprocessore. Il programmatore specifichera
semplicemente 1'indirizzo di qualsiasi registro cui si desidera accedere
all'interno det PIO. 1] 6522, chc & compatibilc col Matorola 6820, ha

L & 5 [] 3 2 | 4
LA LT EN] QA7 CAZ CONTRGLLD ‘g&'g\s c&‘aﬁg'

—— — R

e, N
SOLO LETTURA: LETTUBRA SCATToAL D LA WAL

Figura T.2: Formato della parola di conlrollg PIA

R51 50 CRAJ CRA 7 | REGISTRO SELEZ'OHATS

o o | - HEGISTRG DELLA
AEo TR
t
a 0 ? - BIREZIONE DATI A
REGWSTRD O
3 ! - - CONTROLLD A
REQIETHG GELLA
! & - ' PEAIFEALCA B
] REGISTAG
! e - g DIREZIONE DATI &
REQISTRO
DI CORTADLLO B

Flgura 7.3: Registn PIA di indirizzamento

ereditato upa peculianita: csso & equipapgiato con 6 registri interni.
Comunque si pud specificare solo un registro su guatiro! Questo pro-
blema viene risolto commutando la posizionc di bit 2 del registro di
controlio. Quando questo bit & uno 0" si pud selezionare if corrispon-
denic registro di direzione dati. Quando & un **1” pud essere selezionato
il registro dati. Percid ogni volta che il programmatare desidera scrivere
dati nel registro di direzione dati doved prima assicurarsi che il bit 2
dell'appropn‘ato registro di controlio sia zero, prima di poter selezionare
quesio registro. Questo # talvolia inadatto per il programma ma é
Importane da ricordarc per evitare grosse difficolta,

Per chiarire I'effetto della selezione di indirizza sul 6520 viene ripor-
'ata la tahella di selezione indirizzo.

245

RS0 ed RS! sono due segnali di selezione registro che sono stati derivati
dal bus dati. In altre parole essi rappresentano due bit dell’indirizzo
specificato dal programmatore. CRA ¢ il registro di controllo della porta
A. CRA (2) til bit 2di questo registro. CRB il registro di controllo della
porta B.

1l Registro di Contrello Interno

It registro di controllo del 6520 specifica, come si ¢ visto nella posi-

zione di bit 2, un modo di selezione per i registri interni della porta,
Inoltre esso fornisce un certo numero di opzioni per la generazione o
rivelazione di interrupt ¢ per la realizzazione di funziont handshake
automatiche.
La descrizione completa delle caratteristiche disponibili non ¢ necessaria
in questa sede, L'utente di qualsiasi sistemma pratico utilizzante il 6520
fard semplicemente riferimento al data-sheet che mosira I'effetto del
posizionamento dei vari bit del registre di controllo. Ogni volta che il
sistema ¢ inizializzato il programma dovra caricare il registro di con-
trollo del 6520 con i contenuti corretti per [a specifica applicazione.

1 — e PAG
RS —— .

4530 LY
&
t—— P
PBSCSD

. FB&CS1
——] m?‘,lm

——
L
-
AP
e —

RES

55 wC

Figura 7.4; Pin d'uscita dael 6530

246

11 6530

I 6530 rcalizza una combinazione di quattro funzioni: RAM, ROM,
p1O ¢ TIMER. La RAM ¢ una memoria 64 x 8. La ROM & una memoria
di 1k x 8, iltimer fornisce al programmatore le possibilita di temporizza-
sione ad intervallo multiplo. La parte P1O ¢ essenzialmente analoga al
6520, preccdentemente descritio: ci sono due porte; ogni porta ha un
repsstro dati ed un registro di direzione dati pilt un registro di comando.
1'no (0" in una data posizione di bit del registro di direzione specifica un
jneresso, mentre un “1" specifica un'uscita.

1l timer ad intervallo programmabile pud essere programmato per
contare fino a 256 intervalli (esso internamente ha 8 bit). Il programma-
1ore pud specificare che il periodo ditemposia 1, 8, 64 oppurc 1024 volte
it clack del sisterma. Ogni volta che viene raggiunto il conteggio il flag
interrupt del chip sard posto al valore logico **17. I contenuti del timer
sono posizionati per mezzo del bus dati. I quaitro possibili intervalli di
tempo devono essere specificati sulle linee AQ ed Al del bus indirizzi.

Tre pin della porta B hanno un ruolo duale: PB5, PB6 e PB7 possono
essere utilizzati per funzioni di controllo. Il pin PB7, per esempio, pud
esscle Programmato come un ingresso interrupt.

Questo chip & particolarmente utilizzato nelia scheda KIM (si notiche
sulla KIM, PB6 non ¢ disponibile).

Programmazione di en P10

Come esempio si riporta un programma che impiega un 6520 oppure
un 6522 {si assume che il registro di ¢controllo sia gia stato posizicnato),

LDA 3 FF PONE DIREZIONE DATI

STA DDRB CONFIGURA B COME USCITA
IDA & 00

STA 10RD GENERA L'USCITA ZERO

DDDRB & rindirizzo del Registro di Direzione Dati della porta B di
Questo PLO. {ORB ¢ |'Ingresso-Uscita o Registro Dati della porta B,
“FF" esadecimale ¢ **11111111" binario = tutte uscite.

1 6522

11 6522, detto anche “adattatore di interfaccia versatile™ (VIA), & una
versione migliorata del 6520. Oltre alle possibilith del 6520, esso fornisce
duc limer ad intervallo programmabile ed un convertitore serie-paratlelo
P paraliclo-serie oltre al latch dei dati d'ingresso. La descrizione

?‘;’dwarc dettagliata di questo componente ¢ oltre lo scopo di questo
1010,

247

108

1 [
STATO
iCRAY

r BUSFER : CONTROLLO:
27 Al suwoim
U EETY
. DIHEZIONE [.aT|
INGRESSO BUS.
L L7
INTEAZACC. &
FERIFERICA 3
CONTROLLT
€% == E210NE &
BELEZION INTERFACC 1A
1
G“" :: P FERITERICA B
52
D l SELEZICHE 8]
51 =t REGISTAC OREZIONE DATI
Row —e
== oo
ST -
— CONTADLLE
<8}
e STAT,

h—— (B 1
e OB 7

Figura 7.5: Impiego del PIA: caricamenta ragisiro di contrelie

C50
L g
52—
W) e
L
R et
BN el

TESIT —w

STATO
ICRA Y

CONTACLLD

CONTRCLLS

lssn.sz-cn[
scmv

l BELEZICHE
PEGISTRO

LCFOL

11

INTERFACCIA
PFRIFERICA A

INTEGFACCIA
#EAFER-CA R

fel

11

DIREZIONE DATI

[eCLER

CLAMTACLLD

Figura 7.6 Impiege del PIA; cadecemento direzione dati

248

- ——
P A
R0 =—en
251 —
- —a
N —

g —

IhGRESIO (.S

DREZIONE DAT)

C-OHTROULD

SELENDMNE
CHp

SELEIICNE
AEGISTRD

1 1010

11

82

NTERFACCIA
SERILEMCA &

IWTEFFAGCIA
PERIFZAICA B

I8

CIREZIOQ%E DAt

v EECLE
CONTRCLLO

i e
T
'l‘Ar

C:D Pag paz
CD Bz "7

Figura 7 7: Impiego dal PIA: lattura stato

[LI¥1

#0n

IMGRESSD BLIS

-y
LS50
(CRA

COMTRAL. O

OpRA

CONTAOLLD

SELESIOME
#2112

ALLEX' ONE
AEGISTRD

1%
[
L

GRENONE DATY

I TERFACLA
FEMIFEAZA B

(8]

MAEZIONE DATI

1CDA3

COM™A0OLLD

L
p—i " A]

I

Figura 7.8: Impiego del PRA: lelturs yngresso

249

Semplicemente con la descrizione fornita per i precedenti componenti
dovrebbe essere semplice per il programmatore familiariz2arsi con I'in-
dirizzamento dei registri intemi di questo componente e della svua pro-
grammazione. Questa informazione viene fornita nei data-sheet del
costruttore.

T 6532

T1 6532 & un chip combinazione che comprende una RAM 128 x 8, un
P10 con due porte bidirezinnali ed un timer ad intervallo programma-
bile. Esso viene utilizzate nella scheda SYM, costruita dalla Synertek
Systems, analoga alla scheda KIM costruita dalla MOS Technology &
dalla Rockwell. Anche qui l'utente dovrebbe esaminare attentamente i
data-sheet di questo componente per imparare come indirizzare ed
utilizzare i vari registri interni.

SOMMARIO

Sfortunatamente, per rendere effettivo I'impiego di tali componenti,

sard necessrio capire in dettaglio la funzione di ogni bit, o gruppo di bit,
all’interno dei vari registri di controllo. Questi nuovi chip complessi
rendono automatiche molte procedure che precedentemente venivano
eseguite mediante soltwurc oppure mediante logica speciale. In partico-
lare molte delle procedure di handshaking sono automatizzale allip-
terno dei componenti come il 6522.
Inoltre alcune manipolazioni e rivelazioni di interrupt possono essere
interne, Con le informazioni presentate al capitolo precedente il lettore
dovrebbe essere in grado di esaminare i data sheet corrispondenti e
capire quali sono le funzioni dei vari segnali e registri. Naturalmente
stanno per essere introdotti nuovi componenti che offriranno una realiz-
zazione hardware di algoritmi ancora pil complessi. Anchequi il lettore
dovrebbe essere in grado di capire studiando attentamente i data-sheet
del costruttore,

250

CAPITOLO &

ESEMPI DI APPLICAZIONE

INTRODUZIONE

Questo capitoto ha Jo scopo di verificare I'abilith alla programmazione
poiché presenta una certa quantitd di programmi di utilitd pratica.
Questi programmi o “‘routine” si incontrano frequentemente nelle appli-
cazioni ¢ sono generalmente chiamati “utility routines”,

Fssi richiederanno una sintesi delle conascenze e delle tecniche presen-
1ate fino ad ora.

Si procedera al prebevo di caratteri da un dispositivo 1/0 ¢ ad elaborarl
in vario modo. Prima perd & nccessario azzerare un'area delia memoria
(guesto potrebbe non essere necessario ma ciascuno di questi programmi
¢ presentato soltanio come esempio di programmazione),

AZZERAMENTO DI UNA PARTE DELLA MEMORIA

Si vuole azzerare i contenuti della memeoria dall’indirizzo BASE + |
all'indirizzo BASE + LENGHT. dove LENGHT & minore di 256,

Il programma é:

ZFROM LDX # LENGTH
LDA # 0
CLEAR STA BASE, X
DEX
BNE CLEAR
RTS

Si noti che il registro X ¢ utilizzato come indice per puntare alla loca-
Zione corrente della parte di memoria da azzerare,

L'accumulatore A & caricato solo una volia con it valore 0 {tutti zeri) e
Quindj trascritto alle locazioni di memonia successive:

BASE + LENGTH, BASE + LENGTH — 1, ¢ce. finché X & decremen-
late a 0. Quando X = 0 si ha il ritorno dal programma,

251

Per escmpio, in una verifica delle funzioni di una memoria, questo
programma potrebbe essere utilizzato per azzerare un blocco ¢ quindi
per verificare i suoi contenuti.

Esercizio 8-1: Si scriva un programma di verifica di memoria che azzeri un
blocco di 256 parole e quindi verifichi che ogni locazione é 0. Quindsi esso
scriverd rutif uni e verifichera il contenuto del blocco, Quindt esse scriverg
01010101 e verificherd § contenuti

Si registreranno ora i dispositivi 1/0 per vedere se uno di ¢ssi richiede
servizio,

POLLING DEI DISPOSITIV] D1 /O

Si assumerd che al sistema in esame siano conaessi 3 dispositivi 170, 1
loro registri di stato siano localizzati agli indirizziIOSTATUS!, IOSTA-
TUS2, IOSTATUS).

Se il loro bit di stato ¢ nella posizione di bit 7sileggerail regisiro di stato
¢ si verificherd il bit segno. Se il bit di stato ¢ dovunque si trarrd
vantaggio dall'istruzione BIT de] 6502:

TEST LDA MASK
BIT 10STATLSI
RNE FOUNDI
BIT IDSTATLUS2
BNE FOUND?2
BIT 10STATUS]
BNE FOLIND3

[uscita 10 caso di errored

Se si verifica la posizione di bit 7 la MASK conterrd per esempio
“00100000". Come risultate dell'istruzione BIT il bit 2 del flag di stato
sard posto ad | se “"MASK AND 10STATUS™ non & zero, cioe se il bit
corrispondente ad JOSTATUS & uguale a quello corrispondente di
MASK. L'istruzione BNE (opera diramazione s¢ non uguale zero)
quindi si risolvera in una diramazione all*appropriata routine FOUND.

ACCETTAZIONE DE] CARATTER]I ALL'INGRESSQO

Si assuma di aver trovato che un carattere @ disponibile sulla tastiera.
Si accumulino i caratteri in un’arca di memaria chiamata buffer finché

252

on i incontra un carattere speciale chiamato SPC, il cui codice & stato
p,ccgdentemcnlc definito.

La subroutine GETCHAR preleverdi un carattere dalla tastiera
(vedere il capitolo 6 per ulteriori dettagli) e lo posizionera nell’accumula-
rore. Si assume che al massimo saranno prelevati 256 caratteri prima di
jrovare un ¢arattere SPC.

STRING LDX 20 INIZIALIZZA L'INDICE A ZERO
NEXT ISR GETCHAR
CMP # SPC E IL CARATTERE BRK?
BEQ ouT SE ST TERMINA
STA BUFFER, X NO: CONSERVA CARATTERE
INX INCREMENTA TL PUNTATORE
e NEXT ACCETTA IL CARATTERE
SUCCESSIVO
aur RTS

Esercizio 82: Si migliori quesia routine di base:

a- Operil'eco di un carattere di ritorno al dispositivo (per una telescrivente
per esempio)

b- Verifichi che la stringa d'ingresso nor sia pit: unga di 256 caratteri

Ora si ha una stringa di caratteri in un buffer della memoria. Si processe-
ranno in vari modi.

VERIFICA DI UN CARATTERE

S1 determini s¢ il caratiere posizionaio alla locazione di memoria LOC
¢ uguale a 0,] oppure 2;

T LDA LOC
CMP # SO0
BEQ ZERO
CMP £ 301
BEQ ONE
CMP # 802
BEQ TWO
IMP NOT FNP

$i legge semplicemente il carattere quindi si impiecga listruzione CMP
Per controllare il suo valore,

Si esamina ora una verifica diversa,

253

YERIFICA DI PARENTESI

Si determini se i} carattere ASCII pasizionato alla locazione di memo-
ria LOC éunacifratrale &

BRACK LDA # $40
ADC # 540 FORZA L'OVERFLOW
LDA Loc
ORA #« 380 PONE BIT 7=
CMP # SBD 0 ASCII
BCC TOOLOW
cMP # 3B9 9 ASCI
BEQ OUT 9 ESATTAMENTE
BCS TOOHIGH

oUT CLC
CLV
RTS

TOOLOW SEC PONE ¢ AD UNO
cLY
RTS

TOOHIGH RTS (C'E UNO)

0 ASCII é rappresentato in esadecimale da “*B0"
9 ASCII & rappresentato in esadecimale da “B9”

Si ricordi che utilizzando vn'istruzione CMP il bit carry sard posto ad |
se 1l valore Icttcrale che segue & minore o uguale al valore dell'accumula-
tore. Esso sard posizionato a 0 s¢ maggiore.

Se B0 & maggiore dei carattere, il carattere & troppo basso e si verilica una
diramazione.

Quindi si confronta con il registro B9. Se ¢sso & minore od uguale a 9 si
esce. Diversamente 5i va TOOHIGH.

Quando si esce da questo programma si vuole conoscere se il numero &
TOOLOW, TOOHIGH oppuretra 0 ¢ 9.

Questo sard indicato dai flag Ce V. V non viene alterato da CMP. Invece
CMP cambia 2. N¢ C.

Quando si ritorna da questa subroutine wno 0" in V indica ''troppo
alte™, un “*1""in C indica “troppo basso' ed uno 0" in C indica una ¢ifra
correttatra 0e 9.

254

Naturalmente le altre conversioni, come il caricamento di un digit
nell'accumulatore, potrebbero essere utilizzate per indicare il risultato
delle verifiche.

gsercizio B-3: Si semplifichi il programma precedente verificando rispetto
af caratrere ASCI che segue 9" invece di 9 esairo,

Esercizio 8-4: Si determini se un carattere ASCI! contenuto nell’ accumula-
(ore ¢ una lettera dell’alfobeio.

Quando si milizza una tabella ASCII si notera che viene quasi sempre
impicgata la paritd. Per esempio PASCII di “0” & “0110000"" cioé un
codice a 7 bit. Comunque se si usa la parita dispari, per esempio, (si
garantisce che il numero totale di uni in una parola sia dispari) altora il
codice diviene “E0100000™. Un ulteriore 1" viene aggiunto a sinistra.
Questo ¢ “B0" in esadecimale. Si svilupperd ora un programma per
generare la parita.

GENERAZIONE DI PARITA’

Questo programma genercra una parita pari nella posizione di bit 7:

PARITY LDX # 07 CONTEGGIO D1 BIT
LDA # 500
STA ONECNT CONTEGGIO DI UNI
LDA CHAR LETTURA DEL CARATTERF
ROL A SCARICA IL BIT ?
NEXT ROL A BIT SUCCESSIVO
BCC ZERO EUNI?
ONE INC ONECNT
ZERO DEX DECREMENTA [l. CONTEGGIO
Di BIT
BNE NEXT ULTIMO BIT?
ROL A RI-IMMAGAZZINA IL BIT O
ROL A SCARICA L BIT*
LSR ONECNT [L BIT PIL* A DESTRA E LA PARITA'
LSR A LOMETTEIN A

RTS

[! registro X & utilizzato per conlare i bit mentre essi sono spostati a
SInistra defl'accumulatore. Ogni volta che un *1* viene portato via dalla
Sinistra dell’accumulatore {mediante la verifica di BCC) il contatare di
Uni viene incrementato. Quando sono stati spostati 8 bit (il programma
'8Noura il bit 7 che sara il bit di paritd) A vienc fatto scorrere a sinistra

258

altre due volte cosicche il bit 6 & a sinistra di A.

Il bit di paritd corretto € il bit piti a destra di ONECNT: esso viene
posizionato nel bit carry da LSR e diviene il bit 7 di A. Un’altra
istruzione LSR A ncopia questo bit nella posizione di bit 7 di A ed il
problema proposte ¢ nisolto,

Esercizlo 8-5: Urilizzando il programma precedente come esempio si verify-
chi la parita di una parola. Si deve calcolare la parita corretia e quindi
confrontarla con quella prevista dal programma.

CONVERSIONE DI CODICE: éz ASCII a BCD

La conversione da ASCII a BCD ¢ molto semplice. Si osserverd chela
rappresentazione esadecimale dei caratteri ASCI! da $a9vada BGa B9,
La rappresentazione BCD si ottiene percidsemplicemente eliminando la
“B* cioé mascherando il nibble di sinistra (4 bit):

LDA CHAR
AND # SOF MASCHERA 1L NIBBLE DI SINISTRA
5TA BCDCHAR

Esercizio 8-6; Si scriva un programma per convertire if BCD in ASCIL

Esercizio 8-7: (Pit difficolioso) 5i scriva un programma per converrire i
BCD in binario,

Suggerimento: Ny N2 Ny Noin BCD é{({N:x 1) + N)x 10+Npx 10+
Ng in binario.

Per moltiplicare per 10 si impicghi lo spostamento a sinistra (=x2J, un
altro scorrimento a sinistra (=x4), un ADC (=x5) ed un altro scorri-
mento a sinsitra (=x10),

Nella notazione BCD intera la prima parola pud contenere il conteggio
dei digiht BCD, il nibble successiva conticne il segno ed ogm nibble
successivo contiene un digit BCD (non si considera il punto decimale).
L'ultimo nibble del blocco pud essere inutilizzaro.

RICERCA DELL'ELEMENTO MAGGIORE DI UNA TABELLA

LYindirizzo di partenza della tabella sia contenuto all'indirizzo di
memoria BASE in pagina zero. !l primo ingresso della tabella & al
numero di bytc che essa conliene. Questo programma ricerchera V'ele-
mento maggiore della tabella. 1] suo valore sara depositato in A e la sua
posizione sard immagazzinata alla locazione di memoria INDEX.

156

Questo programma utilizza i registri A ed Y ed impieghera "indirizza-
mento indiretto, cosicché esso pud ricercare qualsiasi tabella posizionata
gcnericamcnle nella memoria,

MAX LDY ®0 ?‘:Jssm EL'INDICEALLA TABEL-
LDA {BASE). Y INGRESSO ACCESSO 0 = LUNGHEZ-
ZA
TAY LO CONSERVA IN ¥
LDA ro VALORE MASSIMO
INIZIALSZZATO A 2ERQ
STA INDEX INIZIALIZZA L'INDICE A ZERQ
LOOP CMP (BASE). ¥ L'ELEMENTO ATTUALE E
IL MASSIMO?
BCS NOSWITCH s
LDA (BASE), Y CARICA [l NUOVO MASSIMO
STY INDEX LOCAZIONE DEL MASSIMO
NOSWITCH DEY PLUNTA AL NUDVO ELEMENTO
BNE LOOP CONTINUA LA VERIFICA?
RTS FINITOSEY =0

Questo programma verilica prima I'n-esima ingresso. Se questo ¢ mag-
giare di 0 esso va in A ¢ la sua locazione ¢ memorizzata in INDEX,
Quindi viene verificato I' (n-] }-esimo elemento, ecc, Questo programma
lavora con inteti positivi.

Esercizio 8-8: ST madifichi il programma cosicché esso lavori anche per
numeri negativi in complemento a 2.

Esercizio 8-9: Queste programma lavorerd anche con caratieri ASCII?

Escrcizio 8-10: Si scriva un programma che selezioni n numeri in ordine
decrescente,

Esercizio 8-11: Si scriva un programsma che scelga n nomi (di 3 caratteri
clascuno) in ordine alfabetico.

SOMMA DI N ELEMENTI

Questo programma calcolera la somma a 16 bit degli n ingressi diuna
tabella. L'indirizzo di partenza della tabella & contenulo all’indirizza di
Memoria BASE in pagina zero. 11 primo ingresso della tabella contiene il
nurnero N di elementi. La somima a 16 bit sari depositata alle locaziani

257

di memoria SUMLO e SUMHI. Selasomma dovesse richiedere pid di 16
bit, sarebbero conservati solo i 16 bit pill bassi (si dice che i bit di ordine
elevato sono stati troncati).

Questo programma modificherd i registri A ed Y. Esso considera al
massimo 256 clementi.

LDA #0 INIZIALIZZA SUM

STA SUMLO INIZIALIZZA SUM

STA SUMHI INIZIALIZZA SUM

TAY INIZIALIZZA ¥ A ZERO

LDA (BASE). Y PONE N

TAY INY

cLe AZZERA CARRY PER ADC
ADLOOP LDA (BASE), Y ACCETTA L'ELEMENTO

SUCCESSIVO

ADC SUMLO LO SOMMA A SUMLO

STA SUMLD CONSERVA [L RISULTATO

BCC NOCARRY RIPORTO?

INC SUMHI LO SOMMA A SUMHI

cLC ELEMENTOQ SUCCESSIVO PER
NOCARRY DEY LA SOMMA SUCCESSIVA

BNE ADLOQP ANCORA SE Y NON & ZERO

RTS

Questo programma & diretto ed autoesplicativo,

Esercizio 8-12: §7 modifichi queésio programma per calcolare:
a- una somma & 24 bit

b= una somma @ 32 bir

¢- per rivelare qualsiasi averflow.

UN CALCOLO CHECKSUM

Un checksum ¢ un digit od uninsieme di digit calcolati da un bloceo di
caratteri successivi. La checksum viene calcolata all’istante in cui i dati
sono immagazzinati ¢ posizionala alla fine. Per verificare 'integritd dei
dati la checksum viene ricalcolata e confrontata col valore immagazzi-
nato, Una diversita indica un errore oppure un guasto.

Vengono utilizzali diversi algoritmi. [n questo caso si opererd I'OR
esclusivo di (utli 1 byte di una tabella di N elementi ed il risultato sard
depositato nell’accumulatore. come al solito la base della tabella é
immagazzinata all'indirizzo BASE in pagina zero. Il primo ingresso
deila tabella & il numero di elementi N, Il programma modifica Aed Y. N
deve ¢ssere minore di 256.

258

CHECKSUM LDY a0 PUNTA AL PRIMO INGRESSO

LDA {BASE}L Y ACCETTA N

TAY LO IMMAGAZZINAIN Y

LDA #0 INIZIALIZZA CHECKSUM
CHLOOP EDR {ADDR). Y EOR INGRESSO SUCCESSIVO

DEY PUNTA AL SUCCESSIVO

BNE CHLOOP PROSEGUE

RTS

CONTEGGIO DI ZER]

Questo programma conterd il numero di zeri di una tabella ¢ lo
depositera nel registro X,
Esso modifica A, X, Y:

ZFROES LDY #0 PUNTA AL PRIMO INGRESSO
LDA (ADDR). Y ACCETTA N
TAY LO IMMAGAZZINAIN Y
LDX #0 INIZIALIZZA [L NUMERD D]
ZERI
ZLOOP LDA {ADDR)L Y ACCETTA L'INGRESSO
SUCCESSLVO
8NE NOTZ QUESTO E ZERO?
INX 51, LO CONTA
NOTZ DEY PUNTA AL SUCCESSIVQ
BNE ZLOOP PROSEGUE
RTS

Esercizlo 8-13: Si modifichi questo programma per contare:
a- it mumero di stare (if caratiere **"')

b- if mumero di lettere delf'alfabero

- il mumero dif cifre tra 0 e 9

RICERCA DI UNA STRINGA

Si supponga che una stringa di caratteri, come indicato in Fig. 8-1,sia
Memorizzata in memoria. All’'accorrenza si ricercherd la stringa per
ricavarne una pit breve detta template (TMPLT), di lunghezza
TPTLEN, L3 lunghezza della siringa originale 2 STRLEN ed alla fine del
Programma il regisico X conterrd la locarione in cui ¢ stata trovata
TEMPLT oppure FF esadecimale. La Fig. 8-2 mostra il diagramma di
flusso per il programma. La stringa viene prima esplorata alla ricerca del
Primo carattere di TEMPLT. Se non viene trovato il primo carattere, si

259

uscird dal programma. Se invece viene trovato il primo carattere, si
confronta it secondo carattere con quello successivo della stringa. Se non
sono uguali si riparte alla ricerca del primo carattere, poiché il primo
caratiere potrebbe essere ripetulo nella stringa originale, Se il primo ed il
secondo sono uguali la ricerca procede con i caratteri successivi di
TEMPLT in modo esattamente analogo. La Fig. 83 mostra il pro-
gramma corrispondente. Si noti che il registro X viene utilizzato come
puntalore corrente per puntare la ricerca all’elemento corrente della
stringa. Per la ricerca dell’elemento corrente della stringa viene natural-
menie utilizzato l'indirizzamento indicizzato.

o CHEPTR

TEMPTR '—1

LUNGHEZZA STRINGA

TEMPLATE

= | _reosmmor |
REGISTAO X
- ’—_
IPUNTATORE INIZIO RICERCA}
STRINGA

TEMPLATE

Fipura @.1: Ricerca di stringa: ta memoria

260

PUNMTATORE w1210
AICEACA - 0

PUNT. DI CONT. = 0

r

STRATATR — STRATPTR
|)

STRTPTH

LUNGHEZZA
STRINGA

STRINGA
{3TRTPTR|
= TEMPLATE 0]

TEMPTR - STATAPTA

TEWFTA + 1

STRINGA
ATEMPTR}
—~ TENPLATE
(CHMP TR

CHKPTR ©
LUNGHEZZA
TEMPLATE

b

FATTO FATTO
N TROVAT TROVATD

Figura B.2: Diagramma di flusso del programma: ricerca di siringa

LINEA »LOC CODIGE LINEA

o2
0203

034
Oy
00
0x7

Qoog
Orog
D01
{21

. RICERCA DI STRINGA,

. RSI_P'!‘EHECNA LA LOCAZIONE NELLA STRINGA DI LUNGHEZZA
3 LEN'

; PARTENZA A 'STRING' Ol UNA TEMPLATE DI

i LUNGHEZZA "TPTLEN' INIZIANTE A 'TEMPLT E

:AITORNO CON X = LOCAZIONE T TEMPLATE

. NELLA STRINGA SE TROVATA, OPPURE X =8 FF SE NON

, TROVATA,

STRING =$20 : PRIMA LOCAZIONE DELLA STHING;A
TEMPLT —3%50 . PRIMA LOCAZIONE DI TEMPLATE.
‘=510

Figura B-3. Programma per la Riterca di Stringa (conlinua)

261

CHKPTAR
TEMPTR
STALEN
TPTLEN
NXTPOS

NXTSTR

CHECK

CHKLP

FOUND

f= 41

l:.+1

‘=*4+1 LUNGHEZZA DELLA STRINGA.
‘=*41 LUNGHEZZA DI TEMFLATE.

