
EDIZIONE
ITALIANA

RODNAY
ZAKS

GRUPPO
EDITORIALE

JACKSON

Rodnay
Zaks

GRUPPO
EDITORIALE

JACKSON
Via Rosolimi, 12

20124 Milano

Hanno contribuito alla realizzazione dell'edizione italiana:
Copertina: Marcello Longhini. Impaginatone e grafica: Francesca di Fiore e Rosi
Bozzolo. Coordinamento: ing. Roberto Pancaldl Traduzione: ing. Sergio ZamolL

Copertina: Daniel Le Noury

Si è cercato per quanto possibile, di fornire informazioni complete e rigorose.
In ogni caso la Sybcx non si assume alcuna responsabilità per il loro impiego;
nemmeno al riguardo di infrazioni di brevetti e di altri diritti di terze parti che ne
potrebbero derivare. I costruttori di apparecchiature non rilasciano alcuna
autorizzazione su apparecchiature protette da brevetto o diritti di brevetto e si
riservano la facoltà di cambiare, in qualunque momento, la disposizione circui­
tale senza alcun preavviso.

In particolare sono soggetti a frequente cambiamento le caratteristiche tecni­
che c i prezzi. I confronti e le valutazioni sono presenti solo per il loro valore
educativo ed i loro principi informativi. Per le specifiche esatte si rimanda il
lettore ai dati del costruttore.

a Copyright per l'edizione originale SYBEX Inc. 1978-1979, 2020 Milvia Street
-Berkeley, California 94704.
e Copyright per l'edizione italiana SYBEX Inc. 1931

Tutti i diritti sono riservati - Nessuna parte di questo libro può essere riprodotta,
posta in sistemi di archiviazione, trasmessa in gualsiasi forma o mezzo, elettroni­
co, meccanico, fotocopiatur» etc., senza l’autorizzazione scritta dell'editore.

Stampato in Italia da
S.p.A. Alberto Matarelli - Milano

Stabilimento Grafico

PREFAZIONE

Questo libro si propone di essere un testo aulosufficicnie e completo
per insegnare la programma/ione, impiegando il 6502.

Può essere utilizzato da chi in precedenza non ha mai programmato
ed è utile anche per coloro che impiegano il 6502.

Alle persone che hanno già programmato, questo libro insegnerà
tecniche di programmazione basale sulle caratteristiche specifiche del
6502. Il lesto comprende le tecniche, a livello elementare ed intermedio,
richieste per un effettivo inizio alla programmazione.

Il libro ha lo scopo di fornire un vero livello di competenza alle
persone che desiderano programmare impiegando questo microproces­
sore. Naturalmente nessun libro insegnerà effettivamente come pro­
grammare, finché non si eseguono delle applicazioni pratiche. Tuttavia
questo libro guiderà il lettore al punto di poter programmare da solo e
risolvere problemi semplici, od anche moderatamente complessi, impie­
gando un microcalcolatore.

Il libro si basa sidl'esperienza acquisita dell'autore neH’insegnamento
della programmazione dei microcalcolatori a più di 1000 persone.

I lettori che hanno già imparato la programmazione possono saltare il
capitolo di introduzione. Per gli altri che non hanno mai programmato,
la parte finale di qualche capitolo può richiedere una seconda lettura.
Questo libro è stato progettato per introdurre sistematicamente il lettore
a tutti i concetti base e alle tecniche richieste per la costruzione di
programmi a complessità crescente. Quindi si consiglia vivamente di
seguire l’ordine dei capitoli. Inoltre, per ottenere effettivi risultati, è
importante che il lettore si sforzi di risolvere più esercizi possibili. I.a
difficoltà contenuta negli esercizi è stata accuratamente graduala. Essi
servono per verificare che il materiale presentato sia realmente com­
preso. Senza l’esecuzione di esercizi di programmazione non sarà possi­
bile raggiungere pienamente il fine didattico che il libro si propone.
Diversi esercizi possono richiedere tempo, come l’esercizio di moltipli­
cazione, per esempio.