"=-%200
LDX w#0 : RESET PUNTATORE INIZIO
:RICERCA,
LDA TEMPLT ! IL PRIMO ELEMENTO DI
: TEMPLATEE ...
CMP STRING. X = ALLELEMENTO
: CORRENTE DELLA STRINGA?
BEQ CHECK : SE SI CONTROLLA IL RESTO
INX : INCREMENTA CONTATORE
;1 INIZIC RICERCA
CPX STRLEN (E UQUALE A LUNGHEZZA
I STRINGAT

BNE NEXPOS :NO, CONTRCLLA
; SUCCESSIVA POSIZIONE

: STRINGA

LDx aiFF :SLPONI AD 1 L'INDICATORE
:"NON TROVATO".

RTS :RITORNO: CONTROLLAT!

cTUTTI I CARATT

STX TEMPTA . PONI PUNTATORE
: TEMPORANED—.
 PUNTATORE CORRENTE
. DELLA STRINGA,

LDA 4]

STa CHKPTR . RESET PUNTATORE
. TEMPLATE.

INC TEWPTR ; INCREMENTA PUNTATORE
: TEMPORANEQ.

INC CHKPTR ; INCREMENTA PUNTATCRE
: TEMPLATE.

LDY CHKPTR

CPY TPTLEN ;€ PUNTATORE TEMPLATE =

I LUNGHEZZA TEMPLATE?
BEQ FOUND :SE S) TEMPLATE E TROVATA
LDA TEMPLT Y ; CARICA ELEMENTO

: TEMPLATE
LDY TEMPTR
CMP 5TRING, Y | CONFRONTA CQL
CARATTERE STRINGA
BNE NXTSTR 1 SE NCN TROVATO

: CONTROLLA SUCCESSIVO

. CAHATTERE STRINGA.
BEQ CHKLP : SE TROVATO CONTROLLA
: CAR. SUICCESS

RTS :FATTO
END :

Figura 8-3. Programma per la Ricaerca di Stringa

a0tz 0010

0013 0011

0014 0012

oS 0013

oi6 004

0017 0200 A2 OU
Qo188 0202 AS 50
0019 Q204 D5
20 G208 FO OB
021 0208 EB
0022 0209 E4 2
0023 o208 DO FS
D024 020D A2 FF
oo2s OXF 60
0D26 02%0 BG 1Y
0027 0212

DD2ZB 0212 A% 00
DDZB 0214 85 10
0o one E6 1
DD31 02'¢ E6 10
00A2 6274 A4 0
o33 023C C4 13
00 O2'E FO OC
0035 0220 B8 50 0D
D036 2N A4 N
0037 4225 DA 20 oD
0038 0228 OO0 DE
DDIP 022A FO EA
004 022C 8D
bo41 022D
SOMMARIO

In questo capitolo 50no slate presentate routine utilizzate comune-
menteche impicgano le combinazione di tecniche descritie nei capitoli
precedenti. Queste dovrebbero consentire il progetto autonomo di pro-
grammi. Molte di queste routine impiegano una struttura dali speciale;
la tabella. Esistano altre possibilitd di strutturazione dei dati che ver-

ranno ora analizzate,

262

CAPITOLO 9
STRUTTURE DEI DATI

PARTE [- CONCETTI DI PROGETTO

INTRODUZIONE

11 progetto di un programma comprende due compiti; progetio deff al-
goritmo e progelio defle strutture dati. Nei programmi pil semplici non
vengono considerate strutture dati significative cosicche il problema
principale da superare per imparare la programmazione & P'apprendi-
mento del progetio degli algortimi e la loro codifica efficiente inun dato
linguaggio di macchina. Questo & quanto & stato fatto fin'ora, Comun-
guc il progetto di programmi pit complessi richiede anche una compren-
sione delle strutture dati. Due strulture dati sono gia state utilizzate nel
corso del libro: la tabella e lo stack. Lo scopo di questo capitola & di
presentare altre strutture dati, pit generali, che si pud valer utilizzare.
Questo capitolo @ completamente indipendente dal microprocessore, od
anche il calcolatore considerato. Questo & teorica ¢ comprende I'orga-
nizzazrionc logica dei dati nel sistema. Esistuno libei specializzati sull"as-
gomento delle strutture dati come pure esistono libri specializzati sulla
moltiplicazione efficiente, divisione ed aliri algoritmi consueti. Questo
capitolo ¢ stato percid introdotio per completezza ma sard limitato
all'essenziale. Esso non pretende di essere completo, Verranno ora
analizzate le strutiure dati pid comuni,

PUNTATORI

Un puntatore & un pumero utilizzato per designare la locazione cor-
fente del dato. Ciascun puntatote € un indirizzo. Comungque ciascun
indirizzo non ¢ necessariamente chiamato un puntatore. Un indirizzo
un puntatore soto se esso punita ad alcuni tipi di dati ovvero ad informa-
zioni strutturate. £ gid stato incontrato un puntatore tipico: il puntatore
dello stack che punta alla sommita dello stack {od anche immediata-
Mente sopra la sommita dello stack). Si vedrd che lo stack ha una
Stfuttura dati comune chiamata una struttura LIFO.

263

Come altro esempio, quando si wtilizza l'indirizzamento indiretto,
'indirizzamento indiretto ¢ sempre un puntatore ai dati che si desidera
recuperare.

Esercizio 91 Al indirizzo 15 detla memoria ¢'é un puniatore alla tabella
T. La tabelia T inizia all'indirizze 300. Quali sono | contenuti effertivi del
puntatore a T?

— PUNTATORE AT

TABELLAT

Figura 9.1: Un puntatore di ind|rizzamento

LISTE
Quasi tutte le strutture dati sono organizzate come liste di vario tipo.
Liste Segquenziall

Una lista sequenaziale, o tabella, o blocco, ¢ probabilmente la struttura
dati pit semplice ed una di quelle gia utilizzate. Le tabelle sono normal-
mente ordinate in funzione di un critenio specifico, come per esempio,
I’ordine alfabetico oppure quello numerico. E quindi facile recuperarc
un ¢lemento in una tabella utitizzando, per esempio, l'indirizzamento
indicizzato, come si € gid {atio. Normalmente un blocco fa riferimento
ad un gruppo didati che hanno limiti definiti ma i cui contenutinon sono
ordinati. Esse pud contenere, per eaempio, una stringa di caratieri.
Oppure pud essere un scttore di un disco. [n questi casi pud non essere
facile accedere ad clementi casuali del blocco.

264

per facilitare la ricerca di blocchi di informazione soao utilizzati i
direttori.

pirettori

Un direttorio ¢ una lista di tabetle o blocchi. Per esempio il sistema file
utilizzerd normalmente una struttura a direttorio. Come semplice esem-
pioil direttorio principale del sistema pud comprendere una lista di nomi
di utenti. Questo & illustrato in Figura 9-2. L'ingressa per 'utente
»(iovanni' punta al direttorio del file di Giovanni. I} direttorio del file ¢
una tabella che contiene | nomi di tutti i file di Giovanni ¢ la loro
locazione. Questa &, a sua volta, una tabella di puntatori, In questo caso
si & quindi considerato un direttonio a due livelli. Un sistema a direttorio
flessibile consentird di comprendere direttori intermedi, a seconda della
convenienza dell’uiente.

DIRETTORKD DELL'UTENTE

QIAETTORIO DEL
FILE GIQWVANN)
GIOVANNI FILE Q10YVaNN:

ALEA

ALPYA,

31084 OATy
SI0MA
OATI

Flgura 9.2: Una siruttura a direttorio

Lista Collegata

In un sistema ci sono spesso blocchi di informazioni che rappresen-
tuno dati, oppure eventi, oppure altre strutture, che non possono essere
fucilmente manipolate. Sc questi potessero essere facilmente manipolati
verrebhero probabilmente assemblati in una tabella per avere la possibi-
4 di scelta o strurturazione. 1l problema consiste nel fatto che si

265

desidera lasciarli dove sono pur stabifendo un ordinamento tra di essi
come primo, secondo, terzo, quarto blocco. Per risolvere questo pro-
blema verrd impiegata una lista collegata. Il concetto di una lista colle-
gata ¢ illustrato dalla Figura 9-3. Nell'illustrazione si vede che un punta-
tore della lista, chiamato PRIMOBLOCCO punta all'inizio del primo
blocco. Una locazione del Blocco |, per esempio la prima o I'ultima
parola di questo, contienc il puntatore al Blocco 2, chiamato PTRI. []
processo ¢ quindi ripetuto per il Blocco 2 e per il Blocco 3. Poiché i]
blocco 3 & I'ultimo ingresso della lista, PTR3, per convenzione contiene
uno speciale valore *nil” che punta a se stesso ¢ che pud essere rivelato
alla fine della lista. Questa struttura é ¢conomica poiché essa richiede
solo pochi pumatori (une per blocco) ¢ consente all'utente di non avereil
movimentoe fisico dei blocchi nella memonia.

- o -
socew| Moccor | eoccoz & soccoy (E[7]
Figura 9.3: Una liste collegata

KUBYO BLABED] =
Aoccox |m
[|
PRI - L ~ -
oot Loccor {2 Bloccoz |& eocced (@]

Figura 9.4 Ingerzione di un nuova blacca

Si esamini, per cscmpio, come pud essere inserito un nuavo bloceo.
Questo ¢ illustralo dalla Figura 9-4. Si assuma che il nuovo bloceo sia
all'indirizzo NUOVOBLOCCO e debba essere inserito tra il Blocco 1 ed
il Blocco 2. It puntatore PTR1 viene semplicemente cambiato al valore
NUOVOBLOCCO cosiccht esso punta al Blocco X, PTRX conterra il
valore precedente di PTRI, ciod esso punterd al Blocco 2. Gli altri
conlalori della strutiura rimangono invariati. Si pud vedere che I'inser-
zione di un nuovo bloeco ha richiesto semplicemente I'aggiornamento di
due puntaleri della struttura. Questo ¢ chtaramentce cfficiente,

Esercizio 9-2: 87 tracci un diagramma che mostri come It Blocco 2 potrebbe
essere rimosso da questa sirultura.

266

Codﬂ [Qllllle]

Una coda é formalmente chiamata una lista FIFO ovvero first-in-
first-out, Una coda ¢ illustrata in Figura 9-5, Per chiarire il diagramma si
pué assumere per esempio che il blocco di sinistra sia una routine di
servizio per un dispositivo d'uscita, come una stampante. [blocchi che
compaiono sulla destra sono quelli richiesti dai vari programmi o rou-
tine per stampare caratteri. L'ordine in cui essi saranno asserviti é
["ardine stabilito dalla coda di servizio. Si pud vedere che I'evenio
successivo che otriene servizio & il Bloceo | poi il Bloceo 2 e quindi il
Blecco 3. In una ¢oda si conviene che qualungue elemento zrrivato
successivamente sard inserito alla fine di essa in questo caso sard inserito
dopo PTR. Questo garantisce che il primo blocco inserito nella coda

ROUTINE D1 SERYIZIO BLOCET 1
SUCCESSVO ’— PTR 1
——
8L0CCD 3
E PTR 1
| .
aLoOCCD 2
BTA 2 -J

Figura 9.5: Una coda

$ard il primo ad essere asservito. E abbastanza comune in un sistcma a
calcolatore avere code di attesa per un certo numero di eventi ogni volta
che si deve anendere una risorsa scarsa come il processore o qualche
dispositivo d'ingresso/uscita.

Sono state sviluppate diversi tipi di liste per facilitare tipi specifici di
dccesso oppure inserzione o canccllazione alla lista stessa. Si esamine-
Tanna aleuni dei tipi di liste ¢ollegate utilizzati pid [requentemente.

267

Siack

La struttura stack ¢ gta stata studiata in dettaglio nel corso del libro.
Essa & una struttura last-in-first-out (LIFO), L'ultimo elemento deposi-
tato alla sua sommitd & il primo ad essere rimosso, Une stack pud essere
realizzato mediante un blocco a scelia ovvero anche mediante una lista,
Poiché la maggior parte degli stack dei microprocessori sono utitizzati
per eventi ad alta velocitd, come subroutine od interrupt, per lo stack
viene normalmente utilizzato un blocce continuo piuttosio che una lista
callegata,

Confronto tra lista collegata ¢ Blocco

Analogamente [a coda potrebbe essere realizzatla con um bloceo di
locazioni riservate, 1l vantaggio di utitizzare un blocco continuo ¢ il
recupero veloce ¢ l'eliminazione dei puntatori. Lo svantaggio consiste
nel faito che & normalmente necessario dedicare un blocco abbastanza
largo per comprendere la dimensione det caso peggiore della struttura.
Inolere & difficoltoso od addirittura impraticabile inserire o rimuovere
elementi dall'interno del bloceo. Poiché la memoria é tradizionalmente
una risorsa scarsa i blocchi vengono tradizionalmente riservati alle
strutture di dimensione fissa ovvero alle strutture che richiedono la
massima velocita di recupero, come lo stack.

Lista Circolare

La lista circolare viene comunemente chiamata "round robin”. Una
lista circolare ¢ una lista collegata dove I'ultimo punio rientra al primo.
Quesio & illustrato in Figura 9-6. Nel caso di una lista civcolarc viene

Lr EVENTD) I TVEMTO D '—— LR] —‘l EvENTO M }—J

EVENTO ATTUALE

Figura 9.6:)l Round Robin & una lista clircolare

Spesso impicgato un puntatore al blocco attuale, Nel caso di eventi o
pragrammi, attesa di servizio, il puntatore alt’evento attuale sard mosso
di una posizione a sinisira oppure a destra. ad ogni volia.

Un round-robin corrisponde normalmente alla struttura dove tutti i
blocchi sono assunti avere la stessa prioritd. Comunque una lista circo-

268

lare pud essere anche utilizzata come un sottocaso di altre strutture
semplicemente per facilitare il recupero del primo blocco dopo 1'ultimo,
quando si sta esepuendo una ricerca,

Come esempio di lista circolare un programma di registrazione nor
malmente opera in mode round-robin interrogando tutte le periferiche e
ritornando indietro alla prima,

Alberi

Ogni volta che esiste una relazione logica tra tutti gli elementi di una
struttura {questa ¢ chiamata normalmente una sintassi), pud essere
utilizzata una struttura ad albero. Un esempio semplice di una strutiura
ad albero & un albero discendente oppure un albero genealogico. Questo
& illustrato in Figura 9-7, Si puo vedere che Smith ha duc bambini; un
figlio Robert ed una figlia Jane. Jane, a sua volta, ha tre bambini: Liz,
Tom e Phil. Tom a sua volta ha due bambini: Max ¢ Chris, Invece
Robert, riportato a sinistra dell’illustrazione non ha discendenti.

AONERT JANE

/\
/

PHIL

L CHRIS

Figura 9.7 Albero genpalogico

Questo & un albero strutturato. St é gia inconlrato un esempio di un
albero semplice in Figura 9-2. La struttura a direttorio & un albero a due
livelli, Gli alberi sono utilizzati vantaggiosamente ogni volta che gli
tlementi possono essere classificati secondo una struttura prefissata.
Quesio facilita Pinseszione ed i) recupero. Inoltre essi possono stabilire
BTuppi di informazione in un modo strutturato. Questo pud essere
fichiesto per un'elaborazione ulteriore, come nel progetto di un compila-
tore od interprete.

2469

Liste Doppiamente Collegate

Collegamenti addizionali possono essere stabiliti tra gli elementi dj
una lista. L'esempio pid semplice & la lista doppiamente collegata,
Questo & illustrato in Figura 9-8. Si pud vedere che sussiste a sequenza
usuale di collegamenti da sinistra a destra, pill un'altra sequenza dij
collegamenti da destra a sinistra. Lo scopo ¢ di consentire un facile
recupero dell’elemento immediatamente precedente quello che sta per
essere processato come pure di quello immediatamente dopo. Questo
costituisce un ulteriore puntatore per il blocco.

BLOCCO v wocco 2 BLOCCD 3

Flgura 9.8: Lista dopplemenie callegata

RICERCA E CLASSIFICAZIONE

La ricerca e la classificazione degli elementi di una lista dipende
direttamente dal tipo della struttura che & stata utilizzata per 1a lista.
Molti algeritmi di ricerca sono stati sviluppati per le strutture dati
utilizzate piti frequentemente. Si é gid utilizzalo I'indirizzamento indiciz-
zato. Questo ¢ passibile ogni volia che gli elementi di una tabella sono
ordinati in funzione di vn criterio noto. Tali elementi possono poi essere
recuperati mediante i loro numeri.

La ricerca sequenziale fa riferimento alla scansione lineare diun intero
bloocco. Questo é chiaramente inefficiente ma pud essere utilizzato
quando non ¢ dispenibile una tecnica migliore per mancanza di ordina-
mento degli elementi. La ricerca binaria o logaritmica serve a trovarc un
elemento in una lista classificata dividendo a meté I'intervallo di ricerca
a ogni fase. Assumendo, per esempio, che si stia cercandn una lista
alfabetica si pud iniziare, per esempio, 8 meta della tabella ¢ determinare
se il nome che si sta cercando ¢ prima ¢ dopo di questo punto. Se ¢ dopo
questo punto si climinerd Ja prima meta della tabella e si osservera la
seconda metd. Si confronterd ancora questo ingresso con quello che si
sta osservando ¢ si restringerd la ricerca ad una delle ulteriori metd,
cccetera. La lunghezza massima della ricerca & garantita essere logan
dove n ¢ il numero di elementi della tabella.

Esistono molte altre tecniche di ricerca.

270

SOMMARIO

Questo capitolo si & proposto solo una breve presentazione dells
strutture dati usuali che possono essere utilizzate da un programmatore.
Sebbene [e strutture dati pid comuni sono state razionalizzate in tipi cui &
stalo assegnato un nome, 'organizzazione globale dei dati in un sistema
complesso pud utilizzare qualsiasi combinazione di questi oppure richie-
dere al programmatore di inventare strutture pil appropriate. L'insieme
di paossibilita ¢ limitate solo dall'immaginazione del programmatore.
Analogamente un numero di ben note tecniche di ricerca e classifica-
zione sono state sviluppate per accoppiarsi con le usuali strutture dati.
Lo scopo di questo libro & una descrizione concettuale. 1 contenuti di
questo libro sono intesi a sottolineare I'importanza del progetto di
strutture dati appropriale per la manipolazione dei dati ¢ per fornire
strumenti appropriati 8 queste cffeuto.

21

CAPITOLO 9
STRUTTURE DEI DATI

PARTE II - ESEMPI DI PROGETTO

INTRODUZIONE

Verranno qui prescntati degli esempi di progetto reali per strutture
dati tipiche: tabelle, linked list, alberi di classificazione. Si eseguiranno i
programmi per queste strutiure, degli algoritmi reali di classificazione,
ricerca ed inserzione. Verranno inoltre descritte delle tecniche aggiuntive
avanzate quali hashing e merging.

1l letiore interessato a queste tecniche di programmazionc avanzaia
viene incoragpiato ad analizzare i dettagli dei programmi di seguito
presentati. Invece i programmatori meno esperti potranno inizialmente
tralasciare questo capitolo, per poi rivederlo in una fase successiva.

Una buona comprensione dei concetti presentati nella prima parte di
questo capitolo & indispensabile per seguire gli esempi di progetto.
Inolire i programmi impiegano i modi di indirizzamento del 6502,
imegrando molti dei conceetti ¢ delle tecniche presentate nei capiteli
precedenti,

Verranno oraintrodotte quattro strutture: una lista semplice, una lista
alfabetica, una linked list con direttori ed un albero. Per ogni struttura
verranno sviluppati lre programmi: ricerca, ingresso ¢ cancellazione,

Inoltre verranno descritti separatamente alla fine del capitolo tre
algoritmi specializzati: hashing, bubble-sort ¢ merging.

RAPPRESENTAZIONE DEI DATI DI UNA LISTA

La lisia semplice ¢ 1a lista alfabetica utilizzano una rappresentazione
comune per ogni tlemento della lista:

| C o C D D D D

labtma| & X Byte danl

273

ENTLEN M= LUNGHEZZA DINGAESSO

TAGLEN N= HUMERQ D'IHQRESSO

BA! T ¥
SE TABELL — o

INGRESSO DATI N BYTE

/\/\/\/\A wip——= INGAESSC NUCVO ELEMENTO

Figura §.9: La struttura delia tabella

QATI

) c ,
C 1ABEL
< \
.]
ELEMENTG 1 ENTLEN
OaATI
PAVAVAVa VAV
\ o
EEe————— - - - - -
] C ’
c LABEL
o
FLEMENTO 3 o ENTLEN
NN
+]

 J

Figura 8.10: Ingressi tiplci della lista In memarla

274

Ogni elemento, o “ingresso™ comprende una label di tre byte ed un
blocco i di n bye di dati con ntra 1 ¢ 253. Quindi ogni ingresso impicga
almeno una pagina (256 byte). All'interno di ogni lista, tutti gli efementi
hanno la stessa lunghezza (Vedere Fig. 9-10). [programmi che operano
su queste due semplici liste impiegano alcune convenzioni comuni sulle
variabili:

ENTLEN ¢ la lunghezza di vn elemento. Per esempio, se ogni ele-
mento ha 10 byte di dati, ENTLEN = 3 + 10 = 13 byte
TABASE ¢ la basc della Jista o tabella nella memaria
POINTR ¢ il puntatore all'¢lemento corrente
OBJECT ¢ I'ingresso corrente da inserire o cancellare
TABLEN ¢ il numero di ingressi
Si assume che tulte le label siano distinte.

UNA LISTA SEMPLICE

La lista semplice ¢ organizzata come tabella di n elementi. Gli elementi
non sono classificati (vedere Fig. 9-11). Durante la ricerca occorre
esplorare la lista fino a trovare I'ingresso oppure arrivare alla fine della

TARASE — ELEMENTO 1 I ‘-EE:QE W

ELEMENTO 7

ADINTH —og ELEMERTO
COARENTE

ELEMENTO 1 [TABLEN = n|

SPATIO LISERD_-| SPAZID LIBERD

INSERZIONE
P Wavaave

R e N

CGAETTQ DA
INSERIRE

Figura 9.11: La liste semplice

275

RICERCA

{

CONTATORE -
NUMERD G inORESS0D

CONTATORE - 07 USLITA ERNORE

NG

LEGQI INGRESSD
(JLETTERE}

k-1

ATO

DONG? TRV,
COING! (PONI & UGUALE AD "FF)

COMTATORE — CONTATORE 1

5l
CONTATORE - 0 UELITA ERRCAE

VACITA ALLINGRESSO SUCCRSSIVO

Figura 9.12: Dlagramma ¢ Ntusso detla ricerca in ung tabella

276

lista. Durante Pinserzione vengeno aggiunti n nuovi ingressi a quelli
esistenti. Quando viene cancellato un ingresso, gli ingressi contenuti in
Jocazioni di memaria che precedono, s¢ presenti, verranna fatti scarrere
in avanti per la continuitd della tabella.

Ricerca

Viene utilizzata una tecnica di ricerca seriale. Qgni campo dclia label
deli’ingresso & confrontato passo a passo, con la label di OBJECT,
jettera per lettera,

Il puntatore corrente POINTR viene inizializzato al valore di
TABASE.

1l registro indice X viene inizializzato al numero di ingressi contenuti
nella lista {memorizzato in TABLEN).

La ricerca procede in modo ovvio ed il relativo diagramma di Mlussa
vienc rappresentato in Fig. 9-12. La Fig. 9-16, alla fine de! capitolo,
riporta il programma. (Programma “SEARCH™).

Inserzione di elemento

Inserendo un nuove elemento, viene utilizzato il primo blocco di
memona disponibile di (ENTLEN) byte alla fine detla lista. (Vedere Fig,
3-11).

Inizialmente il programma controlla che il nuova ingresso non sia gia
nelka lista (in quesio esempio si assurae che tutte le label siano distinte).
S¢ non ¢ gid nella lista viene incrementata la lunghezza dclla lista
TABLEN e si trasferisce QBJECT alla fine della lista. La Fig. 9-13
mostra il diagramma di flusse corrispondente.

La Fig. 9-16, alla fine de) capitolo, riporta il programma, Esso si
chiama "NEW" e risiede alle locazioni di memoria da 0636 a 0659.

Cancellazione di elemento

Per cancellare un elemento dalla lista, ¢ sufficiente trasferire di una
posizione (utti gli clementiche lo seguono ad un indirizzo piti elevalo, La
lunghczza della lista viene decrementata. Questo procedimento viene
llustrato in Fig. 9-14.

It programma corrispondente & immediato ed & riportato in Fig. 9-16.
Esso ¢ denominato “*DELETE” ¢ risiede agli indirizzi di memoria da
0659 2 0686. La Fig. 9-15 riporta il diagramma di flusso.

La locazione di memaria TEMPTR viene utilizzata come puntatore
temporaneo all'elemento da trasferire,

217

L'COGETTY € NFLLA
TABELLAY

[SALYA LA PRECEOENTE
LUNGHEZZA TABELLA

1
’lncauqmm LA umanezz;\]

TABELLA

PUNTA 30TTO
FINE TABEL LA

!

[INSEAISE) L OGGETTD

FINE

USCITA

Figura §.13: Dlagramma di llussa dl ingserzione in taballa

1) registro indice Y contiene la lunghezza di un elemento della lista ed &
impicgato per i trasferimenti automatici di blocchi di dati. Si noti che

CTANCELLA =g
ML

) MuOvE

TEMPYA e

O] 0/ 0JO OIOH

CDPD

OO

Figura 9.14. Cancellazions d| un ingresso (lieta semplice)

278

viene utilizzata la tecnica di indirizzamento indiretto indicizzato:

{0672) LOOPE DEY
LDA (TEMPTR), Y
STA {POINTR).Y
CprY #0
BNE LOOPE

Durante i trasferimenti POINTR punta sempre al “buco™ della lista,
ciok alla destinazione del trasferimento del blocco successivo.
1! flag Z viene utilizzato per indicare una cancellazione sull*uscita,

LISTA ALFABETICA

La lista alfabetica, o “tabella”, rispetto a quella precedente, conserva
tutti i suoi elementi classificati in ordine alfabetico. Questo consente
all'utente una tecnica di ricerca pii veloce rispetto alla tecnica lineare. In
questo caso viene utilizzata una ricerca binaria.

Ricerca

L’algoritmo di ricerca & quello classico della ricerca binaria. Si ricorda
che questa tecnica ¢ essenzialmente analoga a que¢lla impiegata per
trovare un nome in un elenco telefonico. Normalmente si parte a meta
de! libro e quindi, in dipendenza dell’ingresso trovato, si procede in
avanti o indietro alla ricerca de} valore desiderato. Questo metodo 2
veloce e relativamente semplice da realizzare.

Il diagramma di flusso della ricerea binaria & riportato in Fig. 9-17 edil
programma in Fig, 9-22. .

La lista conserva gli elementi in ordine alfabetico e li ricerca impie-
gando upa ricerca binaria o “logaritmica”. La Fig. 918 riperta un
csempio.

279

t

YAOVA INGRESSO

£5C1

S

DECREMENTA LUNGHEZZA TABELLA,

4

DECREMENTA NUMERQ 0! sNGRESSI

SCORAL AVANTI O UN INGRESS0

MAINLHSCH 1, CONTEQS:D
DEML NGRESS| RIMAYENT)
DOPQ QUELLD FATTO LCCRRERE

'

ESCL

Figura 9.15. Diagramma di tiusso dl canceliaziona in tabela

280

LINEA #LOC CODICE LINEA

[+173]

{024
0025

0026
o027
{028

itz
mH
oeaz

Lkl
uak -3
D03y
0538

0038
a0
0041
0042
0043
0044
0045
0046
D47

Cag

0Q4g
fasp
Q0351
G52

0641

0642
0g44
0646
DLET:]

AS
BS
AS
Bs
AB

FO
AD

:§)
B
Bo
ce

M
B1

Bs
90
E6

10
12
n
13
14

15
12
RE

15
12
07

13
12
1"

10
7

12

DE
13

oD
1o
14
OB
12

17
12
r
17

. TABASE =% 10
, POINTR =§ 12
; TABLEN =% 14
; OBJECT = 15
:ENTLEN =% V7
. TEMPTR =% 13
=% 600
SEAACH LDA TABASE JINIZIALIZZA PUNTATORE.
STA POINTR
LDA TABASE + 1
STA POINTR 41
LBX TAHLEN (IMMAGAZZINA TABLEN
: COME VARIABILE,
BEQ OUT ;CONTROLLASE TABELLAED.
ENTRY LBY 80 ; CONFRONTA LE PRIME
. LETTERE.
LBA {OBJECT), Y
CWMP {FOINTR}, Y
BNE NOGOOD
INY . CONFRONTA LE SECONDE
. LETTERE.
LBA {OBJECT), Y
CMP {POINTR), ¥
BNE NOGOOD
INY 1 CONFRONTA LE TERZE
i LETTERE.
LBA {OBJECT) ¥
CMP {PQINTR}, ¥
BEC FOUND
NOGOOD DEX . VEDI QUANT) INGRESS!
; RIMANGONQ.
BEC OUT
IéDe ENTLEN . SOMMA ENTLEN A POINTER.
L
ADC POINTR
S5TA POINTR
BCC ENTRY
INC POINTR 41
08 JMP ENTRY
FOUND LDA BSFF . SE TROVATO AZZERA
ILFLAGO.
ouT RTS
06 NEW JSR SEARCH : VEDI BE L'OGGETTO E QUL
BNE OUTE
LDX TABLEN . CONTROLLA SE TABELLAEQ,
BEQ INSERT
LOA POINTR ; POINTER E ALL'ULTIMD
;INGRESSO.
CLC . . DEVI TRASFERIALD ALLA
; FINE DELLA TABELLA.
ADC ENTLEN
STA POINTR
B8CC INSERT
INGC POINTR 1

Figura g-18. Programmi della lista semplice: Ricarca. inserziona, Cancellazione

{continum}

281

0053 O064A E6 Y4 INSERT
Dos4 QB4C A0 00
0056 OS4E A8 1T
0056 0650 B1 15 tooP
0057 o852 91 12
D058 0BS54 CB
0056 0885 Ca
0060 0856 DO Fa
008 OR5B &0 OuTE
Dog2 0B :
0063 0859
0064 0659 :
ggas 0859 20 00 06 DELETE
DOBE 08SC FO 2D
0087 08SE C6 14
pjes 08B0 CA
0069 0061 FO 26
oo7y 00BY AS 12 ADDEN
opr2 0065 18
0073 0668 65 17
DO74 0O6GR B5 18
00y5 0B6A A9 00
066L 65 13
0078 Q86E 85 19
0077 (B70 A4 7
0078 D8T: 68 LOOPE
Q7% 0873 B1 18
OB 0675 @ 12
ooa1 0877 CO OO
0082 0879 DO FT
0063 0BT CA
o084 DETC FO 08
0085 OB7TE AS 18
0085 0680 B85 12
ODB7 0BEZ AS 19
0088 05Bs BS 17
0083 OGBS 4C 63 06
0080 0889 A9 FF OONE
0091 D2AB B0 ouTs
0092 08BC :
D063 068C
0084 0eaC
ERRCQARS — 000 < 000 >
SYMBOL TABLE
SYMBOL VALUE
AODEN 0BE) (DELETE 0850
ENTRY 060C FOUND 0633
LOOPE 0872 NEW 0626
ouT 0635 OUTE DB58
SEARCH 0600 TABASE 0010

EMD OF ASSEMBLY

INC

LDY

LDX
LDA

INY
OEX

RTS

JSRA
BEC
DEC

DEX
BEQ
LODA

ADC
5TA
LDA
ADC

8TA
LDY
DEY
LDA

STA

BNE
DEX

BEQ
LDA

STA
LDA
5TA
JMP
LDA
RTS

END

DONE

TABLEN s INCREMENTA LA
; LUNGHEZZA DELLA
s TARELLA.
NQ . TRASFERISCI L'OGGETTO
i ALLA FINE DELLA TABELLA
ENTLEN
{OBJECT). 1
(POINTR). ¥
LOOP

.2 Al 1 SE ERA FATTO

SEARCH TROVA DOVE LOGOETTO.

ouTs ; ESCI SE NON TAOVATO.

TABLEN . INCREMENTA LUNGHEZZA
 TABELLA.
, VEDI ORA QUANTI INGRESSI
: SOND

DOME ... DOPD AVERNE

. CANCELLATO UNQ.

PROINTR . SOMMA ENTLEN A POINTER
€ . MEMORIZZA A TEMP.

ENTLEN

TEMPTR

NO

POINTR + 1; SOMMA CARRY AL BYTE
DALTO.

TEMPTR + 1

ENTLEN

{(TEMPTR), Y. TRASFERISCL IN BASSO DI
. UN INGRESSO DI MEMORIA,

{POINTR). ¥
NC
LOQPE
: DECAEMENTA
1L CONTATORE
DEGLI INGRESSI
DONE
TEMPTR : TRASFERISCI TEMP
; A POINTER,
POINTR
TEMPTA 41
POINTR + 1
ADOEN
NSFF , AZZERA I FLAG Z SE FATTO

0688 ENTLEN 0017

INSEAT 0B4A LOOP 0630
NOGOOD 0822 OBJECT 0015

ouTS

0888 POINTR OD%2

TABLEN Q014 TEMPTR 018

Frgura 9.1& Programmi galla lista semplice: Ricerca, insarziong, Cancellazione

282

'
[RLAG = ¢ j
¢

r PUNTA ALLA BASE TABELLA |

)

CONTATQRE ELEMENTI -
CONTATORE ELENENTULZ
SOMMA UND SE ERR DISPARI

¢

VALORE INCREMENTD]

HON TRQVATD

HO

| PWTA A NETA TABELLA |

* ‘—- INGRESSO

COMIATORE INCREMENTO = .
CONTATORE (NCREMENTO2

)

l SOMMA UNG S€ ERA DIFFAKI]

l CONFRONTA CON LYNORESSD I

5
TROVATO
NO

(SALYA CARDY |CARATTEMZLZA
CONFRONTO} NEL FLAG COMPRES

=l
ND

IALTRC TEST) WLTIMO}

Figura 9.17: Dlagramma di flusso dalia ricerca binaria {continua)

283

{ALTRD TEET} {LLTIO}
L]

CLOZEMDW —
COMPRESY

NON TROVATO

SOMMA 1

SALTA S5U
COMPRES

NON TROVATO

LING
SUPERERA
FINE TAB.Y

TRCPPO ALTD

TRASFERISC! AVANTI |
PUNTATORI D1 Y

AGGIOANA PLNTAT

INGRESEG

s *QQIOANA | PUNT.

FONOO TABELL &Y

MDN
TROYATO

INGREDSD
{PON BASHO)

fTRADPPC BASSD)
LS 4]
HBUNTATORI
W AVANTI I

ING =1
CLOBE NOW - e]
COMPRES

(INGRESSO

Figura 8-17: Dingramma di flugso della ricerca bianaria

284

Talvolta la ricerca & complicata dalla necessitd di conservare la traccia di
diverse condizioni. I] problema maggiore & quello di evitare 1a ricerca di
un oggetto che non ¢’¢, In tal caso l'ingresso entra con il valore alfabetico
immediatamente pit alto ¢ pit basso che dovrebbera essere controllati
indefinitamente. Per evitare questo viene conservato un flag per il valore
del carry dopo un confronto senza successo, Con il valore INCMNT,
Quando il valore INCMNT, che mostra di quanto sard incrementato il
puntatore, raggiunge il vatore **1%, un altro flag “CLOSE" viene posto
uguale al valore del flag CMPRS. Poiché tutti gli incrementi successivi
saranno "1, se questo puntalore va diretlo al punto dove dovrebbe
essere 'oggetto, CMPRES non sard pit lungo o uguale di CLOSE e 1a
ricerca terminerd. Queslo carattenizza anche le abilitazioni della routine
NEW per determinare se sono posizionati i puntatori Jogico e fisico,
relativi a dove andra I'oggelto.

Quindi se OBJECT cercato non si trova nella tabella, ed i! puntatore
cotrente viene incrementato di uno, il flag CLOSE sara posto uguale ad
uno. Al passo successivo della routine, il risultato del confronto sard
opposto a quello precedente. I due flag non diventeranno uguali ed il
programma terminera indicando “non trovato".

OGGETTO
——fte Arn"
TABASE
AAR
[Lo
L)]
INO|
Onnn A D—» 1
©ws e
vl
PRIVD TENTATIVO SECONDD TEMNTATIVO
INTERVALLD RICERCA % (NTLAYALLO AICERACA 2

Figura 8.18: Una ricarca binaria

285

Un altro problema fondamentale & quello di evitare la possibilita d}
uscire fuori dalla fine della 1abella quando si aggiunge o si sottrae il
valore dell'incremento, Questo problema viene risolto eseguendo un test
di “addizione™ o di “sottrazione” utilizzando il puatatore logico ed il

* valore della lunghezza per determinare il numero effettivo di ingressi,
piuttosto che utilizzare i puntaton fisici per determinare 1a loro posi-
zione fisica effettiva,

Riassumendo, il programma impicga due flag per memorizzare |'in-
formazionc: CMPRES ¢ CLOSE. Il flag CMPRES viene utilizzato per
memorizzare il fatto che il carry era ancora 0" o “'1” dapo ["ultimo
confronto. Questo determina se 'elemento sotto test era pit grande o pit
piccole di quello a cui é confrontato, Ogni volta che il carry C ¢ 1™,
Vingresso & pill piccolo dell’'oggetio ¢ CMPRES ¢ posto ad “1". Ogni
volta che il carty C & "'0™ I"ingresso ¢ maggiore dell'oggetto e CMPRES
sara posto ad "FF".

Inoltre si noti che, quando i carry ¢ 1, il puntatore corrente, puntera
all'ingresso sotto OBJECT.

Il secondo flag impiegato dal programma é CLOSE. Questo flag @
posto uguale a CMPRES quando l'incremento della ricerca INCMNT
diviene uguale ad "1, Questo rivelerd il fatto che I'elementa non éstato
trovato se CMPRES non ¢ uguale a CLOSE la volia successiva.

Altre variabili utilizzate dal propramma sonao:

LOGPOS, che indica la posizione logica nella tabella {numero dell’e-
lemento).

INCMNT, che rappresenta il valore di cui sard incrementato o decre-
mentato it puntatore corrente s¢ non ha successo il confronto successivo,

TABLEN, come al solito, rappresenia ta lunghezza totale della lista.
LOGPOS ed INCMNT saranno confrontati con TABLEN per accertare
che non vengano superati i limiti della lista,

La Fig. 9-22 rappresenta il programma chiamato “SEARCH'. Esso
risiede alle locazioni di memoria da 0600 a 06EY e merita di essere
studiato con cura, in quanto ¢ pid complesso di quello del caso della
ricerca lineare,

Una complicazione addizionale ¢ dovuta al fatto che I'intervallo di
ricerca puod essere pari o dispan. Quando ¢ pari occarre introdurre una
corrczione. Infatti, per esempio, esso non pud puntare a meta di una lista
di 4 elementi.

Quando questo ¢ dispari, viene utilizzato un "artificio” per puntare
all'clemenic intermedio: si esegue la divisione per 2 accompagnata da
uno scorrimento A destra. 1t bit che va a cadere nel carry dopo I"istru-
zione LSR sara ' 1" se ['intervallo era dispari. Esso viene semplicemente

286

aggiunto al puntatore:

(0615) DIV LSR A DIVIDE PER DUE
. ADC #0 RIVELA IL CARRY
STA LOGPOS NUOVQ PUNTATORE

OBJECT viene quindi confrontato con I'ingresso intermedio del
nuovo intervalle di ricerca. Se il confronto da esito positivo, si esce dal
programma, altrimenti (“NOGOOD") il carry ¢ posto a 0" se OBJECT
¢ minore dell’'ingresso. Ogni volta che INCMNT diviene 1™, il flag
CLOSE {(che & stato inizializzato a “0™") viene controllato per vedere se &
1", In caso contraric quest'ultimo viene posto ad "*|". Se era “1*' si
escgue un controllo per determinare se si é superata la locazione dove
doveva essere OBJECT.

Inserzione di Elemento

Per inserire un nuovo elemento ¢ necessario eseguire una ricerca
hinaria. Se I'elemento in questione viene trovato nella tabella, non si
deve eseguire 'inserzione. (In questo caso si assurne che tutti gli clementi
della tabella sianc distinti), Se 'elemento non viene trovato nella tabella
vecorre procedere dalla sua inserzione, (1 valore del flag CMPRES dopo
la ricerca indica se questo elemento deve cssere inserito immediatamente
prima o dopo I'ultimo elemento che ¢ stata confrontato. Tutti gli ele-
menti successivi la nuova focazione dove deve essere posizionato I'ele-
mento, vengono quindi trasferiti in avanti. di una posizione del blocco,
consenlendo 'inserzione del nuovo ¢elemento,

La Fig. 9-19 illustra il processo di inserzione ed il programma corri-
spondente é riportato in Fig. 9-22.

[l programma & chiamato “NEW" ¢ risiede nelle locazioni di memoria
da O6E3 a 075E.

Si noti ¢he, anche in questo caso, viene utilizzato Iindirizzamento
indiretto indicizzato per i trasferimenti di blocco:

(072A) LDY ENTLEN
ANOTHR DEY
LDA (POINTR), ¥
STA (TEMP), ¥
CPY #0
BNE ANOTHR

Analogamente si procede alla locazione di memoria 0750.

287

PRIMA
TADAGE e AAA

&
S| E| &) B[S

BAT HIAOVD
ELEMEKTD
TAR
ZAP TAR
AP
]
OGGETTO BAC TRASFERISC! IN BASSD

Figura 9.19: Inserziane: “BAC"

Cancellazione di Elemento

Anche nel caso di cancellazione di un elemento, occorre utilizzare la
tecnica di ricerca binaria per trovare 'oggetto. Se la ricerca da esito
negativo, ovviamente la cancellazione non ha senso. Se invece, I'ele-
mento viene trovato, tutti gli elementi successivi vengono mossi verso
I'aito, di una posizione di bloceo. La Fig. 920 mostra un esempio
corrispondente ¢ la Fig. 9-22 i) programma relativo, mentre il dia-
gramma di flusso appare in Fig, 9-21.

Esso é denominato "DELETE" e risiede agli indirizzi di memoria da
07¢F a 0799.

LINKED LIST

Si assume che una linked list sia formata da tre caratteri alfanumerici
per la label, scguiti da | a 256 byte di dati, seguiti da un puntatorc a 2 byte
che contiene I'indirizzo di partenza del nuovo ingresso cd, infine, seguito
da un contrassegno di un byte. Ogni volia che questo contrassegno di un
byte & posto ad 1", si previene che la routine di inserzione possg
sostituire un nuovo ingresso a) posto di quello esistente.

288

Inoltre un direttorio contiene un puntatore al primo ingresso per ogni
lettera dell’alfabeto, in modo da facilitare la ricerca. Nel progrmma si
assume che e label sianc caratteri alfabetici ASCI!, Alla fine della lista
tuiti t puntatori sono posti ad un valore NIL che & stato scelto, in questo
caso, uguale alla base della tabella, in quanto questo valore non
dovrebbe mai trovarsi all'interno delta linked list.

1! programma di inserziane ¢ di cancellazione esegue le manipolazioni
ovvie sui puntatori. Questo impiega il flag INDEX per indicare se un
puntatore sta puntando ad un oggetto proveniente da un ingresso prece-
dente della lista o dalla tabella dei direttori. La Fig. 9-27 riporta i
programmi corrispondenti, mentre la Fig. 923 mostra la struttura dati.

Un'applicazione di questa struttura dati potrebbe essere un efenca di
indirizzi computerizzati, dove ogni persona é rappresentata da un solo
codice di tre lettere (magari le comuni iniziali) ed il campo dei dati
contiene un indirizzo semplificato, pid il numero di telefona (fino a 250
caratteri).

PHIM A ooPD
AAA AR
TRAASFEMSE
N aLTd
ft ABC ABC
BAC — naT
BAT TAR
L— TAR AP
AP

V

CARCELLA

Figura 9.20: Cancetlazione; "BAC"

1.l

CANCELLAZIONE

|

ND
GIA' DENTRO? [}
-]
CONTA QUANTI ELEMENT]
SEQLONG QUELLO DA
CANCELLARE
k-

NQ

RISULTATQ = CONTATORE
LOG POS

!

an] PUNTAALLINGRESTO SUCCESSIVD
PUNTATORE = TEMP (SOAGENTE)

!

TRASFERISCILD I ALTO
Q1 UN BLOCCO

¢

PUNTA ALLINGRESSO BUCCESIIVE
PUNTATORE = PLINTATORE
DESTINAZIONE

!

DECREMENTA LOG POS J

—

(DECER) S

L PONI I FLAD I-o—

ArS

Figura 8.21. Diagramma ¢l flusso di cancellazione (lista altabetica)

290

LINEA #LOC CODICE LINEA

o002
0003
ogo4
0005
nons
pop?
noos
0009
10
o
0012
0013
o4
0015
018
w7
o018
019
020
oo
o022

0023
24
0325
0q26
og27

a8
0023
0020

o
032
03
0034
0035
003§
ag3y
0038
0039
40

0044
D042
0043
0D44
9045

0047

0049
0051

§2832388888888

gaig

060A

i

g

A3 0O
a5 10
8 1n
AS 12
B85 14
AS 1)
8s 15
A5 18

0o 03
AC EQ

FO OE
A5 18
18

85 14
BE 14

E6 5

D0 F2
A3 18

44

4 18
AD 0O

-1 [
D1 14
Do 1t

B1 1C
D14
Do DA

CLOSE
CMPRES
TABASE
POINTR
TABLEN
LOGPOS
INCMNT
TEMP
ENTLEN
OBJECT

SEARCH

Dl

D

LOOP

LOQP

ENTRY

LR R T R A T T Ty

i

3TA
LDX
DEX

BEC
LOA
CcLC
ADC
STA
pcc
INC

DEX
BNE
LOA

L5R
ADC
STA
LY

LA

CmpP
BNE

INY

LDA
Cump
BNE

[PR Y

O~ Damw-=c

—

=0

CLOSE
CMPRES
TABASE
POINTR
TABASE4Y
POINTR+1
TABLEN

ow
our

A

#0Q
LOGPOS

INCMNT
LOGPOS

ENTRY
ENTLEN

PQINTR
PQINTR
LOOP
PQINTA|-1

LOOP
INCMNT

A

eq
INCMNT
20

{QBJECTLY
IPOINTRLY
NOGOQOD

{OBJECT) Y
{PQINTR).Y
NOGQOD

. FLAG ZERO.

LANIZIALIZZA IL PUNTATGRE

. ACCETTA LUNGHEZZA
. TABELLA

. DIVIDILA PER 2.

; SOMMA AL PAIMO BIT.

. MEMOR|ZZA COME

: POSIZIONE LOGICA.

: MEMORI2ZA COME VALDRE
. INCREMENTG.

. MOLTIPLICA ENTLEN PER

. LOGPOS.

... AGGIUNGENDO IL
 RISULTATO AL PUNTATCRE.

. DIVIDI i, YALORE
. DELL'INCREMEMTO PER 2.

. CONFRONTA LE PRIME
: LETTERE.

. CONFRONTA LE SECONDE
:LETTERE.

Figura 5-22. Programma della Lista Alfabetica: Rlcarca Binaria.
Cancellazione, Insarzione (continua).

291

Jn52

0063
0054
0055
0058
0057

007¢
oon
oar2
0073
0074

oS

192

0848
0648
O54A
084C
084F

0851

0853
0B85
0057
0859
DESA
0B5C

D&5E

0870

0872
0673
0875

06?7
)
ngre

DE?D
DE?F
088y
p&a2
0684

1"
18

0
10

n
ot

EQ
1
1o
1

5
16

“
14
35

INY

LDA
CMP

P
NOGOOD LDY

BCC

LOY
TESTS STY
LoY
DEY
BNE
LDA

BEGC

SBC
BED

SEC

JMP
MAKCLO LDA

STA
NEXT BIT

EMI

LDA

SEC
SBRC
BEQ

gec
8CC
LDX

ADDER LDA
CLC

§TA
acc
INC
AL DEX
BNE
LOA

CLC
ADC
STA
JMP
TOOHS INC

LDA

CLe
ADC
STA
BCC

{POINTR}Y
NOGOOD
FOUND
#$FF

TESTS

.
CMPRES
INCMNT

NEXT
CLOSE

MAKCLO

CMPRES
NEXT

ouT
CMPRES

CLOSE
CMPRES
susIT
TABLEN

LOGPOS
ouT

INCMNT
TOOHI
INCMNT

ENTLEN

POINTR
PQINTR
AN
POINTA1

ADDER
LOGPOS

INCMNT
LOGPOS
ENTRY
LOGPOS

ENTLEN

POINTR
POINTR
SETCLO

: CONFAONTA LE TERZE
i LETTERE.
{OB.ECT),Y

PONIIL FLAG DICONFRONTO
:RISULTATO

. %E DQAGETTO < PLINTATORE:
L G-

LINCREMENTO HA YALOAE 17

CONTRAOQLLA SE IL FLAG

 “CLOSE"E 1.
. SENONE 1, VA A PORLG.

: VEDI SE §I £ PASSATI DOVE
. .. 0OVREBBE ESSERE
_LQGGETTO. MA NDN C'E

I POSIZIONA I, FLAG CLOSE
;A CMPRES,

: CONTROLLA CHE
(LCADDIZIONE DI INCMNT
.. VAOLTRE LAFINETABELLA.

: CONTROLLA SE Sl E GIA
. A FINE TABELLA.

; SE VA BENE INCAEMENTA
. IL PUNTATORE DELLA
CLLOUANTITA" CORRETTA,

{ INCREMENTA LA POSIZIONE
LOBICA.

INCREMENTA LA PDSI12IONE

 LDGICA

. TRASFERISCI AVANTI
;IL PUNTATORE D) UN
; INGRESSO

Figura 8-22. Programma della Lista Altabstica: Ricerca Binana.
Cancellazione, Inserzione {contlnua).

a100
g0t
g1o2

0103
0104
2105
0108
o107

o108
0oe

ouin
on
oz
ong
o114
o115
ong
o7
Q11B
o1g
0120
[1hd]
022

023
0124
0125
0126
0127
oz
aizo
0130
013
Maz
133
0134
0135
0136
mar
0133

Jigkc:)
0Mag
M4
Q142

0143
0144

Q145
0148

04T
[GF]]
0149
M50
015
0152

08AD
08A2
08RG

D8AT

DBAA
0AC
OBAE

06BN
oep2

DER4
0685
08B?

O6FS

Q6F7
OBFR
OBFA
DBFC
DOGFE
o700

FEIQE

AS 14

20 00

Fo 75
a5 18
0 82
24 1

10 D5
cs 17

4C 00
AL 1B

BS 14
85 14
50 @2
€6 15
A5 16

INC

od JMP

sueIT LDA

SEC
sBC
BEQ
8cc
5TA

LDX
SUBLOP LDA

SEC
SBcC
STA
BCs
DEC
supo CEX
ONE

TOOLOW LDX

BEG
DEC
LDA

SEC
SBC
STA
BCS
DEC
SETCLC LDA
STa
LDA
STA

ouT LDX
FOUND RTS

06 NEW JSA

BEO
LOA
BEO
BIT

BPL
DEGC

144 JMP
LOSIDE LDA

cLC
ADG
STA
8Ccc
INC
SETUP LDOA

POINTH 1
SETCLO
LOGPOS

INCiaNT
TOOLOW
TOOLOW
LOGPOS

INCMNT
POINTR

ENTLEN
PQINTR
5uBso
POINTH4Y

$UBLQP
ENTRY
LOGPOS

OuT
LOGPDS
POINTR

ENTLEN
POINTR
SETCLO
FOINTR—+1
1
INCMNT
CMPRES
CLOSE
EMNTRY

oS FF

SEARCH

QUTE
TABLEN
INSERT
CMPRES

LOSIDE
LOGPOS

SETUP
ENTLEN

PQINTR
POINTR
SETUP
POINTR+1
TABLEN

. VEDI SE INC VA OLTRE
+ ILFONDO
i~ DELLA TABELLA.

; CONSERVA LA NUOVA
; POSIZIONE LOGQICA.

: SOTTRAI DAL CONTATORE
;LA QUANTITA" CORRETTA,

. VEDI SE POS E GIA' 1,

: SOTTRAI L'INGRESSO 1
: DAL PUNTATORE.

. PONi Z AD 1 3E TROVATO,

:VEOI SE L'OGGETTO E GIA”
eV B

: CONTAOLLA SE TABELLAE 0.

. CONTROLLA RISLLTATC
. ULTIMO CONFRONTO.

. PONI LA POSIZIONE LOGICA
. IN MODO CHE

;.. 5U8 OPERI

. SUCGESSIVAMETE

. PONI PUNTATORE PRIMA DI

. DOVE
... ANDRA' LOGGETTO,

. VED! QUANT! INGRESS!)

Figura 9-22. Programma della Liste Aifabetica: Ricarca Binaria,
Cancellazione, Inserziona {cantinua).

203

M52

014
0155
0158
0157
0158

0159
0180

0161
0182
D163
064
0165
0166
0167
01ga

0169
o170
on
o172
073
0174

0175
0tT6
0t77
0178

o7e
0180
o181
a2
0183
0184
0185
[l
ma7
0188
nee
0180
)] 1]
Hge

a18a
J194
Q195
a186
a1y
0168
(UL]

0200
az2m
0202
Q203
a204
0205

294

o072

0703
0708
0707
0708
o708

0704
070G

070E
Q70F
0N
0713
ons
o077
07
0HA

ong
[ihad)]
U71F
T

0723
0724
0725
Qree
oraa
o7eA

o72c
0720
072F
o

0731
0735
0ra2
078
Q73A
073C
073E
0r40
ara

Q743

0745
0748
Q748
074A
074C
074E
0750

0752
(0754
0756
Q757
3758
a75A

arec

E5 17
FO 47

AR
FQ OE
A5 1B
18

B5 14
83 14

m
-]

15

0o F2
14

»
[

1B
16
0]

15
1A
B

14
18
o0
F7
"

80228 IERGERERR

38

ES 18
85 14
BO 02
Cg 15
CA

o o7
A3 1B

L]

85 14
a5 14
80 D2
EB 15
40 oD
AB 1B

B1 1C
a1 14
DO FB
E6 16

A2 FF

[EC

38C
BEQ
TAX
TAY
DEY

BEQ
UPLOCP LDA

cLC
ADC
STA
BCC
INC
SETD DEY
BNE
SETEMP LODA

cLe
ADC
8TA
BCC
INY

TYA
cLc
ADC
5TA
MOVER LOY

SET

ANOTHR DEY
LDA
STA
cPY
BNE
LDA
SEC
s8c
5TA
BCS
DEC
M DEX
BNE
LOA

CLC
ADC
8TA
BCC
INC
INSERT LDY
LDX

INNER LDA
STA
INY
DEX
BNE
INC

LOX

LOGPOS
INSERT

SETEMP
ENTLEN

FOINTR
POINTR
SETO
POINTA 41

UPLOOP
FOINTR

ENTLEN
TEMP
SET!

POINTA41
TEMP1
ENTLEN

(POINTR).Y
(TEMP).Y
0

ANOTHR
POINTR

ENTLEN
PQINTR
M1
POINTA41

SETEMP
ENTLEN

POINTR
POINTR
INSEAT
PQINTRA4-1
.0

ENTLEN
[QBJECT)LY
[PQINTRLY
INNER
TABLEN

3 FF

1. SONQ DATI DOVE ANDRA
. L'OGGETTQ.

: GUAROA SE 81 STA GIA’

: PUNTANDO

L ALLULTIMO INGRESSO,
T MUOVI IL PUNTATORE

. ALLULTIMO INGAESSO.

. SOMMA ENTLEN A
. PUNTATORE E
I ... MEMQRIZZA A TEMP

. Y ERA GIA'D.

: POSIZIONA ¥ PER LO
; BPOSTAMENTO,

L MUQVI UN BYTE.

. DECR. PUNTATORE € TEMP
. ...DI ENTLEN.

» TRASFERISCI INDIETRO
. IL PUNTATORE A
. DOVE ANDRA' L'OGQETTO.

: TRASFERISCI L'OQGETTO
. NELLA TABELLA

INCREMENTA LA LUNGHEZZA
. TABELLA.

Figura 9-22. Programma della Lista Allabstica: Ricerca Binaria,
Cancellazions, Inserzione (continua)

0207 075E o¢ DUTE ATS . Z = 1 5E NON FATTO.

n204 D?5F ;

o209 075F ;

0210 Q75F ;

0211 075F 20 00 08 DELETE JS5R SEARCH : ACCETTA ADDR
: DELL'OGGETTC NELLA
: TABELLA,

o212 0782 DO 35 BNE OUTS i VEDI SE E LA

a213 gred AS 18 LDA TABLEN . VEDI QUANTI INGRESSH

o214 0768 38 SEC , --SONO DOPO LOGGETTO
. NELLA TABELLA.

0215 6767 ES 17 SBC LOQPOS

0218 0769 FO 2A BEQ DECER

o21? 0768 85 17 STA LOGPOS . MEMORIZZA IL RISULTATO
. COME GONTATORE.

0218 0780 AS 18 BIGLOP LDA ENTLEN : PONI TEMP ED ENTRY UM
: INGRESSO SOPRA
UOGRGETTO

g219 078F 18 CcLC

o220 0770 65 14 ADC POINTR

oz o772 85 19 STA TEMP

0222 Q774 AS 00 LCA #0

ozl 0778 65 15 ADC POINTA4 1

0224 o778 B85 1A STA TEMP41

0225 077A A% 'R LDX ENTLEN ; POSIZIONA | CONTATORI.

D226 p77C AD DO LDY #0

N O77E B1 1B BYTE LDA (TEMP)LY . MUOVI UN BYTE.

Q228 0780 91 14 5TA (PQINTR)Y

0229 araz2 ca INY ;IL BLOCCO E ANCORA
. MD5507?

0230 0783 CA DEX

jskx)] g4 DD F@ BNE BYTE

0232 0788 A5 18 LDA ENTLEN

0232 0788 18 cLC

0234 0789 83 14 ADC POINTR

0235 0788 85 14 5TA POINTR

fire 078D 80 02 BCC D2

g3t O78F £8 15 INC POINTR+1

0238 0791 Ca 17 D2 DEC LOQPQS

3239 0793 Do DB BNE HBIGQLOP

0240 0785 C8 18 DECER DEC TABLEN

0241 797 A9 OO LOA =0 tZ = 18SEFATTO.

0242 0799 &0 CuTS RTS

0243 078A END

ERAQRS = 000¢ < DOOG >

SYMBOL TABLE

SYMBOL VALVE

AN 0688 ADDER OETD ANOTHR 072C BIGLOP Q76D

BYTE D?7E CLOSE 0010 CMPRES Q01v D2 ara

DECER D795 OFELETE O075F Oiv 0615 ENTLEN 0018

ENTRY DE2F FOUND OBE2 INCMNT O018 (NNER 0752
INSERT D74E LOGPOS DDY? LOQP o1 LOoOP 062C

LOSIDE Q6F5 M1 0740 MAKCLO 0868 MOVER (0724
NEW 06E3 NEXT 086C NOGOOD OB4F OQBRJECT 00 C
ouT MED QUTE Q75E QUTS 0789 POINTR 0014

SEAACH 0600 SETO 0M7 SET ar24 SETCLO 0&DS
SETEMP @71A SETUP 0700 SUBQ 0880 SUBIT 06AS
SUBLOP 06BZ TABASE 0012 TABLEN 0018 TEMP ooe
TESTS 0655 TOOHL 0BSS TOOLOW 0B6CA UPLOOP oroC

END OF ASSEMBLY

Figura 8-22. Programmi della Lisla Alfabetica: Ricerca Blnaria,
Cancollazione, Inserzione.

295

Esaminiamao pis dettagliatamente la struttura di Fig. 9-23, Tl formato
dell'ingresso #&;

C C C D D S D P P 0
N, g . ——— S——— ——
Inbal unice IASCH} anl [ds 9 a 250 byln) puniators sl
[y—
octupats

Come al solito le convenzioni sono:

ENTLEN: lunghezza totale deil’elemento (in byte)
TABASE: indinizzo della base della lista
TABLEN: numero di ingressi (da | a 256)

Si assume sempre che I'indirizzo di OBJECT risieda nel registro Y,
prima dell"ingresso del programma.

In questo case REFBASE punia all'indirizzo della base del direttorio,
o “tabella di riferimento™.

Ogni indinzzo a duc byte all‘interno del direttorio punta alla lettera
corrispondente della lista, Quindi ogni gruppo di ingressi aventila prima
lettera uguale nella label, formano, in effetti, una lista separaia all'in-
terno dell'intera struttura. Questo facilita la ricerca ed ¢ analogo ad un
elenco indirizzi. Si noti che nessun dalo viene mosso durante un'inser-
zione od una cancellazicne. Solo i puntatori vengono variali, come
avviene in ogni linked list ben realizzata.

DIRETTQRID
A PUMTATORE
A
PUNTATORE I A
R MIL
—
R PUNTATORE i
MIL

Figura 9.23: Struitura Linked List

296

Se non esiste nessun ingresso in corrispondenza ad una lettera partico-
jare oppufe s¢ non esistono ingressi alfabetici a partire da un certo
punto, i puntatori delle lettere corrispondenti punteranno all’inizio della
1abelta (="NIL™). Per convenzione, in fondo alla tabella viene memoriz-
za10 un valore tale che il valore assoluto della differenza tra quest'uliimo
¢ 2" sia maggiore della differenza tra “*A™ e 2", Questo rappresentail
contrassegno di fine tabella (EQT: End Of Table). Qui si assume che il
valore EQT occupi la stessa quantita di memoria di un ingresso normale
ma potrebbe essere proprio un byte, se richiesto.

Si assume inoltre che Ie lettere alfabetiche siano codificate in ASCII.
Inn caso contrarie occorre variare la costante nella routine PRETAB.

1l contrassegno di fine tabella EQT & posto uguale al valore dell'inizio
della tabella (*NIL™).

Per convenzione i “puntatori NIL" che si trovano alla fine di una
stringa o all'interno di una locazione di direttorio, ¢ che non puntano ad
una stringa, vengono posti uguali al valore della base della tabella per
fornire un‘identificazione unica. Si potrebbe utilizzare una convenzione
alternativa. In particolare, un diverso contrassegno per EOT potrebbe
far risparmiare dello spazio, se non € necessario nessun ingresso NIL per
ingressi non esistenti.

L'inserzione ¢ la cancellazione vengono eseguite nel modo consueto
(vedere la parte | di questo capitolo) mediante la modifica diretta dei
puntatori richiesti. 1l flag INDEXD viene utilizzato per indicare se i
puntatore all'oggetto si trova nella tabella di rifeimento oppure in un
altro elemente della stringa.

Ricerca

Il programma di ricerca SEARCH risiede nelle locazioni di memoria
da 0600 a 0650, Inoltre esso utilizza la subroutine PRETAB che si trova
all'indirizzo 06F8.

1l principio di ricerca & immediato:

! - accetta l'ingresso del direttorio corrispondente alla tettera dell"alfa-
beto nella prima posizione della label di OBJECT.

2 - accetta il puntatore di uscila del direttorio. Accetta I'elemento. Se
NIL I'ingresso non esiste.

1. se non NIL, si conlronta I'elemento con OBJECT. Se sono uguali,
la riccrea ha dato risullalo positivo. Se sono diversi si accetta il puntatore
all'ingresso successivo nella iista.

4 - ritorna al passo 2.

La Fig. 9-24 mostra un esempio di questo algoritmo.

297

@-—ﬁ ALNTATORE A @ i AL o) anc
PUNTATORE & _] _] HiL
TROVATO
1SOND AICHIEST| £ FASSH)
OGOET T (e —ee] B

Figura B.24: Linked List: una ricerca

Inserzione di Elemento

L'inserzione & semplicemente una ricerca seguita da un’inserzione se si
trova un "NIL". Un blocco di memoria per il nuovo ingresso viene
alloccalo dopo il contrassegne EOT, purché sia disponibile un contras-
segno di posizione. Il programma si chiama “NEW®™ e risiede agli
indinizzi da 0651 a 06BD. La Fig. 9-25 riporta un esempio.

298

BMA
PUNTATCRE A can oz
PUNTATDRE 8 | -
PFUNTATORE C
wm e (WIQETTC
L1}
DCRO
PUNTATORE A Al

PUNTATORE B

_I" citr

PUNTATORE &

i)

Cas

Ny

Figura 9.25' Linked List: esemple di inserzione

Cancellazione di Elemento

Un clemento viene canccllato ponendo il suo contrassegno di posi-
zione a ‘‘disponibile” ¢ regolando il puntatore del 1esto dal direttorio o
dall’elemento precedente, Il programma si chiama “DELETE" erisiede
agli indirizzi da 06BE a 06F7. La Fig. 9-26 riporta un esempio di

cancellazione,

PRIMA&

onwr

PUNTATORE
DAF
DaF '—l-' oo
PUNTATORE NIL
e.r,]
CANCELL M
oorQ
.
.-
i
=
MJNT. DOC - Doc
NiL
| DRF 1
....... 4

HOTA: DAF MCN YIENE CANCELLATO MA € INVISIBILE

Flgura 9.26: Esempic di cancellazions (Linked List)

299

LINEA

0o0s
D005

a7

0610
0011
0012
0013
0014
oms
0016

o7
0018
g

o021

300

rLOC CODICE

Q000
0000
0000
0000
00a
ooga

nato

0812
014
o6
0518

DE1A
0s1c
0G1E

0621
0623
0625
0827
0629

A9
as
20

-1}
85
ca
B
a5

0
1
Fa

n
13

1"
14

AC 00

81
ce
FO
81

m
90
Do
cBe

By
Ot
a0
Do
ca

a1
D1
90
FD
A5

a5
Aj
as
Ad

B1

13
Tc
3k
15

13
12
15
13
.}
35
13
1E
14
1C
13
1B
1F

13

AL

ca
B
-L]
.0
85
A9
BS

4C 10 DB

13
14

13
00
10

LINEA

INDEXS
INBLOC
POINTR
CBJECT
TEMP
REFBAS
oL
TABASE
ENTLEN

SEARCH

ENTARY

NCaQQoD

=$10
=
=$13
=815
=817
= 510
= 518
=518
= $1F

LDA
STA
JSR

LDA

INY
LDA

LDY

LDA
CMP
BEQ
LDA

cmpP
BCC
BNE
INY

LDA

Cwp
BCC
BNE
INY

LDA
CMP
BCC
BEQ
LDA

STA
LDA
S5TA
LDy

LDA
TAX
INY

LDA
STA
TXA
5TA
LDA
5TA
JMP

$ 600

1
NDEXB
PRETAB

(INDLOC)Y .
POINTR.

{INOLOG).Y
POINTR+1
0

(POINTR)Y
» $71C
NOTFND
{OBJECTLY .

{POINTR|, Y
NOTFND
NOGOOD

{OBJECT).Y
(POINTR].Y
NOTFND
NOGQQD

{OBJECT),Y
{POINTRLY
NOTEND
FQUND
POINTA 41

QLO-H1
POINTR
OLD
ENTLEN

{POINTR),Y
POINTA1

POINTH

4]
INDEXOD
ENTRY

CINIZIALIZZA | FLAG.

ACCETTA COME INIZIQ AEF.
: PUNTATO
METTILO IN POINTR

: VEDI SE L'INGRESSO E IL
; VALORE EOT.

CONFRONTA LE PRIME
. LETTERE.

. CONFAONTA LE SECONDE
- LETTERE.

{ CONFRONTA LE TERZE
{LETTERE,

: CONSERVA POINTA COME
, RIFERIMENTO.

. ACCETTA PUNTATORE DA
;. INGRESS0 E
{POINTR).Y ..

CARICALD 1N POINTR

: RESET FLAG.

Figura 8.27: Programma Linked List (conlinua).

0058
0057
0058
0059

Lk
pove

on7a
0074
0075

718

3100

o
D102

0103

0104
0105

OB4E

0aza
0676
0678
QETA
087C
OBTE
D8R0

FO &7
A5 1D
18

&g o
A 00

a5 18

ca

ce
A% 01

bt ar
AS 17
8

69 04
a5 17
A9 DD
a5 18

4C &7

AS 18

NOTFND LDA
FOUND RTS

06 NEW JSR

D&

BEQ
LDA
cLe
ADC
STA
LDA
ADC
5TA
Loy

INY

INY
LOOPP LDA

CMP
aNE
LDA

CLC

BCC
INC
MORE ADC
STA
LDA
ADC
STA
JMP
INSERT DEY

DEY
LOPE DEY

LDA
§TA
CPY
BNE
LovY
LDA

STA

INY
LDA
5TA
INY
LDA

STA
LDA

BNE

OEY
LDA

#3FF

SEARCH

OUTE
TABASE

#1

TEMP

LA
TABASE+1
TEMP -1
ENTLEN

1

(TEMPLY
INSEAT
TEMFP

ENTLEN
MORE
TEMP-+1
a
TEMWP
#Q
TEMP -1
TEMP-1
LOOP

(OBJECT).Y
(TEMP)Y

0

LOPE
ENTLEN
POINTR
|ITEMP}Y
POINTR+1
{TEMP) ¥
S

(TEMP)Y
INDEXD

SETINX

TEMP--1

;2 =1 5E TROVATO

; VEDI SE L'OGGETTO £ GIA
LA

; CERCA UN . BLOCCD
 INGRESSO NON OCCUPATO.
{SALTA DOFO IL VALORE EOT

. PQSIZIONA Y PER PUNTARE
;AL

.. MARKER D1 QCCUPAZIONE
. DI UN INGRESSO.

i TEST PER IL MARKER DI
; OCCUPAZIONE

: SE UTILIZZATO, MUGVI
; TEMP AL SUCCESSIVO.
.« BLOCCO D'\NGAESSD.

. PONI Y INDIETRO PER

. PUNTARE

T .. ALLA SOMMITA’ DEI DATI,
. TRASFERISCI LOGGETTO

. NELLO SPAZIO.

.METTIIL VALORE DI POINTR,
[LOGGETTO DOPO

: L'INGRESSO.

; NELL'AREA PUNTATORE

: DELL'OGGETTO.

:PONI AD 1 1L MARKER DI
: QCCUPAZIONE.

; TEST PER VEDERE S5E
: TABELLA REF.

: HECESSITA DI

; AIAGGIUSTAMENTD

. NO, CAMBIA IL PUNTATORE

Figura 8.27: Pmagramma Linked List {continua)

301

0106

0107
0108
o100}
0110
KN

0112

ona
B114
p115
o118
onz
(1R 1:]
o119
0120
R4
122

0123
0124

0125
0128
0127
0128
0129
130
Ha

0132
01

oTM
0135
0138
0137

0¥l
0139
0140
014
0142
0143
Q144

0145
0148
0147
0148
0149
a1sp
0151
Q152
msa
0154
0155
0158

02

0BAD
OBA7

OGAA
DEAC
DEAF

o602
0oB4

0887
0eBs
0600
e
00BE
0GBE
OBBE
06BE

gact
DEC3

o lel]
08C7

06CA

Q4CE
OBCF

o061

0665
0607
0aDA
08DD

0dDF
OREQ
OBE2
06E4

OGER
0GEA

OGEC
DEEE
DEFO
0BF1

06FS
OGFA
OGFB

DGF8
DGFA

9N

.1}
AS
N
4C
20

M
Ce

91
A%

ADQ
B1

06
FB 0&

11

18
1"
FF

00 06

18

SETINX

DONE
QUTE

DELETE

PREINX

MOVEIT

OuTs

PRETAB

STA

DEY
LDA
57A
JMP
JSR

LOA

STA
INY

LDA
S5TA
LDA
ATS

J5R

BNE
Loy

LDA
STA
INY

LDA
aTA
INY

LDA

STA
LDA

8EQ
JSA
JMP
LDA

CLC
ADC
STA
LDA

STA
LOA

LOY
5TA
INY
LDA
STA
LDA
RTS

LOY
LDA

{OLD).Y
TEMP
{OLD).Y
DONE
PRETAB
TEMP
IINDLOC). Y
TEMP4-1

{INDLQC).¥Y
#§FF

SEARCH

QUTS
ENTLEN

{POINTRLY
TEMP

{POINTR).Y
TEMP-+1

20

{PQINTR).Y
INDEXD

PREINX
PRETAB
MOVEIT
oLo

ENTLEN
INDLOGC
&0
ooyt
INDLOC+1
TEMP

&0
{INDLOC).Y

TEMP+1
{INDLOG), Y
#0

»0
(OBJECT).Y

... DELL'INGRESSO
. PRECEDENTE.

:ACCETTA L'INDIRIZZO DI
. Ci0' CHE DEVE ESSERE

: CAMBIATO,

; CARICA QUI L'INDIRIZZO
: DELLU'OGGETTO,

12 = B SE FATTO

1 ACCETTA LINDIRIZZO
{ DELL'OGGETTO.

. MEMORIZZA IL PUNTATORE
. ALLA FINE
DELL'OGGETTQ

; AZZERA IL MARKER DI
: QCCUPAZIONE.

. VEDI SE TABELLA REF
. NECESSITA
i - DI RIAGGIUSTAMENTO.

: PREDISPONITI PER
: CAMBIARE
. . L'INGRESSO PRECEDENTE.

. CAMBIA CIO" CHE
. VA CAMBIATO.

12 =1 8EFATTO,

Fig. 8.27; Programma Linked L|81 {continua).

0157
msa

0159
0180
1161

ez
0183
0184
06s
0166
oar

OBFC

D8FD

O6FF
0700
ora1

0703
0705
0707
e
0708
0?0

1"

o0
1A
12

SEC
SBC

ASL
cLcC
ADC

STA
LDA
ADC
§TA
RTS
.END

ERAORS — 0ODD < DOOO >

SYMBOL TABLE

SYMBOL VALUE
DELETE (OGBE
FOUND Q650
LQOP 0087
NEW 0851
OLD 0018
FREINX 0ADO
SETINX QBAF

i TOGLI LA TESTATA

L ASCI DALLA
#341 . . PRIMA LETTERA
i OELL'OGGETTQ,
[s MOLTIPLICA PER 2.
AEFBAS . INDICE NELLA
+ TABELLA REF.
INDLOC .
]
REFBAS 41
INOLOC+1

OONE 0gBB ENTLEN O00'F EMTRY 081D

INDEXD D010

LOFE 0BB5 MOCRE

HOGOOD 0832

QUTE 0ABL OUTS

PRETAD 0OF8

TABASE ODID TEMP
END OF ASSEMBLY

INDLOC 0011 INSERT (683

0676 MOVEIT D8EA

NOTFND O0B4E OBJECT 0015

06F7 POINTR 0012

REFBAS 0010 SEARCH 060G

oz

Figura 9.27: Programms Linked List,

303

ALBERO BINARIO

. 8j svilupperanno ora delle routine tipiche di manipolazione ad albero.
La Fig. 9-28 mostra una semplice struttura. | nomi verranno memoriz-
zat) internamentc mediante etichette formate dalle prime tre lettere di
ciascun nome. La rappresentazione di memoria di queste tre strutiure
appare in Fig. 9-29. Sono noti i contenuti dei nodi e dei due collegamenti
di ciascuno di essi. Il primo collegamento, a sinistra del nome, ¢ il
“sibling di sinistra™ ed il collegamento successivo, a destra, & il “sibling
di destra”. Per esempio, I'ingresso per Jones contiene due collegamenti;
2 ¢ 4", Questo indica che il sibling di sinistra & l'ingressoc numero 2
{Andcrson) e quello di destra &1l rumera 4 (Smith). Uno zero, nel campo
del coll=pamento, indica nessun sibling, L'etichetta del sibling di sinistra
viene alfabeticamente prima di quello di destra,

/E?? \ /N
v e [CL0

(8)

Figura 9.28: Albero binario

Le due routine principali per la manipolazione ad albero sono la
costruzione di albero e 'atiraversamento di albero. L'elemento da inscrire
verrd posizionato in un buffer. La routine di costruzione di aibero
inserira i contenuti del buffer nell'albero in corrispondenza del nodo
appropriato. La routine di atiraversamento di albero, percorre recursi-
vamente e stampa i contenuti di ogni nodo dell*afbero, in ordine alfabe-
tico. La Fig. 9-30 mosira il diagramma di flusso per la costruzione
defl’albero e la Fig. 931 per |'attraversamento.

Poiché la routine per I'atiraversamento é recursiva non si presta ad una
rappresentazione mediante diagramma di flusso. Quindi si fornisce,

304

SINISTRA DESTRA

JONES 2|4
b

ANDERSON 713

BROWN |0

SWITH 5|6 p—

Y
ORDINE
0! INSERZIONE

i

MURRAY Q30

IOAK 3 0 ‘__—

ALBERT 0|0

TIMOT Ry 0}0 #

Figura 9.28: Rappresemazions in memoria

308

PUNTATORE WORK —
PUNTATORE START

FREEFTR - 00

WORKPTR
a— MGHTPTAR CEL
NODC CORAENTE

1

(AGGILNG | CONTEN.

BUFFER A SOMMITA'
DELL'ALBERO

PONI A B
PLUNTAYORI DFi_
LOVD MODG

o

FRAEEPTHA = FAEEPTR
+ ENTLEN ~4

AGGIUNG | CONTEN.
OELL'ALFABETO A
SOMMITA' ALBERD

PUNTATORE DESTRD
EL NQDO CORRE
— FRAEEFTR

1 PUNTATOAI DEL
MUOYO NODO SOND
POSTI & 07

'

FRCEPTA = FREEFTA

v ENTLEN + 4

AIMORNO

306

Figura 9.30: Diagramma di {lusso della costruzione ad albero {continua).

B
PUNTATORE SINISTRO WORKPTR —
DEL WOOGQ CORRENTE = O° RIQHTPFTH DEL
NODO GORRENTE

AQOWNGH ¥
CONTENLITI ALLA
FOMMITA DELL'ALDEAD
{PLINTAT! DA FREEPTR)

'

AGGIUNGH) CONTEN
DELL ALFABETC A
SOMMITA ALBERC

{

PONI A Q
I PUNTATOR) CIEL
NUCOWQ NODOD

i

FREEFTA — FREEPTA
+ ENTLEN + 4

RITORNG

Figura 8.30: Dlagramma ¢h 1lusso della cosleuzione ad slbero

a7

308

@

WORKTR STANTR TR

| CARICA WOREPTR I

y
| worketa « Les TPTR (waPT)]

MCERCA

{ Srame ALBERO cwORKPTR) |

i
[workeTR o RiGHIFTR¢WORKE TR |

4

I

MTORNQ

Figura 8.21: Diagramma di Nusto dell'attraversamenio di albera

PROGRAMMA PER ATTRAVERSAMENTO Di ALBERD

NIZIO

WORKPOINTER: — STARTPOINTER;

RICERCA: INIZIO

SE WORKPOINTER #0 ALLORA INIZIA
INSERISC) WORKPTR;
WORKPDINTER: = LEFTPTR (WORKPOINTER});
PRELEVA WORKPOINTER:
STAMPA |ALBERO (WORKPOINTER}|;
WORKPOINTER: == RIGHTPTR {WORKPOINTER):
RICHIAMA RICERCA;
FINE,

| RETURN:

. ENDy

END.

Figura 9.32: Algoritmo di attraversamento di albero

SINISTRA PTR DESTRA PIR

H
l' LIH

{n}) (n + ENTLEN + 4)

DATI "ENTLEN" BYTE

Flgura $.33: Unlla dali o "Nodi” del'alberg

nella Fig. 9-32, un'altra rappresentazione della routine in un formato ad
alo livello. La Fig. 9-33 mostra un nodo reale dell’albero, Essa contiene
dei dati di lunghezza ENTLEN e due puntatori a 16 bit (il puntatore di
destra ¢ quello di sinistra). Per evitare confusione si noti che la rappre-
sentazione della Fig. 9-29 ¢ semplificata e che il puntatore di destra
appare a sinistra nella memoria, La Fig. 9-34 mostra Pallocazione di
memoria impicgata da questo programma e la Fig. 9-37 riporta il
programma cffettivo,

La routine INSERT risiede agli indirizzi da 02200 a 0282. L'etichetta
dell'oggetto da inserire viene confrontata con I'ingresso, Se & maggiore ci
si muove verso destra, se minore, a sinistra di una posiziane. [l processo
viene quindi ripetuto finché non si trova un collegameato vuoto o si
trova un “aggancio™ adatto per un nuavo aode (ciod un nodo ¢ mag-
giore del successivo e viceversa). Il nuovo nodo viene quindi inserito con
i collegamenti corretii.

309

La routine TRAVERSE nisiede agli indirizzi da 0285 a 02D6. Le
routine di servizio OUT, ADD e CLRPTR risiedono agli indirizzi da
0207 a 02FE (Vedere Fig. %-37).

PAGINA O PANUTE ALTA BELLA WEVDRA
$200

30
FREFTR (LG PROGHAMMA

FREPTR {H)) :

WRXPTR LD

\V4

WRKFTR (Hi)

ENTLEM

ATRTPT (L)

STATPT G|
517

a— ALBERC

BUFFEA

gpfrrm—m——— - - SOMMITA
DELL'ALBEAD

Figura 9.34: Mappe di memaria

La Fig. 9-35 mostra un esempio di inserzione di albero ¢ la Fig. 9-36
mostra un esempio di attraversamento di albero.

UN ALGORITMO HASHING

Un problema comune nella realizzazione di strutture dati ¢ il posizio-
namento degli indicatori all'internc di un limitato spazio di memoria, in
un modo schematico tale che possano essere facilmente recuperati.
Sfortunalamente finché gli indicatori sono dei numeri sequenziali
distinti (senza vuoti) non si prestano al posizionamento in memoria.

o

1 RICERCA ANOERSON

N\
o | [oo

{NSEPZIONE ————p- | TOW TIMDTHY

TIWOTHY

Figura 9.35: Ingerzione di un elemento nell'albarg

In particolare, se i nomi devono essere posizionati nella memoria cosi
da poter cssere recuperati pil l[aciimente (cioé se essi sono posizionati
alfabeticamente) essi potrebbero richicdere un'enorme quantitd di
memaria; per ogni nome possibile dovrebbe essere riservato un singolo
blocco di memorsia. La funzione matematica utilizzata per eseguire
I'hashing dovrebbe esserc semplice in modo da ottenert un algoritmo
veloce, ma abbastanza sofisticato da rendere casuale 1a distribuzione dei
nomi possibili sullo spazio di memoria disponibile. Il numero risultante
pud essere quindi utilizzato come un indice per la locazione effettiva c
sara possibile un recupero veloce. Questa € la ragione per cui I'hashing
viene comunemente impiegalo per le direttive dei nomi alfabetici.

Poiché nessun algoritmo pud consentire di allocare due nomi nella
stessa locuzione di memona (una “collisione™) occorre escogitare upa
tecnica per risolvere il problema delle collisioni. Un buan algoritmo di

KJ B

JDONES

ANDERSON SWITH

ALAERT BROWN MURARAY 208
TIAQTHY
ALBEAT ANDERSDN BROWN JONES MURAAY l
St Z0RK
Tig QT HY

Figura B.36: Listing dell'albero

hashing distribuira i nomi eventualmente sullo spazio di memoria dispo-
nibile ¢ consentird una ricerca efficiente dei loro valori una volia che
sono stati mecmorizzati in una tabella. L*algoritmo di hashing utilizzato
in questa sede ¢ molto semplice.

Esso esegue I'OR Esclusivo di tunii i byte della chiave. Per rendere
ulteriormente casuale)'operazione vicne cseguita una rotazione dopo
ogni addizione.

La tecnica utihizzata per risolvere il problema delle collisioni & una
semplice tecnica scquenziale. Essa tecnicamente viene chiamata “tecnica
sequenziale di indirizzamento apeno'; it blocco disponibile sequenzial-
mente successivo viene allocato come ingresso. Questo pud essere con-
frontato con un elenco di indirizzi tascabile. Si assume che si deve
introdurre un nuovo ingresso come SMITH. Comungue nel nostro
piccolo elenco di indirizzi !a pagina “S™ ¢ piena. Si utilizzera la pagina
sequenzialmente successiva. (In questo caso la “T™). Sinobi che necessa-
riamente non ci sard un'alira collisione con un nuovo ingresso iniziante
con “T", I'ingresso *S" sar rimosso prima che debba entrare una “T.

Inoltre si noti che potrebbe sussistere una catena di collisioni. Se la
catena ¢ lunga la tabella non ¢ piena, 1'algoritmo hashing & mal proget-
tato.

312

a7
o018

§ P EERE G B 8 BBSA B 8 88

0218

021D

o224
0024

CODICE LINEA
FREPTR
WRKPTA
ENTLEN

00 D8 STAYPT
BUFFER
: DAT

AS 15 INSERT

B5 12

AS 18

85 13

AS 10

cs 15

0o 00

AS 11

cs 16

Do 07

20 D7 @

20 E4 02

B0

A0 00 INLOOP

89 17 00 CMPLP

DY 12

9 33

FO 02

80 06

: PROGRAMMA DI MANAGEMENT D) ALBERO.

; 2 AOUTINE: UNA, QUANDO CHIAMATA, PONE

i NELL'ALBERO 1| CONTENUTI DEL

: BUFFER; LA SECONDA ATTAAVERSA L'ALBERD

; RECURSIVAMENTE, STAMPANDO, IN ORDINE

; ALFABETICO | CONTENUTI DEI SUOI NQDI,

s NOTA ENTLEN VA INIZIALIZZATO

: E‘FREPTR' DEVE ESSERE UGUALE A

. 'STRATPTH PRIMA 01 IMPIEGARE ENTRAMBE LE ROUTINE.

‘=$10
=42 . PUNTATORE SPAZIO LIBERO.
T PUNTA ALLA SUCCESSIVA LOCAZIONE 04
. MEMORIA LIBERA.
=42 : WORK POINTER PUNTA AL
. NODO CORRENTE
= | : LUNGHEZZA INGRESSI
: ALBERO, IN BYTE.
WORD $600
=4 . BUFFER OI 10D,
= 50

.; ROUTINE DI COSTRUZIONE ALBERQ: AGQIUNG! UN'UNITA'

. O NODO ALL'ALBERO. DEVE ESSERE
: CHIAMATA CONLUNITA DATI DA AGRIUNGERE IN 'BUFFEF.

LDA
STA
LOA
STA
LDA
CMP
BNE
LDA
CMP
BNE
JSR
JSR
ATS
LDY
LDA

CMP
Bcc

BEQ

BCS

STRTPT ; WORKPOINTER {=
. FREEPOINTER,).
WRKFTR

STATPT +1

WRKPFTR +1

FREPTR . SE FREEPOINTER
-

STRTPT PUNTATORE DELLA
 LOCAZIONE DI PARTENZA,
INLOOP ENTRA NEL CICLO DI

: INSERZIONE.
FREPTA 41

STRATPT4-1

INLOOP

ADD : CARICA BUFFER NELLA

; POSIZIONE CORRENTE
CLAPTR ; PONI A O | PUNTATQRI DEL

» NODOQ CORRENTE

. FATTO AGGIUNGENDO IL

. PRIMO NODO.

=0 ; CONFRONTA L'ETICHETTA
. DEL BUFFER A QUELLA
i OELLA ..

BUFFERY . LOCAZIONE CORAENTE.

(WAKPTR)LY

LESSTN . EMCHETTA BFR PiL' BASSA:
, AGGIUNGI BUFFER A PARTE
 SINISTRA ALBERQ.

NXT : ETICHETTE UGUALL,
, YERIFICA QUELLE CEL
; CARATTERE SUGCESSIVO.

QRTNEQ : ETICHETTA BFAR MAGGIORE;
. AGGILUNGI BFR A

Flgura 9-37. Programm| dl Ricerca neil'Albaro (continua).

313

0047
0048
0049
0050

a5
og52

obep

0aa

kI

0228
0228

0269
025D
0270
02713
o274
0278

Q277
care

Flgura 8-37.

co
0o

Af

™
DO

Ad
c8

[+]]
B1

04
FQ

14
12
15

12
10
1"
12

W0
12

D7 o2

Ea

"
12

12
13
172

8 02

14

12
15

12
10
n

12

1D
12

Dr o2

E4

12

02

NXT INY
CMP
BNE

GRTNEQ LDY
LDA
BNE

IN¥

LDA
BNE
LDA
5TA

DEY
LDA
5TA
JSR

JSA
ATS

NXANCD LDY
LDA

TAX
INY

LDA
STA

JMP

LESSTN LDY
INY
INY
LDA
BNE

INY

LDA
BNE
LDA

S5TA
CEY
LDA
5TA
JSR
JSR
RTS
NXLNOD DY
INY

INY
LDA

. PARTE DESTRA ALBERQ.

EL ;3 CARATTERI CONFRONTATI.
CMPLP L NQ, CONTROLLA QUELLD

: SUCCESSIVO.
ENTLEN ;1L PUNTATORE DESTRO

|WAKFTR).Y : QEL NODO CORARENTEE = Q.
NXANOD ;| SE NO, MUOVYITI

: NELL'ALBERO N BASSC

: A DESTRA,

(WRKPTR|.Y
NXANCD

FREPTR41 :PONIIL PUNTATORE DESTHO
(WRKPTR).Y : DEL NODO CORRENTE =

. FAEEPDINTER.
FREPTR
(WRKPTR)Y
ADD : AGGIUNG] BUFFER
: ALL'ALBERD.

CLAPTR { AZZERA | PUNTATORI DEL
: NODO SUCCESSIVO.
i FATTO, AGGIUNTD NUOVOD
s NODO,
ENTLEN ; POSIZIONA WORK POINTER.
[WRKPTRLY, PUNTATQRE A DESTRA DEL
; NODO CORRENTE

(WRKPTR).Y
WRKPTR41
WRKPTR
INLOOP S PROVA IL NUQVD NODOD
: CORRENTE.
ENTLEN . IL PUNTATORE Di SINISTRA
, DEL NODD CORRENTEE = 0%

(WRRKPTRLY
NXLNDOD | SE 51, MUOVITI IN BASS0 A
. SINISTRA NELL'ALBERO

{WAKPTR),Y
NXLNOD
FAEPTR+1 : POSIZIONA IL PUNTATORE
: D1 SINISTRA DAL NODO
(WRKPTRL.Y ; CORRENTE AL NUOYVQ NGDO.

FREPTR
(WRKPTR)Y
AQD . AQGIUNG! 1 CONTENUTIDEL
» NUOVD NODO.
CLAPTR . AZZERA 1 PUNTATORI DEL
: NUOVQ NQDO.
: FATTO, NUDVO NODO
. AGGILNTO.

ENTLEN . PONI WORKPOINTER —
i PUNTATORE D
: SINISTRA DEL NOQDO
: CORRENTE

(WRKPTR).Y '

Programmi di Ricerca nell'Albera (continuaj.

D052
0053
0094
0095
0098
aoey

ougR
Qogg
0100
o
9102
0103
0104

0105
0106
o107
0108
0109
ona
on
oz
ona
0114
0115
oné
onr
D118

0118
012
0121
o122
0123
0124
025
0128

ozr

0128
0129
0130
a1y

0132
Uk

0134
135
0136
My
0138
0136
0440
[LRE]
0142
143
044
0145

285
285

287
n2eg
nz2ee
0280
D28aF
0291
0293
0285
n29?
029A
pase
028C
0290
D24F

D2A0
02A1

02A
D244
D2A5
02A7
02A8
02AB

02AE

O2AF
028}
0282
0284

0287
0289

0288
o28C
0280
2BF
o2C
0eCy
02CA
o2C?
o2CT
02C?
02Cy
o2C8

Figura 8-37.

B1

12
13

12
1802

15
12
16
13
13

2
o7
13

C6 02

AL |

12

12
80 02

13
C7 02

14
12

12
13

8D D2

o0
17

TAX
INY

LOA
5TA
5TX
JMP

(WRKPTR). ¥

WRKPTR 4.1

WRKPTH

INLOOP . PROVA IL NUOVQ NODO
: CORRENTE.

' ATTRAVERSAMENTO DOI ALBERD: ELENCA | NGIDI
; DELL'ALBERO IN ORDINE ALFABETICO,

: € RICHIESTA LA ACUTINE O'USCITA PER

 XFER BUFFER AL DISPOSITIVO D'USCITA,

TAVASE LDA

STA
LOA
STA
SEARCH LDA
LDX
BNE
LDY
BNE
JMP
OK PHA
TXA
PHA
LDY
INY

INY

LDA
TAX
INY

LDA
STA
8TX
JSR

PLA

RETN ATS

STRTPT s WORAKING POINTER < =
; START POINTER.
WRKPTR
STRTPT+1
WRKPTR 1
WRKPTR 4§
WRKPTR . SE WORK POINTER < > 0.
oK . CONTINUA;
WRKPTR 41
OK

RETN s ALTRIMENTI, RITORND.
, SPINGI WORK PQINTER
; NELLO STACK.

ENTLEN : PONI WORKPDNTER —
: PUNTATORE DI SINISTRA
1 DEL NODO CORRENTE.

{WRKPTR),Y

{WRKPTR).Y

WRAKPTA L1

WAKPTA

SEARCH ;AICERCARECURSIVAMENTE
; IL NUQVD NODO.
, PRELEVA iL VECCHIO NODO
; CORRENTE E PONILG IN

; WORK PGINTER.
WRKATA
WAKFTR4-1
out . FA" USCIRE § CONTENUTI

. DEL NODQ CORRENTE.
ENTLEN . PONI WORK POINTER =
{WAKPTRLY PLNTATORE DI DESTRA DEL
i NODO CORRENTE.

(WRKPTRA)Y

YWRKPTR 41

WAKPTR

SEAACH :RICERCA NUQVO NODO.
CFATYO. RITORAND.

E RACGUTINE O LISCITA DEL BUFFER.

oyT LDY
xF0 LDA

[1]

{WRKPTR).Y ; ACCETTA CARATTERE DEL
:NOOO CORRENTE.

Programmi di Ricerca nell'Albero (continua).

315

na?
0188
0189
0170

0
D172

o3
0174
0175
o1ma
o7
i3k
k]
i1}, ¢}
a1
uf -4
o

0764
85

ERRORS — DOOC < 0000 >

02E8
02EB

DZEA
REC
(R2ED
REE
@0
aar2
R
0@FE
o2F7
02Fe
02FB

Q2FD
D2FE

A9 D)
A2 D4

91 10

00 FA
AL t4

10

04
85 W
W e
Es 1

85 10

END OF ASSEMBLY

K}

STA
INY
CcPY

BNE
NOP

NOP

NOP
RTS

BUFFER.Y :PONILD IN BUFFER.
; AIPETI FING ...
ENTLEN : AL TRASFERIMENTO DI
. TUTTI I CARATTERI.
XFR .
, INSERISCI LA CHIAMATA
;ALLA
; SUBROUTINE CHE FAUSCIRE
. BUFFER.

. FATTO

| ROUTINE CHE PONE | CONTENUTI
» DY BUFFER IN UN HUOYO NOOHO.

ADD
NOV

LOY
LDA

STA

INY
crY

BNE
RTS

#0
BUFFERY . ACCETTA CARATTERE OA
1 BUFFER

(FREPTR)Y | MEMORIZZALO IN UN NLIOVO
i NODO.
(RAIPETIFIND ...

ENTLEN . AL TRASFERIMENTO DI
. TUTT1 | CARATTERI.

I FATTO.

MOV

:. ROUTINE PER AZZERARE | PUNTATORI DEL NUQVQ NODO.
: E PER AGGIORNARE (L. PUNTATORE DELLO SPAZIO LIBERD.

CLRPTR

CLRLP

LDY

LDA
LOX

5TA
INY

ENTLEN . PQSIZIONA L'INDICE PER

. PUNTARE

 ALLA SOMMITA' DELLE

; LOCAZIONI DEL PUNTATORE,
0
4 : CICLA 4 VOLTE PER

: AZZERARE | PUNTATOQRI,
(FREPTR) Y. : AZZERA LA LOCAZIONE DEL

: PUWTATORE.

» PUNTA ALLA LOCAZIONE

S SUCCESSIVA DEL

. PUNTATORE.

CLALP . AIAICLA 5E NON FATTO.
ENTLEN : ACCETTA LA LUNGHEZZA
: DELL'INGRESSO
; ED AGGIUNGI 4 PER LOQ
‘ : SPAZIO PUNTATORE.
-

FREPTR ; AGGIUNGI AL PUNTATORE
cc : DELLD SPAZI10 LIBERO PER
; AGQIOANARLO.
FREFTA41 ;| ATTENZIONE AGLI
. OVERFLOW
FREFTR ; RIFIMMAGAZ ZINA 1L
; PUNTATORE OELLO SPAZID
| UBERD AGGHORNATO.
; FATTO.

Figura 8-37. Programmi ¢l Ricarca nell'Albero .

Nota sughi Alberl

Gli alberi binari possono essere costruiti ed attraversati in molti modi.
Per esempio, una rappresentazione alternativa per I'atbero che si consi-
dera potrebbe esserc:

ALBERT
ANDERSON MURRAY
BACWN SHITH TMOTHY

/

ZORK

Figura 8.38: Albero in pre-ordine

Esso polrebbe essere attraversato in *‘preordine”:

L - elenca la radice
2 - attraversa il sub-albero di sinistra
3 - attraversa il sub-albero di destra

Esistono molte altre tecniche ¢ convenzioni.

Poiché & conveniente utilizzare una potenza di due per it formato dei
dati, la lunghezza dei dati & di otto caratteri; sei sono allocati come
chiave ¢ due come dati. Questa € una situazione tipica, pcresempio, nella
creazione della tabella dei simboli di un assembtler. Fino a sei simboli
esadecimali sono allocati come simbolo e duc sono allocati per I'indi-
rizzo che esso rappresenta (2 byte).

Nella ricerca di elementi da una tabella hashing, il tempo richicsto per
la ricerca non dipende dalla dimensione della tabella ma dal grado di
fiempimento della stessa. Tipicamente¢, mantenendo la tabella picna
meno dell’80%, si mantcrra alto il tempo diacresso (uno o due tentativi).
E responsabilitd della routine chiamante mantenere la traccia del grade
di riempimento della tabella ¢ prevenire overflow.

k))

L'aumento del tempo di accesso in funzione del riempimento della
tabella & riportato in Fig. 9-39. Le routine principali utilizzate dal
programma sono: quella di inizializzazione (INIT), mostrata in Fig.
9-40; la routine di memorizzazione, mostrata in Fig. 9-41; la routine di
recupero, mostrala in Fig. 9-42 ¢ la routine di hash, mostrata in Fig.
9-43, L’allocazione di memoria appare in Fig. 944 ed il programma in
Fig. 9-45. 1l programma ha lo scopo di mostrare tutti gli algoritmi
principali utilizzati in vn meccanismo di hashing reale. Se questi pro-
grammi fanno parte di una realizzazione effettiva si suggerisce viva-
mente di aggiungere le usuali funzioni richieste per prevenire situazioni
particolari.

f |

TEMAD
o1 ACCESSO

i RIEMPINENTO
100w TABELLA

Figura B.39: Tempo di accesso In funzigne del riempimento relative

In particolare, occorre salvaguardarsi contro 'evento di tabella piena o
di una chiave non corretta poiché essi potrebbera causare dei cicli
indefiniti nel programma. Si raccomanda vivamente al lettore di studiare
questo programma. Infatti solo cosi si demistificherd I'algoritmo
bashing ed inolire si risclverd un problema pratico importante incon-
trato nel progetto di un assembler, o in qualsiasi struttura nella quale si
debbano conservare delle rabelle di nomi con i loro equivalenti in un
modo efficiente.

318

PTA = ENTHLMA “ B

PIR=PIR+
INDIRIZZC
D NIZI0 TABELLA

AZZEAA TABELLA
(FTA}

PTH
INDIMZZO INITICY
TABELLAT

Figura 9.40: Subroutine dli Inizlalizzazione

CHIAUE MASH N RUFIHER
PFOAE IESULT W R

mFELN
AINENLA (PTR)

Figura 9.41; Rouline di "memporizzazione"

k1LY

ILLF{4]

L

CHAYE MASH I BUFFER
POMI RISULTATO IN INOX

INDX 5
ENTUM?

INOEY — INOEX - ENTHUM

NO

PTA - INDEX " B

CHIAVE TAHELLA (PTA;

UGUALE A CHIAVE INBUFFER? INOEX

INQEX - !

PASIIIONA L UNTTA" DATY
& TABELLA tPTR} 1w BUFFER

FATTD

Flgura 9.42: Routine di ricerca

320

A = (A) OR EGCLUSIVO
TABELLA [FTR 4 ¥)

'

INDEX _ A

FATTO

Figura 9.43: Hash routine

k¥

BUBBLE-SORT

Bubble-sort ¢ una tecnica di classificazione utilizzata per ordinare gli
¢lementi in una tabella in ordine crecente o decrescente. La tecnica
bubble-sort deriva il suo nome dal fatto che I'elementa piu piccolo
“bubble-up" (gorgoglia) alla sommita della tabella. Ogni volta che esso
si scontra con un elemento “pill pesante™ esso la scavalea.

La Fig. 946 mostra un esempio pratico di bubble-sort. La lista da
classificare contiene: 10, 5, 0, 2 e 100 e deve essere ordinata in ordine
crescente (0" in alto). L'algoritmo & semplice cd il diagramma di flusso
¢ mostrato in Fig. 9-47.

I due elementi alla sommitd (o al fondo) vengono confrontati. Se
I'elemento sottostante & il minore (*'pill leggero™) allora questi vengouno
scambiati, in caso contrario no. In pratica lo scambio, se si verifica, sard

PARTE ALTA
PAGINA O CELLA WEMDHRIA

PROGAAMMA LFILY]

310

PARTE
BASSA TADELL A

,FARTE
ALTA TABELLA

INOHCE

FTRLO TABELLA

PTA HI
— —

ENTHWUM

Y

BUFFER

fr = - - - -

- = - - - -

Figura §.44. Mappe di memoria: memorlzzazione/ricerca Hash

2

LINEA

0014
0015

e

noze

Do2%
0030
oI

0033
Q024
0035

g %

22ZRRBREREE

#LOC CODICE LINEA

§8235883388 &

8 8

o0e

021
0213
o215

o217

pz213
n2'8e
021D
o02vF
o221

D222
D222
n222
n222
0222
D222
o222

A% 15
85 13

M 72

A2 00

A% OO0
Ad 13
Do o2

C6 14
C8 13
81 13
AS 13
C5 10
00 EE
A5 14

cas 1
CO E8

A2 0O

02

; PROGRAMMA PER MEMORIZZARE | SIMBOL|

: DELLASSEMBLATORE IN UNA

(TABELLA, CUI 51 ACCEDE MEOIANTE HASHING.) SIMBOLI
:SONO 6 CAR, 2 DATI. IL NUMERD MASSIMO DI
SUNITA’ DI 8 BYTE DA MEMORIZZARE NELLA TABELLA
. DOVAEBBE ESSERE IN "ENTNUM" £ L'INDIRIZZ0

. DINIZIO DELLA TABELLA IN “TABLE". S| NOTI CHE

. PRIMA DELL''MPIEGQ. OCCORRE INIZIALIZZARE

: TABLE CON LA ROUTINE "INIT"

: E RESPONSABILITA' OEL PROGRAMMA CHIAMANTE

. NOM SUPERARE LA DIMENSIONE TABELLA.

‘=%$10
TABLE WORD § 600 , INDIRIZZQ INIZIO TABELLA.
INDX =4 i NUMERD UNITA', DATI
; OA ACCEDERE
; PUNTATORE ALL'UNITA'
;DATUIN TABELLA,
. NUMERI [N INGRESSI 1IN
: TABELLA {256 MAX)

PTR =42
ENTNLUM *="4)

BUFFER ‘='48 . BUFFER D INGRESSO/
. USCITA
"=§ 200
" ROUTINE —INIT™ INIZIALIZZA A ZERO
" LA TABELLA.
NIT LDA ENTNUM
STA PTR . CARICA NUM.INGRESS)
. IN PUNTATORE
JSA SHADD | MOLTIPLICA PTR'E.
| AGGIUNGI PUNTATORE
. TABELLA.
LOX #0 " AZZERA X PEA

. INDIRtZZAMENTO

CLRLP oA »Q : CARICA LA COSTANTE ZERQ.

LOY PTR
BNE DECH :SEPTR < >0, NON

. DECREMENTARE BYTE ALTO
QEC PTR+41 : DECREMENTA BYTE ALTO

. DEL PUNTATORE.

DECH DEC PTR : DECREMENTA BYTE BASSO.

5TA (FTRX) ; AZZERA LOCAZIONE.
LDA PTR : CONTRQLLA SE PUNTATORE
1 = PUNTATORE TABELLA
CMP TABLE . SE DIVERSI, AZZERA
i LOCAZIONE SUCCESSIVA,
BNE CLRLP
LDA PTAR-1
CMP TABLE41
BNE CLALP
RTS

. ROUTINE “STORE™ POSIZIDNA IN TABELLA I

; CONTENUTI DI BUFFER LUSANDO IL PRIMO DI 8 CAR
. DI BUFFER COME "CHIAVE" PER DETERMINARE

; LINDIRIZZO HASHED IN TABELLA.

STORE LDX #0 . AZZERA X PER
" INDIRIZZAMENTO
JINCUCIZZATD

Figura B-45. Pragramma Hashing {cantinua)

23

0D48

Q051

0054

1 EH]
0054
0057
0058
0059
0061
0063
DOGS

0og7

o070

o7

0aT2
oqry

0074
0075

oave

0077
aare
k]
L 1]

0Doa1

0087

324

0224
0227

022A
022¢C

022E
0230

0248

Q2aA
024D

024F
0250

os2

A1 13

E8 12
4C 27

Be 16
91 13

10 F8

-4
8

B 13
09 18

0 F@
AD 07

B1 13
93 18
0 FB

€6 12
4C 4

02
0z

o2

CMPR1

EMPTY
FILL

J5R
I5R

LDA
BEC
INC

JMP

LDY
LDA
5TA
DEY
BPL

RTS

HASH : ACCETTA INDICE HASHED
LIMIT . ASSICURATI CHE L'INDICE
; EENTRO | LIMITI,
{PTRA.X) . CONTROLLA LUNITA' DATI .
EMPTY . SALTA SE VUOTA.
INDX, :PROVA LUNITA SUCCESSIVA
CMPR1 . CONTROLLA SE L''NDICE
; DELLUNITA" SUCCESSIVA
1 E VALIDO,
#27 : RICICLA 8 VOLTE PER

. CARICARE LUNITA DAT!.
BUFFERY ACCETTACAR DAL BUFFER,
{PTR). ¥ - POSIZIONALO NEL BUFFER.

FILL . TRASFERISCI IL CAR.
: SUCCESSIVD
: AGGIUNTA ESEGLITA.

: ROUTINE "FIND™;

. CEACA L''NGRESS0 LA CUI CHIAVE E NEL BUFFER.

: L'INGRESSO, SE TAOVATO. £ COPIATO NEL BUFFER,
: CON 2 BYTE DATI.

FIND

CMPR2

CHLP

HATCH

XFER

BAD

LDX
JSR
JSR

LDY

LDA

cupP
BNE

DEY
BPL

Loy

LDA
STA
DEY
BPL
ATS
INC

JP

®0 : AZZERA X PER
: INDIRIZZAMENTO INOIRETTO
HASH .ACCETTA IL PRODGTTO
, HASH
LIMIT , ASSICURATI CHE IL
: AISULTATO E ENTROQ
2 LIMITLL
N5 : RICICLA 8 VOLTE PER
: CONFRONTARE BUFFER
: CON DAT).
{PTAL Y ACCETTA CARATTERE DA
CTABELLA.
BUFFER. ¥ E = CAR. BUFFER?
BAD 1SE NO, PROVA CONL'UNITA
- DATI SUCCESSIVA.
CHKLP . CONTROLLA | CARATTERI
. SUCCESSIVI.
N7 . CICICLA 8 VOLTE FPER
. TRASFERIRE | CARATTER)
. DEL BUFFER.
[PTR), ¥ ACCETTA CAR. DALLA
. TABELLA.
BUFFER, ¥ :MEMORIZZA NEL BUFFER.
XFER :RIRICLA | CARATTER|
: TRASFERITI,

CFATTO: UNITA' DAT|
. TROYATA NEL BUFFER,

MDX : NON TROVATO. PROVA
L LUNITA" DATI SUCCESSIVA.
CMPR2 ;NON VALIDAL'INDICE DELLA

 NUDVA UNITA' DATI

" AQUTINE PER ASSICUAARSI CHE L'INDICE DAT?

: E ENTRO | LIMIT) DI ENTNUM. QUINDI

' MOLTIPLICA L' INDICE PER 8 E LO SOMMA AL PUNTATORE
: DELLA TABELLA 1L AISULTATO £ POSIZIONATO IN"PTR™
: COME INDIRI220 UNITA DATI

Figura 9-45. Programma Hashing {continua)

0126
D127

0262
0264

0248
D288
0268
028E
0270

0272

029E
OZ8F

A3

18
AD

58
2A
as
10
as

60

12 LIMIT
15 TEST

B4 02
19 oK

od SHADD

14
17

14
12
14
13
14

k]
n
L)
14

LDA
CMP
BCC
SEC
sec
JMP
STA

STA
LDA

STA
ASL

ROL
ASL
AROL
ASL
ROL
CLC
LDA

ADC

STA
LDA
ADC
8TA
RTS

INDX
ENTNUM
0.4

ENTHNUM
TEST
FTR

INDX
#0

PTA41
PTR

PTR+1
PTR
PTA-41
PTR
PTR+1

TABLE
PTA

FTR
TABLE-+1

PTR 41
PTR4-1

. ACCETTA INDICE.

; INDICE > NUMERD DATI?
: gf.LTA SE NO.

: 8QTTRAI N. DATI FINCHE
. INDICE SENZA LIMIT),

. MEMORIZZA INDICE

. CORRETTO IN PUNTATORE.
: SALVA L'INDICE

. AGGIORNATOQ.

; AZZERA | PUNTATORE

: SUPERIORE PER

: SCORRAIMENTI.

. FA SCORRERE PTR I VOLTE
;A SINISTRA - MOLTIPLICA
.PER &

. SOMMA PUNTATORE ED

; INDIRIZZO INIZIQ TABELLA
; € POSIZIONA IL RISULTATO
» NEL PUNTATORE.

; ROUTINE PEA GENERARE L'INDICE UNITA' DATI
(IN TABELLA
: MEDIANTE CHIAVE HASHING, O CAR. DI LABEL.

00 HASH

o8

18 o EXOR

Fg&

ERRCRS — 000 <000
SYMBOL TABLE

BAD o260
CMPRY o227
ENTNUM 0015
HASH 0290
HATCH 0252
STORE 0222

BUFFER
CMFPR2
EXOQR
INDX

OK
TABLE

END OF ASSEMBLY

o0e
0243
0245
on12
D26E
ooo

LDA #0

cLC

LDY *§

EOR BUFFER, ¥
ROL A

DEY

BPlL. EXOR
STA INDX
ATS

END

CHKLP (248
DECR [1/73]
FiLL 0235
INIT 0200
PTR o0l
TEST Q264

; AZ2ZERA LOCAZIONE PER

S INDICE.

. PREPARATI ALLA SOMMA,
:RICICLA @ VOLTE PER OR

. ESCLUSIVO,

. OR ESCLUSIVO DI ACC. CON
. CARATT. BUFFER.

: MOLTIPLICA L'ACC, PER 2

. CONTA | CARATTERL

. ACCETTA NUOVO

. CARATYERE.

. MEMQORIZZA IL PRODOTTO
, HASH COME INDICE-

; FATTR

CLRLP 0209
EMPTY 0233
FIND 023E
LIMIT 0242
SHADD 0271
XFER 0254

Figura 9-45. Programma Hashing

325

326

l— 1 -

00 — -

00> 2
NOK SCANBIATD

—

Lt

SCAMBIATO

F — 1=q
100 ot | = 8,

T P
NON SCAMBIATO

10 — | =1
pal— | =]

0o

2-<14
SCAMBIATO

] - 3
7 — @
00

-0
MDK SCAMBIATD

®

'y [
o -— ki
L
¥
100
L]
SCAMEIATO
10
- -]

b -, =4

100

2<%
SCAMBIATO

SCAMBIATO

®

I _—

o0

e S
SCAMBIATD

SCAMBIATO
FINE PASSO 1

©

FINE PASSD 1

e
]
5

00

SCAMBIATO

2>0
KON SCAMBIATO

@

FINE PASSD 2

Figura 8.46: Esemple di Bubble-Sart {continuaj

3

2

a ls— i -
bet— |

10

H

0

0 -s
NOH SCAMEIATO

0
2 ot—)12
5 fotl— | =]
10
100

5 -2
HON SCAMBIATO

5 - 1=

10 g—- 1~ 4

10
NON SCAMBIATO

Figura 9.46: Esempio di Bubble-Sort

10 — =]

s [1=a

5110
SCAMBIATQ

o g i ® |

2 jgp— 1=2

>0
MNON SCAMBIATO

©

FINE PASHO]

52

NON SCAMBIATO

®

SCAMEBIATD

®

0
1
H
16 [— 1=4
100 — =5

199 14
NON SCAMBIATO

0 e 1=
ft— 1=2

s

1)

100

-9
NON SCAMBIATD

@

FINE

ricordata sulla coppia di clementi successivi, ¢ cosi via finché non sono

stati confrontati tutti gli clementi, a due a due,

La Fig. 9-47 iltustra il primo passo con le fasi 1, 2, 3, 4, 5 ¢ 6, andando
dal basso verso |'alto. (In modo equivalente si potrebbe andare dall'alto

al basso).

Se nessun elemento ¢ stato scambiato, la classificazione ¢ completa. Se
si ¢ verilicato uno scambio, si ripane ancora.

27

s
ACAMBATO = D
ACCETTA NUMEROH!
EI..EME"J;TI M

=

f v ¥
LEGG! ELEMENTO
E 1

]

OEICAEMENTA |

SCAMBIATD — 1?7

FATTO

4 LEGG! E)

NG

SCAMBIAEEDE
TEMP —E (5
E {1 = E |3
E N = TEMP

1

BCAMBIATO =1

&

Figura 9.47: Bubble-Sort

In questo semplice esempio, come risulta dalla Fig. 9-47, sono neces-
sari quattro passi.
Il processo descritlo & semplice ed impiegato in modo estensivo.

-

328

Un’ulteriore complicazione deriva dal meccanismo effettivo di scam-
b 3. Scambiando A e B non si pud scrivere:

A
B

i

B
A
poiché ne potrebbe derivare una perdita del valore precedente di A. (Si
venfichi con un esempio).

La soluzione corretta & quella di utilizzarc una variabile temporanea o
una locazione per conservare il valore di A:

TEMP =A
A =
B = TEMP

Questo metodo ¢ corretto. (Si verifichi con un esempio). Questa & una
cosiddetta permutazione circolare ed ¢ il modo impiegato in tutti
programmi per realizzare gli scambi. La Fig. 9-47 mostra it diagramma
di flusso di questa teenica,

La mappa di memoria corrispondente al programma di bubble-sort &
mostrata in Fig. 9-48. In questo programma ogni elemento ¢ un numero

v

0000 #YR |
[~ TABELLA
s - -1}
it 1]
FROGHRAMMA
NUMERD n o
ELEMENTD
ELEMENTD 2 ¥ .
ELEMENTO CORRENTE
ELEMENTO n

Figura 9.48: Bubkle-Sorl: mappa dl memaria

29

SCORT ... PAGE 0001
LINEA #LOC CODICE LINEA

0002 DODD : PROGRAMMA BUBHLE SORT
oo03 0000 ;
p00d 0000 t= 80
9005 QOOO :
DO0s 0000 00 OB TAB WORD § 600
K7 0002 :
o8 0002 = $200
Koe 0200 ;
K10 D200 A2 OO SORT LDX #0 : PONI SCAMBIATO A Q.
BT D202 A1 OO LDA (TABIX
KHZ 02M AB TAY y ILNUMERQ DI ELEMENTIE IN
R Y.
0013 0205 B1 00 LOCP LDA (TABLY , LEGQI LELEMENTQ E (1}
0014 0207 B8 DEY . DECREMENTA IL NUMERC D1
: ELEMENTI DA LEGGERE.
DO15S 0208 FO 12 BEQ FINISH : FINE SE TERMINATI
: ELEMENTI.
0018 020A D1 0O CMP (TAB)Y : CONFRONTA CON E {1).
oM? 020C BO FT BCS LOOP : ACCETTA L'ELEMENTO
; SUCCESSIVO SEE (I} > E (1.
0018 DNE AA EXCH TAX : SCAMBIARE (LI ELEMENTL.
0019 020F BY OO LDA (TABLY
020 0211 B INY
s 02 @ 0o STA (TABLY
W22 04 BA TXA '
0023 o025 B8 DEY
0024 0216 91 00 STA (TABLY.
0025 0218 A2 D) LDX N1 ;SEESTATO FATTO QUALCHE
. SCAMBIO, FA UN ALTRO
i PASSO.
w28 1A 00 E BNE LOQP : ACCETTA LELEMENTO
: SUCCESSIVO.
0027 D2IC aa FINISH Tia : SPOSTA SCAMBIATO NEL
; REGISTRO A PER VEDERE ...
Q028 D210 DO EV BNE SORT .SEESTATO FATTO QUALCHE
0028 D2IF &0 RTS : SCAMBID, FA UN ALTRQ
; PASSO.
0030 0220 .END.

EARORAS — 00O < OODO >
SYMBOL TABLE

SYMBOL VALUE

EXCH D20E FINISH 023C LOOP 0205 SORT 0200.
TAB 0000
END OF ASSEMBLY

Figura 8.49: Programma Bubble-5art

positivo di 8 bit, I! programma risicdc agli indirizzi 200 e successivi. 11
registre X viene utilizzato per memorizzare se si é verificato ¢ no uno
scambio, mentre il registre Y viene utilizzato come punlatore corrente
all'interno della tabella. Si assume che TAB sia l'indirizzo iniziale della
tabella. La Fig. 9-49 riporta il programma reale. Perun accesso efficieme

330

R
JABLE: .07

WP = TABLED (PTRD

TEAV = TARLL (PIRI:

PRI =M+] - PIR] 1

OESTIN (PTRY) o PR

Fle3=mR3+)

g a0 PTRY TABLE | {0

+ TABLE 2 (0]

g (U N1

Figura 9.50: Diagramma di flusso Merge

viene utilizzata una tecnica di indirizzamento indiretie indicizzato. Si
noti che il programma é molio breve, grazie all'efficienza del modo di
indirizzamento indiretto del 6502

UN ALGORITMO MERGE

Un altro problema comune consiste netl'unione di due insiemi di dati
in un terzo. Si suppone dirdover classificare due tabelle di dati e di
fonderle in una terza. La Junghezza di ciascuna delle tabelle originali é
limitata ad un massimo di 256 byte (una pagina). [l primao ingresso di
ogni tabella contiene la lunghezza della stessa.

La Fig. 9-50 mostra I'algoritmo per I"'unione di due tabelle. La Fig.
9-51 riporta 'organizzazione di memoria corrispondente e la Fig. 9-521i1
programma, Prima di utilizzare il programma ¢ indispensabile posizio-
nare le tabelle “TABLE!", “TABLE2" E “DESTRBL".

L'algoritme & immediato. Due puntatori correnti, PTRI1 e PTR2
puntano alle due tabelle sorgente. PTR] punta alla tabeila risultante.

BAATE
PAOINA O ALTA MEMORIA
(%™
" LPAOGRAMM A}
j L3 T e] t
S M -
PaVaVa¥e
L T =]
b
oo f
T OV
A T . /
"E TATI TRELE 1
ey +
TATaAVa Ve
LR Rt]
LI >-
TUNEHEZZR |
e el
w Da,T1 TABLE 2
PaVea VoV
TABLE 3

Figura 9.51; Mapps di memoria Merge

KX > ’

opar

0028
029

0036
003y
0038
0039

0043

#LOC CODICE LINEA

; MERGE DI 2 PAGINE.

: PRELEVA 2 TARELLE DAY PRECEDENTEMENTE

; ORDINATE E LE FONOE IN UNA TERIA TABELLA.
; OGNI TABELLA SORGENTE PUO’ ARRIVARE

» AD UNA PAGINA DI LUNGHEZZA (256 BYTE).

+ IL PRIMO ELEMENTO DELLE TABELLE SORGENTE
» DEVE CONTENERE LA LUNGHEZZA TABELLA,
*PTRY CONTIENE LA LUNGHEZZA DELLA

. TABELLA DESTINAZIONE. AL RITORND

2§ggEagagees

0210

0212
0214

0216

0218
021A

g21C
01E

0224
0z224

D228

AS
AS
AR

A&

Al
C5

Al
c5

Ad
B1
Ad
B1

90

14

17
19

16
oA

8

1”7

AL

17

DESTEL
TABLE 1
TABLE 2
PTRY

PTA2
PTR3

COMPA

THTB2

= $10

=ty 2 : PUNTATORE ALLINIZIO
: TABELLA DESTINAZIONE,

e] : PUNTATORE ALLA TABELLA
: SOAGENTE 1,

=t 2 PUNTATORE ALLA TABELLA
. SOAGENTE 2.

=41 : INDICE TABELLA 1,

R | ; INDICE TABELLA 2.

=42 { INDICE TABELLA
; DESTINAZIONE.

= §200.

LDA DESTOAL4Y [PTRA3 == TABLE],
STA PTRI-1.

LDA DESTAL

STA PTR3

LDA #1 , POSIZIONA ALL INIZIO
;1 PUNTATOR] TABELLE
. BOAGENTE,

STA PTR1 ; SALTANDO LE LUNGHEZZE
; TABELLE.

STA PTA2

LDX #0 L AZZERA X PER
. PER IMDIRIZZAMENTO
; INDIREYTO.

LDA (TABLE2.X) . LA TABELLA 2 HA
 LUNGHEZZA <.

CMP PTR? s PUNTATORE TABELLA 27

BCC TwTEn : SE S, ACCETTA BYTE DA
TABELLA 1.

LDA (TABLE 1.X) . léA LUNQHEZZA TABELLA 1|
Ex

CMP PTRY PUNTATQRE TABELLA 17

BCC TKTB2 . SE 5!, ACCETTA BYTE DA
. TABELLA 2.

LDY PTR!1 s ACCETTA PUNTATORE
:TABELLA 1.

LCa {TABLEY.Y :UTILIZZALO PER PRELEVARE
:BYTE.

LDy PTR2 . ACCETTA PLUNTATORE
: TABELLA 2.

CMP (TAELE2LY . UTILIZZALO PER TROVARE
. BYTE DA

: CONFAONTARE CON BYTE TABELLA 1.

BCC TKTEY . SEBYTE TABELLA 1 £ MINORE
: PRENDILO.

LDY PTR2 . ACCETTA PUNTATORE
: TABELLA 2.

Figura 9-52. Frogramme Merge {continua)

333

0043

g4
0047

0048

0051
0052

R

0228
022A
Q2

022F
023

0235

0237

0229
0z3B

0z3D

02IF
0241

0243

0245
0247

0249
024B

024D
0ME

0250
0252

iF 2]
0258
0258
0254,
0256

B1
E&
aC

EB

81

Eg

17
35

18
12

1§
co

17
cr

1]
18

14

3%

04
]

LOA

{TABLE2).Y ;ACGETTABYTE SUCCESSIVO
. DA TABELLA 2,

ING PTRZ : INCREMENTA PUNTATORE
: TABELLA 2.
JMP S5TORE I MEMQORIZZA IL BYTE NELLA,
: TABELLA DI DESTINAZIONE.
TKTB1 LDY PTRI : ACCETTA PUNTATORE 1.
LDA (TABLE1LY . ED UTILIZZALC PER
: PRELEVARE BYTE DALLA
. TABELLA.
INC PTRI : INCREMENTA PUNTATORE
; TABELLA 1,
STORE STA (PTR3X] .MEMORIZZA IL BYTE ALLA
: LOCAZIONE SUCCESSIVA IN
: TABELLA 3
INC PTR3 { INCREMENTA IL PUNTATORE
. Dl BASSO ORDINE DELLA
. TABELLA 3.
BNE ¢CC : SE NON OVERFLOW. SALTA.
ING . PTR3+H3
: INCREMENTA IL PUNATORE
: DI QROINE ELEVATO DELLA
i TABELLA 2.
ce LDA (TABLE 1.X] LA LUNGHEZZA DELLA
{ TABELLA 1 E MAGOIORE
CMP PTRI . O UGUALE A PUNTATORE 17
BCS COMPR {SE 51 ACCETTA BYTE
: SUCCESSIVO,
LDA (TABLE2X) : LA LUNGHEZZA TABELLA 2 E
: MAGGIORE,
CMF PTR2 10 UGUALE AL PUNTATORE 27
BCS COMPR : SE 51, ACCETTA BYTE
: SUCCESSIVO,
LDA =0
$TA PTRIH) : AZZERA PTA3 DI QRDINE
: ELEVATO
CcLC : MERGE ESEGUITO, ORA ...
LDA (TABLEVLX) ;: SOMMA LE LUNGHEZZE
: DELLE TABELLEYE 2.
ADC (TABLE2.X}
STA PTA3 : MEMORI2ZA LA SOMMA NEL
: PUNTATORE TEMPORANEO
: TABELLA 3
BCC CCC .ED .
LDA #1 . QVERFLOW IN
STA PTR3I-1 . BYTE Di ORDINE ELEVATO.
ccc RTS
END

ERRDORS — 0D < 0000 >
END OF ASSEMEBLY

Kkl

Figura 9-52. Programma Merge

Gli ingressi correntidi TABLE | e TABLE 2s0n0 confrantati due atla
volta. Quello pid piccolo viene copiato in TABLE3 ed « puntatare
corrente viene incremeniatoe. I processo viene ripetuto e termina quando
PTRI1 e PTPR2 hanno raggiunto il fondo delle rispeitive tabelle.

SOMMARIO

Sono stati presentati gli csempi reali di realizzazione ed i concetti di
base relativi alle strutture dati pi comuni,

It 6502, grazie ai suoi potenti modi di indirizzamento, consente la
manipolaziane di stroture dati complesse. La sua efficienza ¢ dimostrata
dalla semplicitd dei programmi mostrati.

Inolire sono state presentate delle tecniche speciali per 1'hashing,
sorting e merging, tipicamente utilizzate pef la risoluzione di problemi
complessi relativi alle strutiure dati,

1l programmatore principiante non deve preoccuparsi per i dettagli
della realizzazione ¢ manipolazione di strutture dati. Comunque per una
programmazione elficiente di algoritmi non banal, ¢ indispensabile una
buona conoscenza delle strutture dati. Gli esempi reali presentati in
questo capitolo possono aiutare tutti i problemi comuni che si incon-
trano nelle strutture dati reali.

335

CAPITOLO 10

SVILUPPO DEL PROGRAMMA

INTRODUZIONE

Tutti i programmi studiati e sviluppati finora sono stati sviluppati a
mano senza I'aiuto di qualsiasi risorsa softwarc oppure hardware. Il solo
miglioramento che & stato utilizzato rispetto alla codifica binaria diretta
¢ stato I'impiego dei simboli mnemonici def linguaggio assembly. Per
Teffettivo sviluppo software & necessario capire la gamma di aiuti dello
sviluppo sofiware ed hardware, Questo capitolo si propone di presentare
¢ valutare questi ajuti,

SCELTE DI BASE DELLA PROGRAMMAZIONE

Esistono tre aliernative di base: scrittura di un programma in binario
od esadectmale, scrittura in linguaggio di livello assembly oppure scrit-
tura in hnguaggio ad alto livello. Si analizzeranno queste alternative,

1. Codifica Esadecimale

Il programma sard normalmente scritto utilizzando | maemonici in
linguaggio assembly. Comunquc i sistemi calcolaton a scheda singola, di
costo pili basso non sono forniti di un assemblatore. L'assemblatore & il
programmatere che opera la traduzione automatica dei mnemonici
utilizzati per il programma nei codici binan richiesti. Quando non &
disponibile un assemblatore questa traduzione da mnemonici in binano
deve essere eseguita a mano. I binario & spiacevole e gencra facilmente
errori cosicché viene utilizzato normalmente I'esadecimale. E stato
mastrato al Capitolo | che un digit esadecimale rappresenta 4 bit binari.
Due digit esadecimali saranno percid utilizzati per rappresentare i conte-
nuti di ciascun byte. Come esempio viene riportata in Appendice la
tabella che mostra I'equivalente esadecimale delle istruzioni del 6502.

In breve ogni volta che le risorse dell'utentc sono limitate ¢ non ¢
disponibile)'assemblatore occorrerd tradurre manualmente il pro-
gramma in esadecimale. Questo pud essere fatto ragionevolmente per un

337

piccolo numero di istruzioni peresempio da 10a 100. Per programmi pid
lunghi questo processo & tedioso ¢ predisposto agli errori cosicehg esso
tendc a non essere utilizzato. Comunque quasi tutti i microcaleolatori su
scheda singola richiedono I'ingresso dei programmi in modo esadeci-
male. Essi non sono equipagpiati di un assemblatore € di unintera
tastiera alfanumericca in modo da limitare il loro costa.

In conclusione la codifica esadecimale nen ¢ un modo desiderabile per
accedere in un calcolatore. Esso & semplicemente un mado ecenomico. II
costa di un assemblatore e della tasticra allanumerica corrispondente & il
compromesso con I'aumento di lavoro per far entrare il programma
nella memoria. Comungue questo non cambia il modo 10 cui ¢ scritto 1l
programma stesso. /f programma viene ancora scritio in linguaggio di
livello assembly cosicché €550 possa essere ispezionato ed esaminato dal
programmatere umano ed essere significativo.

1. Programmazione in Linpuaggio Assembly

La programmazionc di livello assembly copre sia i progeammi che
possono entrare nel sistema in forma csadecimale sia quelli che possono
entrare in forma simbolica di livello assembly. Si ¢saminerd ora lin-
gresso di un programma direttamente nella sua rappresentazione in
linguaggio asscmbly. Deve essere disponibile un programma assembla-
tore. L'asscmblatore Jeggerd ciascuna istruzione mnemonica del pro-
gramma ¢ la tradurrd nello schema di bit nichiesto utilizzando 1, 2
oppure 1 byte, secondo quanto specificato dalla codifica delle istruzioni.
Inoltre un buon assemblatore offrird un certo numero di possibilitd
addizionali per la scritiura del programma. Questo sard analizzato in
scpuito nel paragralo rvelativo all’assemblatore. In parlicolare sono
disponibili le dirertive che modificheranno il valore dei simboli. Pud
essere utilizzato I'indirizzamento simbolico € pud essere specificata una
diramazione dallalocazione simbolica. Durante ta fase di collaudo, dove
un utente pud rimuovere Oppure aggiungere istruzioni, non sard necessa-
rio riscrivere l'intero programma se un‘uiteriore istruzione vienc inserita
tra una diramazione ed il punto in cui ¢ssa apera la diramazione,
utilizzando label simboliche.

L’assemblatore si occuperd di aggivstare automaticamente Lutte le labe)
durante il processo di traduzione. Inoltre un assemblatore consente
all'utente di coilaudare il suo programma in (orma simbolica. Un disas-
semblatore pud essere utilizzato per esaminare i contenuti della loca-
zione di memonia e ricostruire I'istruzione di livello assembly che essa
rappresenta. Verranno analizzate di seguito le varie risorse software

318

normalmente disponibili su un sistema. Si esamini ora la terza alterna-

11va. POYENZA

DEL
LINGUAGOIC

Al J

IR

bIETUAN | ALTOLWELLD
P W

Fatla,)

BALT

Wl BAGIT

[>

|
1
!

CONDIZIONALE | v
Popevis LIVELLO ASSEMBL

AJIEMPLER ‘

SMBCUCO

[11

e
| tsmees)

LVELLD O MACCHINA

BihaE Y]

-

Figura 10.1: Livelli di programmazione

3. Linguaggio ad Alto Livello

Un programma pud essere scritto in un programma ad alto livello
come BASIC, APL, PASCAL od altri. Le wecaiche di programmazione
in questi vari linguagpi sono coperte da libri specifici ¢ non saranno
analizzate in questa sede. Percid si analizzera soltanto questo modo di
programmazione. Un linguaggio ad aito livello offre istruzioni potenti
che rendono pi facile ¢ veloce la programmazione. Queste istruzioni
devono essere tradotte da un programma complesso nella rappresenta-
zione binaria finale che un microcalcolatore pud eseguire. Tipicamente
clascuna istruzione ad alto livello sard tradotta in un gran numere di
istruzioni binarie singele. Il programma che cseguira questa traduzione
automatica ¢ chiamato un compilaiore ovvero un iaterprete. Un compila-
tore tradurra lutte le istruzioni di un programma in sequenza in codice
oggetlo. In una fase separata il codice risultante sard quindi eseguilo. Per
contrasto un intcrprete interpretera ed escguira una singola istruzione,
quindi “tradurrd”™ quella successiva. Un interprete ha il vantaggio
responso interattive, ma ha una bassa efficienza rispetto al compilatore.
In questa sedc non si entrerd in ulteriori dettagli ma si considera la
programmazione in Jinguaggio dilivello assembly di un microprocessore
reale.

339

SUPPORTO SOFTWARE

Si analizzeranno ora le principali caratteristiche software disponibili
{o che dovrcbbero essere disponibili) in un sistema completo disviluppo
software conveniente. Alcune definizioni sono gid state introdotte. Que-
sle saranno riassunte ¢ prima di procedere saranno definiti § rimanenti
programmi importanti.

L’assemblatore ¢ il propramma che traduce la rappresentazione mne-
monica delle istruzioni nel loro equivalente binario. Esso normalmente
traduce un’istruzione simbolica in un'istruzione binaria (che pud oceu-
pare 1, 2 oppure 3 byte). Il codice binario risultante & chiamato codice
oggetto. Esse € direttamente escguibile dal microcalcolatare, Come
effetito secondario 'assemblatore produrrd anche una lista simbolica
completa del programma come le 1abelle di equivalenza da utilizzare da
parte del programmatore € la lista dei simboli occorrenti nel pro-
gramma. Gli esempi saranno presenti in seguito net corso del capitolo.

Un cempilatore & il programma che traduce le istruzioni ad alio livello
nella loro forma binaria.

Un interprete & il programma che traduce, analogamente al compila-
tore, le istruzioni ad alto livello nella loro forma binaria ma non con-
serva la rappresentazione intcrmedia ¢ si ha I'esecuzione immediata.
Infatti spesso non si ha addirittura la generazione di qualsiasi codice
intermedic ma piuttosto esso eseguc dircltamente le istruzioni ad alto
livello,

Un monitor ¢ il programma di base che & indispensabile per utilizzare
le risorse hardware di questo sistema. Esso osserva continuamente i
dispositivi d'ingresso per Iingresse ¢ dirige il resto dei dispositivi. Per
esempio un monitor minimo per un microcaleolatore su scheda singola,
equipaggiato di tasticra a LED, deve esplorare continuamenie la tastiera
come ingresso utente € mostrare i contenutispecifici sui diodi-emettitori-
di-luce. Inolire esso deve essere in grado di riconoscere un certo numero
di comandi limitat: dalla tastiera, come START, STOP, CONTINUA,
CARICA MEMORIA, ESAMINA MEMORIA. Sui grossi sistemi il
monitor é spesso qualificato come programma esecutivo, In gquesto caso
¢ disponibile a direzione de! file complessa avvero la gestione di sche-
dari. T] sei1 globale delle caratteristiche & detto sistema operativo. Nel caso
in cui i file possono essere residenti su disco, il sistema operativo ¢
qualificalo come sistema operativo su disco avvero DOS,

340

Un editor ¢ il programma progettato per consentire |'ingresso ¢ la
modifica del testo o dei programmi. Essc consente all'utente di far
entrare convenientemente i caratteri, agganciarli, inserirli, aggiungere
righe, rimuovere righe, ricercare caratteri o stringhe. Questa & una
risorsa imporianie per ingresso covenicnte,

Un debugger & una caratteristica nccessaria per collaudare i pro-
grammi. Ogni volta che un programma non Javora correttamente tipica-
mente pud non esserci indicazione della causa, qualunque essa sia.

Il programmatore percid desidera inserire dei punti di arresto nel suo
programma in modo da sospendere I'esecuzione del programma agli
indirizzi specificati ed essere in grado di esaminare i contenuti dei registri
e della memoria in questi punti. 1l debugger consente la sospensione di
un programma, la ripresa dell'esecuZione, l'esame, I"osservazione ¢ la
modifica dei contenuts dei registri o detla memornia. Un buon debugger
sard equipaggiato di un certo numero di caratteristiche addizionali come
la possibilita di esaminare i dati in forma simbolica, esadecimale, binaria
od altre rappresentazioni usuali come pure I'ingresso dei dati in questo
formato.

Un caricatere, ovvero caricatore di collegamenio posizionerd i vari
blecchi in codice oggetto alle posizioni specificate nella memoria ed
aggiusta i rispettivi puntatori simbolici cosicché si possa far loro riferi-

menta, Esso & utilizzato per la rilocazione di programmi o blocchi in
diverse arge della memorta.

Un programma simulatore od emulatore & wiilizzato per simuolare il
funzionamento di un dispositivo, normalmente il microprocessore, in
sua assenza, quando si sta sviluppando un programma su un processore
simulato prima di posizionarlo sullascheda effettiva. Utilizzando questo
approccio diviene possibile sospendere il programma, modificarlo ¢
conservarlo in una memoria RAM. Gli svantaggi di un simulatore sono:

1. Esso normalmente simula soltanto il processore stesso e non i
dispositivi d'ingresso/uscila.

2. La velocitd di esccuzione é bassa ¢ si opera in tempo simulato. Non
percid possibile provare dispositivi in lempo reale e possono verifi-
carsi problemi di sincronizzazione anche se la logica del programma
pud essere rilevala cofretla.

Un emulatore ¢ essenzialmente un simulatore in tempo reale. Esso
utilizza un processore per simulame un altro e lo simula compietamente
sino ai dettagli.

Le Uifity routines sono essenzialmente tutte le routine normalmente
necessarie nella maggior parte delle applicazioni ¢ che I'utente desidera
gli vengano fornite dal costruttore! Esse possono comprendere la molti-
plicazione, la divisione ed altre operazioni aritmetiche, routine di movi-
mento di blogco, verifiche di carattere, manipolazioni di dispositivi
d’ingresso/uscita (ovvero “'driver™) ed altre.

LA SEQUENZA DI SVILUPPO DEL PROGRAMMA

Si esaminerad ora una sequenza tipica di sviluppo di un programma di
livello assembly, Si assumerd che tutte le caratteristiche software usuali
siano disponibili in modo da dimostrare il loro valore, Se queste doves-
sero non essere disponibili in un sistema particolare sard ancora possi-
bile sviluppare) programmi ma la convenienza diminuira e, conseguen-
lemente, & prababile che il tempo necessario per il collaudo de! pro-
gramma sia destinato ad aumentare,

L'approccio pit comune consiste innanzitutto nel progetto dell’algo-
ritmo e nella definizione delle strutture dati appropriati al problema da
risolvere. Successivamente occotre sviluppare un insieme completo di
diagrammi di flusso che rappresentana il flusso del programma, Infine |
diagrammi di flusso sono tradotti nel linguaggio di livello assembly de]
microprocessore; questa & la fase di codifica.

In scguito il programma viene fatto entrare nel calcolatore, Si esami-
neranno al paragrafo successivo le scelte hardware da utilizzare in questa
fase.

Il programma ¢ farto entrare nella memoria RAM del sistema sotto il
controllo dell’editor. Una volla che & entrata una sezione del pro-
gramma, per esempio una o pil subroutine, essa sard verificata.

Innanzitutte st userd I'assemblatore. Se I'assemblatore non risiede gia
nel sistema esso verrd caricato da una memoria esterna, come yn disco.
Quindi il programa sara assemblalo, cioé tradotto in un codice binario.
Questo fa in modo che il programma oggetio sia pronto per essere
escguilo.

Normalmente non ci si deve aspettare che un programma lavori
correttamente la prima volta. Per verificare il suo funzionamento cor-
retto oecorrerd posizionare in locazioni cruciali un certo numero di
punti di arresto dove ¢ facile verificare se i risultati intermedi sono
corretti. 1| debugger sari utilizzato per questo scopo. [punti di arresto
saranno specificati in locazioni selezionale. Verrd quindi emesso un

342

comando “Go" cosicché venga iniziata l'esecuzione del programma. I|
programma si arresterd automaticamente ad ogni punto di arresto speci-
ficato. 1l programmatore pud quindi verificare, esaminando i contenuti
dei registri, o detla memoria, che i dati ottenuti siana corretti. Se questo
si verifica si procede fino al punto di arresto successivo. Qgni volta che si
trova un dato non corretto & presente un erroré nel programma. A
questo punto normalmente il programmatore fa riferimento alla lista del
programma ¢ verifica se la sua codifica & stata eseguita correttamente, Se
non si riesce a trovare nessun errore nella programmazione, l'errore deve
essere logico e si deve fare riferimento al diagramma di flusso. Qui si
assumera che i diagrammi di Nusso siano slati controllati a mano e che si
riterranno ragioncvolmente corretti. L'errore probabilmente pud prove-
nire dalla codifica. Sard percid necessario modificare una parte del
programma. Se la rappresentazione simbolica del programma € ancora
nella memoria, si fara semplicemente rientrare 'editor e 5i modifiche-
ranno le linee richieste e quindi si ripeterd ancora la sequenza prece-
dente. In alcuni sistemi la memoria disponibile pud non essere grande
abbastanza, cosicché & necessario far uscire la rappresentazione simbo-
lica del programma su un disco o cassetta prima dell’esecuzione del
codice oggetto. naturalmente in questo caso si dovrebbe ricaricare la
rappresentazione simbolica del programma dal suo mezzo di supporto
prima del rientro deli’editor.

La procedura precedente sard ripetuta necessariamente finché i risul-
tati del programma sono corretti. Si sottolinea che la prevenzione &
molto pil efficiente della cura. Un progetto corretto si risolvera tipica-
mente in un programma che opera correttamente e moelto velocemente
una volta che gli erron pit comuni ed ovvi di codifica sono stati rimossi.

Comunque un progetto confuse pud risolversi in programmi che impie-
gheranno un tempo estremamenie lungo per essere collaudato. 1l tempo
di collaudoe & generalmenie considerato essere molta pili lungo dell'effet-
tivo tempo di progetto. In breve vale sempre la pena impiegare pil
tempo nel progetto in modo da abbreviare la fase di collaudo.

Comunque, impiegando questo approccio, & possibile verificare I'or-
ganizzazione globale del programma ma non verificarlo in tempo reale
con i disposilivi d'ingresso/uscila. Se devono essere verificati i disposi-
tivi d'ingresso/uscita Ja soluzione diretta consiste nel trasferimento de!
programma in EPROM nella sua installazione su scheda e quindi nell*os-
servazione se esso lavora.

Esiste una soluzione migliore. £ I'impicgo di un emulatore in circuito.
Un emulatore in circuito utilizza i1 microproccessore 6502 (o qualsiasi

M3

altro) per simulare un 6502 (quasi) in tempo reale. Esso simula fisica-
mente i 6502. L'emulatore ¢ equipaggiato con un cavo terminante inun
connettore a 40 pin esattamente identico ai pin di uscita del 6502. Questo
connettore pud poi essere inserito sulla scheda di applicazione effettiva
che si sta sviluppando. I segnali generati dall’emulatore saranno esatta-
mente quelli del 6502, forse soltanto un poé pid lenti. 1l vantaggio
essenziale & che il programma che sista verificando risiederd ancora nella
memoria RAM del sistema di sviluppo. Esso genererd i scgnali effettivi
che comunicheranno con i dispositivi d'ingresso/uscita effettivi che si
desidera utilizzare. Ne risulta che diviene possibile eseguire lo sviluppo

Rowm RAM
A SSEVBLATORE
o
BEOCITSTRAAP goum.nonz
hNTERPRETE
NAIVER
TASTIERA 008
gnnon
&?:E:y giwuuen
SINUL ATQRE |
SPAZIQ
DAIVEA O LAVGRO
e D1 S1ISTRA
IE STACK}
DRIVER PROGRAMMA
CASBETTE UTENTE
SPAZIO
COMANOD B LAVGRT
INTERPRETE e
uTIUTY
ROUTIMES
[:uu.amnoua
ELEMENTARE
EDITOR
ELEMENTARE
Figura 10.2: Una mappe di memorla tipica

del programma utilizzando tutte le risorse del sistema di sviluppo (edi-
tor, debugger, caratteristiche simboliche, sistema file) mentre si sta
verificando I'ingresso/uscita in tempo reale.

kP L]

Inoltre un buon emulatore fornisce caratteristiche speciali, come un
trace, Un trace & una registrazione delle ultime istruzioni o delio stato dei
vari bus dati del sistema prima di un punto di arresto. In breve un trace
fornisce la sequenza di evenli che si verificano prima di un punto di
arresto 0 di un mallunzionamento. Esso pud anche far scattare vno
scope all'indinzzo specificato oppure, all'occorrenza, ad una specificata
combinazione di bit. Una tale caratteristica & di grande valore poiché
quando si trova un errore ¢ normalmente troppo tardi. L'istruzione, od il
dato, che ha causato l'errore si € verificato prima della rilevazione. La
disponibilitd di un trace consente all'utente di trovare quale segmenta
de! programma ongina l'errore. Se il trace non ¢ abbastanza lungo si
porra semplicemente prima un punto di arresto.

Questo completa la descrizione della sequenza usuale di eventi coin-
volti nello sviluppo diun programma. Si analizzeranno ora le alternative
hardware disponibili per sviluppare i programmi.

LE ALTERNATIVE HARDWARE

1. Microcomputer su Scheda Singola

Il microcomputer su scheda singola offre "approccio di costo pity
basso allo sviluppo del programma. Esso € normalmente equipaggiato di
una tastiera csadecimale, pit alcuni tasti di funzione, pit 6 LED che
possono mostrare indirizz) e dati. Poich¢ esso & equipaggiato di una
piccola quantith di memoria normaimente non € disponibile nessun
assembler. Al massimo esso ha un piccolo monitor e virtualmente non ha
caratteristiche di ediling o debugping e¢cetto un numero molto limitato
di comandi. Tutti i programmi devono entrare percid in forma esadeci-
male, Quindi ¢ssi saranno mostrati sui LED in forma esadecimale. Un
microcomputer su scheda singola ha, in teoria, la stessa potenza hard-
ware di qualsiasi altro calcolatore. Semplicemente a causa della sua
dimensione ristretta ¢i memoria e di tastiera esso non soddisfa tutte le
caratteristiche di un sistema pil grosso e rende lo sviluppo del pro-
gramma molto pid lungo. Poiché ¢ tedioso sviluppare programmi in
formato esadecimale, un microcalcolatore su singola scheda & pit adatto
per I'educazione ed il training dove devono cssere sviluppati dei pro-
grammi di lunghezza limitata e la lore breve lunghezza non é un gstacolo
alla programmazione. Le singole schede costituiscono probabilmente i
modo pit a buon mercalo per imparare eseguendo la programmazione.
Comunque esse non possono essere utilizzate per lo sviluppo di pro-
grammi complessi senza la connessione di schede di memoria ¢ la
disponibiliti degli usuvali aiuti software,

345

Figura 10.3: || SYM & una tiplca scheda microcomputer

346

Figura 10.4: |l System 85 Rockwell/Mostek & un sistema di sviluppo

2, 1l Sistema di Sviluppo

Un sistema di sviluppo ¢ un sistema microcomputer equipaggiato con
una quantita significativa di memoria RAM (32K, 48K} come richiesto
dai dispositivi d'ingresso/uscita, come un display CRT, una stampantc,
dischi e normalmente un programmatore PROM come pure, lorse, un
emulatore in circoito. Un sistema di sviluppo & progettato specifica-
mente per facilitare lo sviluppo del programma in un ambiente indu-
striale.

Esso offre normalmente tutte o quasi tutte le caratteristiche softwate
considerate al paragrafo precedente. In linea di principio esso & lo
strumento ideale di sviluppo software.

La limitazione di un sistema di sviluppo di microcomputer & di non
essere in grado di sosienere un compilatore oppure un interprete.
Questo perché un compilatore richiede una grande quantita di memoria,
spesso molia di piu di quella disponibile sul sistema. Comunque per lo
sviluppo dei programmi in linguaggio di livetlo assembly esso offre tutte
le caratteristiche richieste. In ogni casa, poiché 1 sistemi di sviluppo
vengono venduti in numero relativamente piccolo rispetto ai computer
tipo hobby, il lero costo ¢ significativamente pil elevato,

3. Microcomputer Tipo Hobby

L'hardware del microcomputer tipo hobby & naturalmenie esatta-
mente analogo a quello di un sistema di sviluppo. La principale diffe-
renza risiede nel fatio che questo nen € normalmente equipaggiato coni
sofisticati aiuti di sviluppo software che sono disponibili su un sistema di
sviluppo industriale. Per esempio, molti microcomputer tipo hobby
offrono solo asscmblatori elementari, editor minimd, sistemi di file
minimi, assenza di caratteristiche di connessione di un programmalore
PROM, assenza di emulatori in circuito, assenza di debugger potenti.
Essi rappresenianc percid una fase intermedia tra il microcomputer su
singola scheda ed un sistema di sviluppo a microprocessore completo.
Per un utente che desidera sviluppare programmi di modesta comples-
sitd, essi sono probabilmente il miglior compromessa poiché essi offrono
il vantaggio di basso costo ed un ragionevole insieme di strumenti di
sviluppo software, anche se essi sono abbastanza limitati rispetio alla
loro convenienza,

4. Sistema a Divisione di Tempo (Time Sharing)

E possibile affittare terminali da diverse compagnie che li colleghe-

7

ranno a reti a divisione di tempo. Questi terminali dividono il tempo di
un computer piv grosso e beneficiano di tutti i vantaggi di una grossa
installazione. Sono cosl disponibili assemblatori incrociati per tutti i
microcomputer su virtualmente tutti i sistemi commerciali a divisione di
tempo. Un assemblatore incrociato & semplicemente un assemblatore,
diciamo un 6502, che risiede per esempio su un 1BM 370. Formalmente
un assemblatore incrociato ¢ un assemblatore per il microprocessore X
che risiede su) microprocessore Y. La natura del computer utilizzato ¢
irrilevante. L utente scrive ancora un programma in linguaggio di livello
assembly del 6502 ¢ I'assemblatore incrociato lo traduce neil’appro-
priata struttura di bit binari. La differenza comunque ¢ che questo
programma non pud essere eseguitn & questo punto. Esso pud essere
eseguito da un processore simulate, s¢ ¢ disponibile, fornito il quale non
si utilizza nessuna risorsa d'ingresso/useita. Questa soluzione viene
percid utilizzata soltanto in ambienti industriali,

5. In-House Computer

Ognti volta che ¢ disponibile un grosse in-house computer, possono
essere disponibili anche assemblatori incrociati che facilitano lo svi-
luppo del programma, Sc tale computer offre il servizio di divisione di
tempo questa seelta diventa esattamente uguale a quella del paragrafo
precedente. Se esso offre solo servizio collettivo questo ¢ probabilmente
une dei metodi pill sconvenienti di sviluppo del programma poiche la
sottoposizione di programmi in modo collettivo al livello assembly diun
microprocessore si risolve in un tempo di sviluppo molto lungo.

Pannello Frontale oppure Assenza di Panaello Frontale?

11 pannello frontale t un accessorio hardware spesso utilizzato per
facilitare il collaudo del programma. Esso é stato uno strumento tradi-
zionale per mostrare i contenuti binari di un registro o della memoria. in
modoe conveniente. Comunque tutie le funzioni det pannello di controllo
possono essere escguite da un terminale ¢ Ia predominanza di display
CRT ora offre un servizio pressoché equivalente al pannello di controllo
mostrando il valore binaric dei bit. Il vantaggio ulteriore dell'impicgo
del display CRT & che si pud commutare a volonta dalla rappresenta-
zione binaria a quella esadecimale, simbolica, decimale (naturalmente se
sono disponibili le appropriate routine di conversione). Lo svantaggio di
un CRT & che si devono premere diversi tasti per ottenere il display
appropriato invece di commutare una manopola. Comunque, peiché il
costa della fornitura del pannello di controllo ¢ abbastanza sostanziale,
la maggior parte dei microprocessori recenti ha abbandonato quesio.

343

strumento di collaudo. Il valore del pannello di controllo é spesso
valutato pid in funzione di argomenti emozionali basatisulla precedente
espericnza piuttosta che da una scelta razionale, Questo non & indispen-
sabile.

SOMMARIQ DELLE RISORSE HARDWARE

Si possono distinguere 1re grandi casi: se si ha soltanto un budget
minima ¢ se si desidera impararc a programmare ¢ il caso di acquistare
un microcomputer su scheda singola. Utilizzando questo sisard in grado
di sviluppare wtti i semplici programmi di questo libro ¢ molto di pid.
Eventualmente, quando si vogliono svituppare programmi di pid di un
centinaio di istruzioni, si risentiranno le limitazioni di questo approccio.

Invece un utente industriale necessita di un sistema di sviluppo com-
pleto. Qualsiasi soluzione abbreviata di un sistema di sviluppo completo
causerd un tempo di sviluppo significativamente pit [ungo. 1l compro-
messo é chiaro: risorse hardware rispetto al tempo di programmarione.
Naturalmente se i programmi da sviluppare sono abbastanza semplici
pud essere utilizzato un approccio meno dispendioso. In ogni caso, se si
devono sviluppare programmi complessi & dilficile giustificare qualsiasi
risparmio hardware nell*acquiste di un sistema di sviluppo poichéicosti
di programmazione saranno di gran lunga il costo dominante del pro-
getto.

Per impieghi personal computer un microcomputer tipo hobby offrira
caratteristiche tipicamente sufficienti, anche se minime. La maggior
partc dei computer tipo hobby non é ancara datata di un buon software
di sviluppo. L utentc dovr valutare il suo sistema in relazione ai com-
menti presentati in questo capitolo.

Si analizzera ora in maggior dettaglio la risorsa pill indispensabile:
I'assemblatore.

L'ASSEMBLATORE

Nel corso di questo libro si & utilizzato it linguaggio di fivello assembly
scnza presentare la sintassi formale ovvero la definizione del linguaggio
di livello assembly. E ora il momento di presentare queste definizioni.
Un assemblatore é progettato per consentire la rappresentazione simbo-
lica conveniente del programma utentc rendendo sempflice per il pro-
gramma assemblatore la conversione di questi mnemanici nella loro
rappresentazione,

349

aiossa101doidI 8P aUCZRW W BIBOJd ip ojrm0y (g gL EINBI4

1LLNIMAOD

QONYH 3

OJ0EMIS
QALY HILO
3IDI00Y

13gv

Z

ATy nD30vER
INQINELE

e

350

Campi deil’assemblaiore

Quando si sta rappresentando un programma per I'assemblatore, sid
visto che vengono ulilizzati dei campi. Essi sono:

1T campe della label, opzionale, che pud contenere un indirizzo simbo-
lico per l'istruzione che segue.

i campo dell’istruzione, che comprende il codice operativo ¢ gli ope-
randi. (Pud essere dis(inguibile un campo operando scparato).

Il campo del comments all'estrema destra, che & opzionale e serve per
chiarire il programma.

Una volta che U programma ¢ stato fornito all'assemblatore, quest ul-
timo produrrd un suo /isting. Nella generazione di un listing 'asscmbla-
tore fornird tre campi addizionali, normalmente sulla sinistra della
pagina. Un esempio appare di seguito: all’estrema sinistra vi & il numero
della riga. Ad ogni riga stampata dal programmatore viene assegnato un
numero di riga simbolico.

Il campo successivo a destra & il campo dell'indirizzo effettivo, che
mostra in esadecimale il valore del contatore di programma che puntera
a quellistruzione.

1) campo successivo a destra € la rappresentazione esadecimale dell'i-
struzione.

Questo mostra uno dei possibili impieghi di un assemblatore. Anche
se si stanno progettando programmi per un microcomputer su scheda
singola che accetta soltanto I'esadecimale si scriverebbe ancora il pro-
gramma in linguaggio di livello assembly, supponendo di avere accesso
ad un sistemma equipaggiato di un assemblatore. Si possono quindi
inserire i programmi sul sistema utilizzando I'assemblatore. L assembla-
tore generera automaticamente la codifica esadecimale corretta. Quindi
si rappresenterd semplicemente in codici esadecimali sul sistema dispo-
nibile. Questo mostra, come semplice esempio, il valore delle risorse
software addizionali.

Tabelle

Quando 'assemblatore traduce il programma simbolico nella sua
rapprescntazione binaria, esso esegue due compiti essenziali:

I. Esso traduce le istruzioni mnemoniche nella loro codifica binaria.
2. Esso traduce i simboli utifizzati per le costanti ¢ gli indirizzi nella
loro rappresentazione binaria.

Per facilitare i) collaudo del programma, I"assemblatore indica alla
fine del listing 'equivatenza tra i simbaoli utilizzati ed il loro valore
esadecimale. Questo é chinmatu: tabella dei simboli.

351

LINEA #LOC CODICE

0057
0058

0058
ODED

0DE1

0o
[+ 1 4]
0072
0073
0074

0076
0077
0o7a
o078
0?8
078
0079

oore
0079

EBEEAR

8%

BERERERRERARR

")
¥

=3

0342
0344

0347
034A

034C

034F
D350
0352

0355
0355

0ass
0355

0357

0358
DIASA
D3sC
0350
03sD

D35S0

0350
D2sD
DASD
DASE
035F
DAEQ
0261
0ag2
DB
DAE4
0365
0308
D267
paes
0aea
DIEA
036B
D36C
03D
DABE
D3BE
0370
par:
parz
0373
0374
0375
0ara
0377
0378
0379

Ag 00
80 0B AD

4D 0B AC
AZ 20

20 55 03
CA

DO FA
4aC 0203

A9 FF
38
£9 1

0o FB
6D

LINEA

LDA
8TA

STA
LDX

OFF JSR
OEX

BNE
JMP

=500
ACR1

ACR2
QFFDEL

DELAY

OFF
DIGIT

; COMMUTA OFF ENTRAMBI
. TIMER.

:AGCETTA LA COSTANTE
;DI RITARDO TONES-QFF
: RITARDO MENTRE TONE

E OFF.

: AITORNA AL DIGIT
; SUCCESSIVO DEL NUMERO
. PHONE

QUESTA E UNA SEMPLICE ROUTINE DI RITARDGQ
. PER IL TONC ON EO OFF

DELAY LDA

wWAIT SEC
58C
BNE
RTS

* DELCON

=5 01
WAIT

:ACCETTA LA COSTANTE
: DI RITARDO

:RITARDO DI QUESTA,

: LUNGHEZZA

QUESTA E UNA TABELLA DELLE COSTANT) PER
; LE FREQUENZE DI TONO
D CIASCUNA CIFRA TELEFONICA. LE COSTANTI SONO
| LUNGHE DUE BYTE.
i IL FAIMO £ 1L BYTE DI BASS50 ORDINE.

TABLE *BYTE §13, 52, 576, 5 0%

DUE TANI PER 0"

‘BYTE $CD. 502, $9E. 303 : DUE TONI PER "1

“BYTE $CO. §02. $76, $ 01 T
*BYTE 5CO. §02, $53. $ 01 a
‘BYTE $89, 302, §9E. § 01)
"BYTE $B9. 302 S76, 5 v 5
“BYTE $89. 502, §53. $ 01 ‘g
"BYTE 548, 502, 39E. 5 1 kA

Figura 10.6: Quiput dell'assemblaiore: un esemplo {contlnua)

DOAE OJ7A 02
opas Q7B BE
0085 Q7L Ot
o088 037D 40 'BYTE $48. $02. $76. § 01 L)
00B8 03TE 02

LINEA #LOC CODICE LINEA

opes CITE 76

00BE 0380 O

00AT 0381 48 "BYTE $48. 502. §53. § 0t k2
DoBT 0382 02

0087 0383 53

0087 04 M

008 0385 END

SYMBOL TABLE
SYMBOL YALUE

AGR1 AQQB ACR2 ACOB DELAY @353 DELCON OQOFF
DIgIY 0302 NDEND 030A NUMPTR 0000 OFF 434G
DEFDEL 0020 DN 0XC ONDEL (040 PHONE 0300
TICH ADDS TILH ADD7 TILL AQUD4 T2CH ACQS
T2LH ACOT T2lL ACD4 TABLE 0350 WAIT 0357

END OF ASSEMBLY

Figura 10.6: Qutpul dell’assemblalore; un esempio

Alcune tabelle dei simboli non solo elencheranno i simboli ¢d il loro
valore ma anche i numeni delle righe dove appaiono i simboli ¢ questa &
una caratteristica addizionale.

Messager di Errore

Durante il processo asscmbly, I'assemblatore rileverd errori di sintassi
¢ li clencherd come paric de! listing finale. Diagnostici tipici sono:
simboli indefiniti, label gid definite, codici operativi non consentiti,
indinizzi ¢ modi di indirizzamento non consentiti, Naturalmente sono
desiderabili diagnostici molto pitd dettagliati ¢ normalmente vengono
forniti. Essi variano da assemblatore ad assemblatore.

it Linguaggio Assembdy

1 codici operativi sono gia stati definiti. Si defliniranno qui i simboli, le
costanti ¢ pli operatori che possono essere utilizzati come parte della
sintassi dell’assemblatore.

Simbolf

I simboli sono utilizzati per rappresentare valori numerici, sia dati che
indirizzi. Tradizionalmente i simboli comprendono 6 caratteri e devono
iniziare con un carattere alfabetico.

Esiste un‘ulteriore restrizione: i 56 codici operativt utilizzati dal 6502
oppure i nomi dei registri A, X, Y, S, P possono non essere ulilizzati
come simboli.

Assegnazione di un Valore ad un Simbolo

Le Jabel sono simboli speciali i cui valori non necessitano di essere
definiti dal programmatore. Essi corrispondono automaticamente al
numero della riga dove esse appaiono. Comunque gli altri simboli
utilizzati come costanti od indirizzi di memoria devono essere definiti
dal programmatore prima de! loro impiego. Il segno uguale & utilizzato
per questo scopo od anche come "direttiva™ speciale. Esso & un'istru-
zione all'assemblatore che non sard tradotto in uno statement escguibite:
essa & chiamata una dirertiva dell’assemblatore,

Per esempio 12 costante ALPHA sara definita:

ALPHA = $A000

Questo assegna il valore “A000" esadecimale alla variabile ALPHA.
Le dicettive dell'assemblatore saranno esaminate i un paragrafo succes-
sivo,

Costanti o Letteral

Le costanti possono essere cspresse tradizionalmente sia in decimale,
oppure in esadccimale, oppure in ottale o in binario.
Per diffcrenziare la base utilizzata per rappresentare un numcro viene
utilizzato un prefisso. Nel caso di un numero decimale non viene utiliz-
zato il prefisso. Per caricare 18 nell'accumulatore si scriverd semplice-
mente:

LDA # L8 (dove # denota un Ictterale)

Un numero esadecimale sard preceduto dal simbolo 8.
Un simbolo ottale sard preceduto dal simbolo@.
Un simbolo binario sard preceduto da %.
Per esempio per caricare il valore “11111111" nell'accumulatore si
scrivera:

LDA # % 1111111

354

1 caratteri letierali ASCIHI possono anche essere utilizzati in un‘campo
letterale. Negli assemblatori pitt vecchi era tradizionale comprendere il
simbolo ASCII tra virgoleite. Negli assemblatori pili recenti, per avere
meno caratteri da stampare, 1] carattere alfanumerico é indicato da una
singola virgoletta che precede il simbolo.

Per esempio per caricare il simbolo *S™ nell'accumulatore (in ASC1I)
sl seriverd:

LDA #'S
Per caricare il simbolo delle virgolette stes3o la convenzione é;

LDA #™

Esercizio 10-1: Le due seguenti istruzioni caricheranna lo stesso valore
netlaccumulatore: LDA #°5 ed LDA #35?

Operatori

Per facilitare ulteriormente la serittura di programmi simbolici, pli
assemblatori consentono 'impiego di operatori. al minimo essi dovreb-
bero consentire I'impicgo degii operaton pill ¢ meno cosicché si pud
specificare per esempio

LDA ADRI, ed:
LDX ADRI + |

E importante capire che I'espressione ADR1 +1 sard calcolato dall'as-
semblatore per determinare qual’d indirizzo di memotia effettivo che
deve essere inserito come equivalente binario. Esso sara calcolato nel
tempo-agssembly ¢ non nel tempo di esecuzione del programma.

Inoltre possono essere disponibili pid operatori, come quello di molti-
plicazione e divisicne, che sono convenienti nell’accesso di tabelle in
memoria. Posseno essere disponibili anche operatori pid specializzati
come, per esempio, maggiore ¢ minore di, che troncano un valore di 2
byte rispettivamente nel suo byte di ordine elevato o basso.

Naturalmente un'espressione deve originare un valore positivo. |
numeri negativi normalmente possono essere utilizzati e dovrebbero
esserc e3pressi in un formato esadecimale.

Infine un simbolo speciale viene tradizionalmente utilizzalo per rap-

presentare il valore attuate dell'indirizzo della riga: *. Questo simbolo
dovrebbe essere interpretato come “locazione attuale™. (Valore di PC).

355

Esercizio 10-2: Qual'¢ o differenza tra le isiruzioni seguenti?
LDA % 10101010
LDA # % 10101010

Esercizio 10-3: Qual’é 'effeito della seguente istruzione?
BMI* — 2?

Direttive Dell Assemblatore

Le dircttive sono ordini speciali dati dal programmatore all*assembla-
tore, che si risclve nell'immagazzinamenta dei valori in simboli o nella
memoria ovvero che verranno utilizzate per controllare I'esecuzione dei
modi di stampa dell’assemblatore.

Per fornire un esempio specifico si analizzera qui la nona direttiva
dell'assemblatore dispanibile sul sistema di sviluppo Rockwell (**System
65™). Questa &, .BYT, .WOR, .GBY, .PAGE, .SKIP, .OPT, .FILE ¢
END.

Direttiva di Uguaglionza

Un segno uguale viene vtilizzato per assegnare un valors numerico ad
un simbolo. Per ¢sempio:

BASE #$ 1111
*# 81234

L'effetto della prima direttiva é di assegnare il valore 1111 esadecimale
a BASE.

L'effetto della seconda istruzione ¢ di forzare l'indirizzo della riga al
valore esadecimale *1234". In altre parole la successiva istruzione ese-
guibile incontrala sard immagazzinata alla locazione di memoria 1234,

Esercizio 10-4: Si scriva una direttiva che causi il wrasferimento del pro-
gramma alla locazione di memoria @ e successive.

Dirertive per Iniziglizzare la Memoria

Sono disponibili tre direttive per questo scopo: .BYT, .WOR, .GBY.
.BYT assegnerd i caratteri o valon che seguono a byte di memoria
consecutivi.

Esempio: RESERY BYT “SYBEX"

Questo si risolverd nell’immagazzinare gli indirizzi di 2 byte nella
memoria, il primo ¢ il byte di basso ordine.

Esempio: .\ WOR %1234, $2345

356

.GBY ¢ identico a .WOR eccetto che esso immagazzinera un valore a
16 bit dove il primo byte ¢ quello di ordine elevato. Esso ¢ normalmente
utilizzato per dati a [6 bit piuttosto che per indirizzi a 16 bit,

Lc tre direttive successive sono utilizzate per controllare I'ingresso/u-
scita.

Direttive d' Ingresso/Uscita

Esse sono: .PAGE, .SKIP, .OPT.

.PAGE impone all'assemblatore di terminare la pagina, cioé muove
alla sommitd della pagina successiva. Inoltre pud essere specificato un
titolo per la pagina.

Esempio: .PAGE “titolo della pagina™

SKIP ¢ utilizzaio per inserire righe bianche nel listing.
1l numero di righe da saltare pud essere specificato:
per esempio: .SKIP 3

.OPT specifica quattro scelte: lista, generazione, errari, simboio. Listg
genererd una lista. Generazione & utilizzato per stampare il codice
oggetto di stringhe con la direttiva .BYT. Errore specifica se devono
essere stampati gli errori diagnostici. Simbolo specifica se deve essere
elencata la tabella di simbolo,

Le ultime direttive controllano il formato del listing dell’assembla-
tofe.

Diretiive FILE ed .END.

Nello sviluppo di un grosso programma, diverse posizioni del pro-
gramma saranno tipicamente scritte ¢ collaudate separatamente. Ad un
cerio punto sard necessario assemblare insieme questi file. L'ultimo
statement del primo [ile comprendera quindi la direttiva FILE
NAME/1, dove | &i) numero dell’'unita disco e NAME ¢ il nome del file
successivo, Il file successivo deve essere collegato, a sua volta, a pit file.
Alla fine dell'ultimo file ci sard la direttiva: END NAME/1 che ¢ un
puntatore al primo file.

Infine esiste la possibilit di inserzione di commenti addizionali con il
listing *;".

" pud esscre utilizzato per far entrare commenti all’intecno di una
riga piutiosto che far entrare un'istruzione. Questa € una caratieristica
importante s¢ i programmi devono ¢ssere correltamente documentati.

MACRO

La caratteristica macro & correttamente non disponibile sugli assem-
blatori esistenti del 6502. Comunque si definira qui cos' upa macro ¢

357

Figura 10.7: L'AIM 65 & una scheda con una Mini-stampante ed una tastisra
complela

Figura 10 8: Lo Ohio Scientific & un Personal Microcomputer

358

quali sono 1 suoi vantaggi. Si spera che la possibilitd macro sia presto
disponibile sulla maggior pare degli assemblatori del 6502,

Una macro ¢ semplicemente un nome assegnato ad un gruppo di
istruzioni. Una macro € essenzialmente una convenienza per il program-
matore. Per esempio se un gruppo dicinque istruzion; é utilizzato diverse
volte in un programma, si potrebbe definire una macro invece di dover
sempre riscrivere queste cinque istruzioni. Come esempio si potrebbe
scrivere:

SAYREG MACRO PHA
TXA
PHA
TYA
PHA
ENDM

E quindi scrivere il nome: SAYREG invece delle precedenti istruzioni.

Ogni volta che si scrive SAVREG [e cinque righe corrispondenti
verranno sostituite al posto del nome. Un assemblatore equipaggiato
con una caratteristica macro & detto un macro assemblatore, Quandoil
macro assemblatore incontrera SAVREG esso escguird una vera sostitu-
zione fisica delle righe equivalenti. '

Macro oppure Subroutine?

A questo punto una macro pud essere vista operare in modo analogo
alla subroutine, Queste non é vero. Quando un assemblatore viene
impiegato per produrre il codice nggetto, ogni volta che viene inconiraio
il nome di una macro, essa sara sostituita dalle istruzioni effeltive che
compaiono molte volte ¢ che essa sostituisce. Per quanto riguarda il
tempo di esecuziene il gruppo di istruzioni apparira altrettante volte del
nome della macro.,

In contrapposizione una subroutine & definita soltanto una volta e
quindi essa pud essere utilizzata ripetutamente: il programma salterd
all'indirizzo della subroutine. Una macro & deita una caratteristica di
fempo-assembly. Una subroutine & una caratieristica di tempe di esecu-
zione. 1l loro funzionamento & abbastanza diverso.

Parametri delfa Macro

Ogni macro pud essere equipaggiata di un certo numero di parametri.
Per esempio si consideri la macro seguente:

359

SWAP MACRO N.T

M'
LDA M
STA T
LDA N
STA M
LDA T
STA N
ENDM

Questa macro originera lo scambio dei contenuty delle locazioni di
memoria M ed N. Uno scambioe tra due registri, oppure due locazioni di
memoria, & un’operazione non disponibile sul 6502, Una macro pud
essere utilizzata per realizzarla. "'T" in questo caso & semplicemente i)
nome di una locazione di immagazzinamenta temporanco richiesta dal
programma. Per esempio si vogliono scambiare i contenuti delle loca-
zioni di memoria ALPHA ¢ BETA. L'istruzione che fa questo appare di
seguito: SWAP ALPHA, BETA, TEMP.

In questa istruzione TEMP ¢ il nome di qualche locazione di immagaz-
zinamenlto temporaneo che 5i conosce essere disponibile ¢ che pud essere
utilizzata dalla macro. L’espansione risultante della macro appare di

seguito:

LDA ALPHA
S5TA TEMP
LDA BETA
5TA ALPHA
.Da TEMP
STA BETA

Dovrebbe essere cosi chiaro il valore di una macro: essa é conveniente
per il programmatore per utilizzare le pseudo-istruzioni che sono state
definite con macro. In queste modo il set di istruzione apparente del
6502 pud essere espanso. Slortunatamente si deve ricordare che ogni
direttiva macro si espandera in un numero qualsiasi di istruzioni utiliz-
zate. A causa della sua convenienza per lo sviluppo di qualsiasi pro-
gramma (ungo una caratieristica macro ¢ altamente desiderabile per tali
applicazioni.

Caratteristiche Addizionali della Macro

Molte altre direttive ¢ caralteristiche sintattiche possono essere
aggiunte ad una caratteristica macro semplice: le macro possono essere
annidate, ciot una chiamata macro pud apparire all'interno di una
definizione macro. Utilizzando questa caratteristica una macro pud
modificarc s¢ stessa con una definizione annidata! Una prima chiamata
produrrd un'espansione mentre le chiamate successive produrranno
un’espansione modificata.

50

ASSEMBLY CONDIZIONALE

L’assembly condizionale ¢ un'altra carauersstica dell*assemblatore
che fin‘ora non & s1ala fornita sulla maggior parte degli assemblatori del
6502. Una caratieristica di assemblatore condizionale consente al pro-
grammatore di utilizzare le istruziont speciali “iF", seguito da una
espressione, quindi (a scelta) “ELSE™, e terminata da “ENDIF™. Ogni
volta che I'espressione seguente I'IF é vera allora verranno assemblate le
istruzioni tra I''F ed LESE oppure IF ed ENDIF (s¢ non c'¢ “ELSE™).
Nel caso in cui sia utihzzato FF seguito da ELSE solo uno dei due blocchi
di istruzioni sard assemblato, dipendentemente dal valore dell*espres-
sione verificata,

Con una caratteristica di assembly condizionale il programma pud
progetiare i programmi per una grande varieta di ¢asi ¢ quind: assem-
blarc condizionalmente i segmenti di codice richiesti da un’applicazione
specifica, Per csempio un utente industriale deve progettare programmi
che controllino qualsiasi numero di semafori ad un incrocio per una
certa varieta di algoriimi di controllo. Esso ricevera quindi le specifiche
dall’ingegnere del traffico locale che definiscono il numero di semafori
che vi dovrebbero essere ¢ quali algoritmi di controllo. Il programma-
tore quindi porrd semplicemente | parametri nel suo programma ¢
quindi li assemblera condizionalmente. L'assembly condizionale si risol-
vera in un programma ** a richiesta” che rivelera salo quelle routine che
sono necessarie per la soluzione del problema.

L’assembly condizionale é percid di valore specifico per la genera-
zione di programmi industriali in un ambiente dove esistono molte scelte
e dove il programmatore desidera assemblare velocemente ed automati-
camente porzioni del programma in relazione a parametri esterni.

SOMMARIOQ

Questo capitolo ha presentato le tecniche e gli strumenti hardware e
soltware richiesti per sviluppare un programma, insicme ai vari compro-
messi ed alternative.

Questo a livello hardware va dal microcumputer su scheda singola al
sistema di sviluppo completo.

A livello software si va dalla codifica binaria alla programmazionc ad
alto livello.

Si dovri quindi operare una selezione in [unzione dei traguardi e delle
risorse.

3ol

CAPITOLO 11

CONCLUSIONI

Sono stati trattati tuni gli aspetti pit importanii della programma-
zione, dalla definizione e dai concetti di base alla manipolazione interpna
dei registri del 6502, alla direzione dei dispositivi d'ingresso/uscita,
come pure le caratterisiiche depli aiuti dello sviluppo software. Qual'é¢ la
fase successiva? Si possono presentare due puntidi vista, it primo collega
Io sviluppo alla tecnologia, il secondo callega lo sviluppo alla propria
conoscenza ed abilitd, Si indirizzeranno questi due punti.

SVILUPPO TECNOLOGICO

It progresso dell'integrazione della tecnalogia MOS rende possibile la
realizzazione di chip molto pi complessi. 1l costo di realizzazione della
funzione processore stessa € costantemente decrescente. [l risultato ¢ che
molti dei chip d'ingresso/uscita o dei chip di controlle di periferica
utilizzate in un sistema, ora incorporano un semplice processore. Questo
significa che la maggior parte dei chip LS! ora impicgati nefsistema sono
divenuti programmabili. Si sta sviluppando ora un interessante dilemma
concettuale: in modo da semplificare il compito del progetto software
come pure di ridurre il numerc di componenti i nuovi ¢chip 170 ora
comprendono sofisticate caratteristiche programmabili; moiti algoritmi
programmati sono ora integrati all'interno del chip. Comunque come
risultato, lo sviluppo dei programmi ¢ complicato dal fatto che it
questi chip d'ingresso/uscita sono molto diversi ¢ neessitano di essere
studiali in dettaglio dal programmatore! La programmazione del sistema
non é pia la programmazione del solo microprocessore, ma anche la
programmazione di tutti i vari chip connessi ad ¢sso. 11 tempao diapprendi-
mento per ogni chip pud essere significativo.

Naturalmente questo & un dilemma soltanto apparenie. S¢ questi chip
non fosscro disponibili, la complessita dell'interfacccia da realizzare,
come pure | programmi corrispondenti. sarebbe ancora maggiore. La
nuova complessila introdotta ¢ che occorre programmare pid di un
processore ed impararc le varie caratteristiche dei diversi chip di un
sisicma per rendere cffettiva il loro impiego. Comunque si spera che le

363

Figura 11.1: 11 CBM ¢ un sisterna di gestione completo ¢con lloppy disk e stampanite

Figura 11.2: L'APPLE |l utlllzza una TV convenzionale

tecniche ed i concetii presentati in questo libro possano rendere questo
compito ragionevolmente semplice.

LA FASE SUCCESSIVA

8i sono ora imparate le tecniche di base per programmare applicazioni
semplici su carta. Questo era il traguardo del libro. La fase successiva é di
praticare effettivamente. Non esiste un sostituto a questo. & impossibile
imparare completamente la programmazionc sulla carta ed ¢ richiesta
esperienza. Si dovrebbe quindi ora iniziare la scrittura di programmi
propri. Si spera che questa sia una cosa gradita.

Per coloro che desiderano beneficiare della guida di un libre addizio-
nale, il volume complementare a questo in questa serie &: ““Applicazioni
del 6502" che presenta un insieme di applicazioni effettive che possono
essere eseguile su un microcomputer reale.

365

APPENDICE A

TABELLA DI CONVERSIONE ESADECIMALE

x| 0 1 2 3 s 5 F 7 Moo ABCDEF o] _x
1] 9 + F 3 &4 % & 7 B S5 KM 12 13 M B 4 ¢
v | BT80N 2D KT M NN 28 | 08
2 A2 NV MBI ITMF AN 4] kA4S e 4T 612 am
3 M 49 80 W 52 53 S0 55 58 AT 58 58 W0 M B2 K A | 12288
4 M oes G5 2 B NN RTIMHE NN R 1024 | W36
L M M A g BB 86 AT MWW TR M 128 | 20440
L) B6 97 90 9% O 101 Y02 100 104 05 108 107 1@ W 110 M 1506 | 4578
7 M2 N3 14 N5 16 1T 118 1P 10 W 122 120 W4 1 s 12) \TH2 | 2572
B |9 129 130 131 1X2 1XY U 1M 1M 1T 138 19 MDD 141 142 1] Haa | TS
[} W 143 wab 147 148 WD 15D D51 152 153 184 158 158 967 158 15D X4 | B
A WO W K2 15D 184 WS 188 167 WGE WP 1D A7 STE 173 1M TN 2500 | 40080
L] 176 177 ATQ 1T 108G 151 10 10 wh 1A 18 AT ABA 1Be 180 iR | a0
C |12 193 184 135 150 9B7 196 199 200 200 202 200 204 205 206 P07 W | 4nsd
O | 200200 21D 219 2 213 4 215 28 217 2) 70 I I TN e | Ak
E |24 225 2% 207 220 220 YO 3 2 ¥R % 1B 2B X7 2N 18 584 | T4
F] 240 241 302 DAY 244 245 240 24T 240 M3 B0 P B2 280 B4 A 3840 | CLeag
s 4 3 2 1 0
Hex| oec fuex| oec Jwex] vec [mex} oec Juex] vec [Hex| oee
0 o © 0 o] o o5jo oo o
¥ 1.04B.578] 1 1 40068] | 2561 18] 1 1
Z 2,007,152 2 7 ew 2 siz| 2 2|2 2
3 3uasal 3 3 w22l 3 vesl3 483 3
4 4,194.304) 4 4 186.384] 4 1,024 4 64| 4 4
5 5242880] 5 s | s 12m]s efs s
& 6291 45| & 6 2,576 & 1.536] & % | & &
?__7.340.032) 7 7 we72l 7 1MW) 7 121 7 7
8 BIB8.40E] B a 278 8 204a] 8 128 | 8 []
9 9.437.184] 9 A v Jeb84] 9 2304 9 144 | ¢ ?
A 10.485740F A 655,360 A 4090 A 2560] A 160] A 3]
8_11.534.306] B 7208%| B 4505l B 2816l @ 1ve| 8 11
C 12582912F C 786432 C 49,1521 C 3072| C 192] C 12
D 134314880 D 851.948] D £3248] 0 332 O 2] 0 13
E 1468006048 E 917504 E 57 344| E 3,5B4| E 24| E 4
F 15.728.6a0] F 983.0a0] F &),440] F J.B40] F 240 F 15

APPENDICE B

ISTRUZIONI IN ORDINE ALFABETICO
DEL 6502

ADC Somma con riporto INC Imcrementa X
AND AND Logico INY Incrementa Y
ASL Spostamento Aritmetico a MP Salta
Sinistra ISR Salia nlla subroutine
BcC Opera diramazione se camry LDA Carica l'accumulatore
¢ zer0 LDX Carica X
BCS i)pcrn diramazione se carry LDY Carica Y
uno _
BEQ Opera diramazione s¢ LSR Spostamento logico a
nsultato = 0 destra
BIT Verifica di bit NOT Noa opera
BMI Opera diramazione se ORA OR Logico
negativo PHA [piroduce A
BNE Opera diramazione se PHP Introduce lo tato P
diversa da D PLA Estrae A
BPL Opera dismazione se FLP Estrae lo stato P
positivo ROL Raorazione a sinistra
BRK Break ROR Rotanona 8 destra
BYC Opera diramazione se RTT Ritorno da [nterrupt
overflow & 0 RTS Ritorno da subroutine
BVS Opera diramaziont se SBC Saitrac con nipotta
averflow & | SEC Pone carry ad |
CcLc Azzers carry SED Pane decimale ad |
cLb Azrers il na! decimale SEl .["CII'IC disabilitazione
CLI Azz2¢1a la disabilitazione intereupt ad |
interrupt STA Immagazzina |I'accumu=-
cLy Azzera overllow latore
cMP Confronta con I'accumu- STX Immagazzina X
latore 5TY Immagarzina Y
CPX Confronta con X TAX Traslecisce A X
CPY Confronta con Y TAY Trasferisce A in Y
DEC Decrementa la memorin TSX Traslerisce SP win X
DEX Decrementa X TXA Trasferisce X in A
DEY Decremenia Y TXS Trasferisce X in SP
EOR OR Esclusivp TYA Trasfensce Y in A

368

APPENDICE C

LISTING BINARIO DELLE ISTRUZIONI

DEL 6502
ADC 011bbbo! LDX 1¢1bbbl0
AND 001bbb LDY 101bbb00
ASL 000bbb 10 LSR 01bbbb10
BCC 10110000 NOP 0lbbbl 10
BEQ 11110000 ORA 000bbb01
BIT 0010b100 PHP 01001000
BMI 00110000 PHP 00001000
BNE 11010000 PLA 01101000
BPL 00010000 PLP 00101000
BRK 01010000 ROL onibbblo
CLC 00011000 ROR 011bbb10
CLD 11011000 RTI 01000000
CL1 01011000 RTS 01100000
CMP 110bbb0I SBC 111bbb01
CPX 1110bb00 SEC 00111000
CPY 1100bb00 SED 11111000
DEC 110bB110 SEIl 01111000
DEX 11001010 STA 100bbb0i
DEY 10001000 STX 100bb110
EDR 101bbb01 STY 100bb 100
INC 111bb110 TAX 10101010
INX 11101000 TAY 10101000
INY 11001000 T8X 10111010
JMP (1601100 TXA 10001010
JSR 00100000 XS 10011010
LDA 1016bb0t TYA 10011000

Per la defimzione del campo “bb" si faccia rifeimento al Capitole 4

189

APPENDICE D

- ~ - _J._J - - -
>
“ L) - - b “ - -
-
|* % & % ' gz » [3 3
- -] K] A o~ A el ol - -~
m .~ - - -~ - - - | -~ - -
les = - = ®E S omw D xp D 2
a . J— . -{ta rm] -
=
<L J—
A b - o B (o e ~
£ L %28 s glvs & L
.] - LI P o P P cafry -
o g - -
% I - R (SR J J T A
m SR 3 - bRy L] 43¢ B ﬁ—# = X3
m o - LA P - R Aln A
- S— -
m LI I - * % alo - a e w|mow o - aie - . w
LT L
< k] " Seulg ce= ¥YESISY T B s U S &
I3 -
m] re il

ESADECIMALE E TIMING

-~ bkl Lol ey) L LR] wa wrdre LY ST

SET DI ISTRUZIONI DEL 6502

MFLICATO

"L T 33 c x |leger | 42 s 3r3ags

A
L
1A
17
11
2.
17
13+

n
121
[T
(A
1

r‘“l.\501li lCSCDlUW””H!!MH P LAY L L T ety P ULl EAE A BLR
07 m U - L I] e - zFwolopw ool X Lol e s mafe e = a8 e
o4 mojmewwajees Uy ND0 3 - lilbion a7 Fieliaiing iSOy iREp R

70

(Y1 Somma t ad b ok 6 S8 stirdversando B confics 3wk pagine

CODICE DI STATO

IND X) {WD)Y | PAGHA 2x| RELATIWO| INDIRETTOl PAGINA Z¥| o Paoccnedony
|lalslo)|s]l rqer|n|r|Cr|alrjor|n]s|Or]a] v &0 pC| MNENDN
HIEREAEE ER D ERE] -w ee ADC
»la|r|»|s]2]as|a]z L) e | AND
| a]? - se a3y

w| |2 BCL

L=k] [X

[EIERE "o

W . .]

L AR N | E]

-] I I] [R0]

6] 21172 ArFy

1) e

w|r|2 B¥C

m|r|? BV

B CicC

L] [

[] <

o civ

Cle]2loe| s ajos|a]|z . sal Cwr
- e CPa

» [X) Erv

Ob [0 | 2 [] L] Lc

. - Gex

» . Oty

EEEEEE AR ERRI RN B - e | LOw
fele]2] L INE

[] L} Th K

L) [IR Y

W[s]2 1w

1.

s le | afuw)a)y]esfafa) # | 10
- |4 |7]8 . (o4

| a2] L [B-Ri

a2 & ae| s»

NO P

a|la]2 |s]2]nn]ata [] g] oo
LE I

L

[] LA

[ERE RN LN

| e H » [KX

Y R R r] LELd

seenae ::;

ol s | a(es|] a]|rs]a}? -8 LY X+
SEL

1 SES

1 304

ez wm|a|l|wm]|e]z Sta
w |e |7 Arx

LI P Lty

[l ['aa

] a rav

L - rsn

» . Tha

Txs

l\! 2 Ty A

2% Sovema 7 ad 0 wa al ha diramarions el mteme delia pagme
Bormema 3 &d 0 34 3 KR dirAMAEne 50 un'EArs paging

m

APPENDICE E

TABELLA DI CONVERSIONE ASCII

HEX

,_
in
2

TMOOO>POR~NOONMbWN-=O

MSD 0 1 2 3 4 5 6 7
BITS | 000 001 g10 011 100 191 1390 11
0000 | NUL ODLE SPACE 0 @ P - p
oo SOH DC1 { 1 A Q a q
oo ST De2 * 2 B R b r
oo11 | ETX DC3 . 3 C S ¢ s
0100 EQT DC4 $ 4 D T d 1
0101 | ENQ NAK % 5 E U e v
o1 ACK SYN] 6 F v i v
o BEL ETB ' 7 G W 9 w
1000 BS CAN { 8 H X] x
1001 HT EM) 8 t ¥ bt oy
1010 LF SUB y S 2
1011 VT ESC + A S T
1100 FF FS . < L N
130 CRh GS - - M] m |}
1110 50 RS . > N A N
1111 S us ! ? O « o DEL

n

1 SIMBOLI ASCII

NUL — Nullo

SOH — Inizio deils lesials

ETA — Inizhy d¢! teatn

ETX — Fine g Tealo

EQY — Fine dells trasmdis-
slone

ENGQ — Domands

ACK — Riconocecimento

BEL — Campana

B8 — Sparzio poateriors

HT = Tabularions orlezon-
ke

LF — Ingremantc dl rigs

¥T = Tabulezionn varticale

FF — Allmentaxions del mo-
dulo

CA = Ritorno cerrello

50 — Spoats fuord

81 — Spostm dentro

OLE — Perdits Collegamenio
Oatt

BC = Conlirgllo disporitivo

NAK — Rlconostimento
negailva

S8YN — Sincronlamo

ETB — Fine del blocoo dl
trasmissione

CAN — Cancella

EM — Fine del mazzo

SUD — Eoailtulo

ESC — Pardita

F2 — Sepanulore di file

G5 — Beparslore di gruppo

AE — Separaiors di record

US — Separniore di unitk

8P ~ Gpazlo (Blank}

DEL — Cancells soetivendo

APPENDICE F

TABELLA DELLE DIRAMAZIONI RELATIVE

DIRAMAZIDME AELATIVA DIRETTA

A ! FH 3 q 3 . 7 8 @ A] c o f F
0 o 1 2] 4 L] [r 8 9 0w n 1H] 13 4 14
- M) T 1) 1 0 2t Frd 23 24 75 74 pid] Ful 1] 11
T | 3 1 B B ¥ B P M & 4 d d o @ 0
1 |13 A 53 51 32 8 4 535 % 57 M M e ¢ &l ol
T [t a5 6 o oF o 18 T 2 33 4 J1 78 o ® 9
3 a0 L] Lr] L] Bs (1] 92 91 Ga k-]
4) Wi 1od 19y 104 1

2 frrz vy dla IS b M7 1A 119 120 11 122 123 134 175 v @

TABELLA DI DIRAMAZIONE RELATIVA INVEASA
i 'y [3
s D 1 7 k| L] 5 [r] L] A .} < b §

3 |iem zr v vE N2 Py 122 1 12 118 1@ 1P e s a1l
% I D 10% I08 07 os 105 1Q4 Q3 ro3 rol HOD hoid ki | LZa
a | 94 98 ®4 o1 91 9 1 @ el & A& A3 8 ¥ 6 B
.} L hal i3 1} Ja 1) fa L] 1 I sl ol od &?] &5
T 64 61 & & e = s & 30 3 s 53 52 5 50 451
¥ afl 47 4 43 [4} 47 At o % 1 7 EE} 14 34 I
E k1 k] T = F] FH -] F L) 14 7 Fe n ol 19] kb
] 4 1% 14 13 a2 W 9 [] & H a 1 i J

3713

LISTING DEL CODICE OPERATIVO

APPENDICE G

ESADECIMALE

=
o 1 2 3 4 5 -]
1 [1] QEA 1 LTS 1 AR 30
L LY [+ TN cRade § -
H "% ant 8 wer DT F g
i [L] AWy LR L g Fa
. Lald L] 11§ 1 AR
¥ "t [1+ NI P EP e
L m - Wl] AP Haha
t [11 [T~ (=L LY
* ke IRE-T ara g e ga
* [AP AL RN] slmdnmx IR E-LR
[[+-T LD e L 3 JDagr Jargr
[] war v W g s jra 1% EN)
r I T [l 4] L b -1
- il Fhud > 8 n [< 1% LN
i o A [T 1] e pR
t prean Wy [ALEF e
8 9 A B C D £
-~ i 1w 2% & ok an []
£iE [T Oha 1 Af 1 1
~F A L= [0 LA] [=% 2
sc we o anp & wa x b]
ek, L= (1LY 1y ot 1 L
Q. o » o AT 3
A Al s [l LB} L L=] *
W Y A '
G~ A LY L E1rY iy 1
LAt) aTa v LT LY ila a
ar Dk v Tax WO uoA 1] a
o (313 LT L] -V] ipw r]
Y Lk A e Cand b 14 £
b ey H [o
L5 [T7) i e A []
We A WK o]
| = mdratio

O - P = pagine two

314

APPENDICE H

CONVERSIONE DA DECIMALE A BCD

DECIMALE BCD OEC B8CD DEC BCD
1} 0000 14 00010000 10010000
k D1 " 00010001 91 10010001
2 Do ¥ 00010010 92 10013010
k] oon 1l DOD1901 1 o] 10010044
4 0100 i 00013100 9 10010100
5 o " 00014101 95 16010101
& Q110 15 g % 10010110
r @ 17 o011 97 14010111
8 1000 1L} 00011000 a8 10071000
9 10 +]] 19 R RREL 11 o 10011001

375

L. 25.000

L'AUTORE

Ha insegnato microprocessori @ programmazione a
pit di 5000 persone in tutto il mondo. Laureatosi in
Fisica, in Sclenza del Calcolatore, all'Universita di
Berkeley, ha sviluppato una realizzazione APL mi-
croprogrammata ed ha lavorato nella Silicon Valley
sui sistem| industriall a microprocessore all'inizio
della loro comparsa. Questo libro, come gli altr| di
questa serie, & basato sulla sua esperienza tecnica
ad educativa.

Cod. 503 B

GRUPPO
EDITORIALE
JACKSON

Rodnay
Zaks

azione

Programm

O
O