Comunque, eseguendoli, si program meràerfettivam entccsiimparerà
eseguendo. Questo è indispensabile.

Per coloro che al termine di questo libro avranno acquisito “ piacere’’
per la programmazione, e disponibile un volume ulteriore: “ Applica­
zioni del 6502” .

Ili

In questa serie, esistono altri libri per la programmazione di altri
microprocessori utilizzati comunemente.

Per coloro che desiderano sviluppare le loro conoscenze hardware si
suggeriscono i libri “ Microprocessori’' c ' ‘Tecniche di interfacciamento
dei Microprocessori” .

I contenuti di questo libro sono stati attentamente controllati e sono
quindi affidabili. Comunque, inevitabilmente, si troveranno errori di
tipo tipografico o di altro tipo.

L'autore sarà grato per qualsiasi segnalazione da parte di lettori
attenti cosicché le future edizioni possano beneficiare della loro espe­
rienza. Qualunque altro suggerimento destinato a migliorare il libro,
sarà apprezzato.

PREFAZIONE
ALLA SECONDA EDIZIONE

Questa seconda edizione ha consentito di aumentare il libro di circa
100 pagine, con la maggior parte del nuovo materiale aggiunto ai Capi­
toli I e 9, cioè agli estremi; infatti il Capitolo I è quello di introduzione
mentre il Capitolo 9 è dedicato alle ultime informazioni sulle strutture
dei dati.

Nel corso del libro sono stati introdotti dei miglioramenti aggiuntivi;
in particolare l'autore desidera ringraziare i numerosi lettori deN'edizio-
ne precedente che hanno contribuito ad importanti suggerimenti mi­
gliorativi.

Un ringraziamento particolare è rivolto a Eric Martinot e Chris
Williams per i loro contributi agli esempi complessi di programmazione
del Capitolo 9 ed a Daniel J. David per i numerosi miglioramenti
suggeriti. Numerose variazioni e miglioramenti sono dovuti alle analisi
ed ai commenti proposti da Philip K. Hooper, John Smith, Ronald
Long, Charles Curley, N. Harris, John McCIcnon, Douglas Trusty e
Fletcher Carson.

SOMMARIO

PREFA ZIO N E.. Ili

CAPITOLO 1 - CONCETTI DI BASE
Introduzione.. I
Cos’è la programmazione 1
Diagrammi di flusso ... 2
Rappresentazione deH'informazione.. 4

CAPITOLO 2 - ORGANIZZAZIONE HARDWARE DEL 6502
Introduzione.. 31
Architettura del sistem a... 31
Organizzazione interna del 6502 .. 34
Il ciclo di esecuzione di un'istruzione 36
Lo s ta c k ... 40
Il concetto di impaginazione.. 41
Il chip 6502 ... 42
Sommario hardw are.. 44

CAPITOLO 3 - TECNICHE DI PROGRAMMAZIONE DI BASE
Programmi aritm etici... 45
Aritmetica BCD 55
Auto-test importante .. 69
Operazioni logiche .. 79
Subrou tine.. 81
Som m ario... 89

CAPITOLO 4 - SET DI ISTRUZIONI DEL 6502
PARTE I - DESCRIZIONE GLOBALE
Introduzione.. 91
Classi di istruzione... 91
Istruzioni disponibili sul 6502 .. 94

PARTE II - LE ISTRUZIONI
Abbreviazioni.. 103
Descrizione completa di ogni istruzione.................................. 104

CAPITOLO 5 - TECNICHE DI INDIRIZZAMENTO
Introduzione.. 179
Modi di indirizzam ento... 179
Modi di indirizzamento del 6502 .. 185
Utilizzazione dei modi di indirizzamento del 6502190
Som m ario.. 199

CAPITOLO 6 - TECNICHE INGRESSO/USCITA
Introduzione... 201
Ingresso/U scita...201
Trasferimento parallelo di p aro la ... 207
Trasferimento seriale di b i t .. 211
Sommario I/O di b a se .. 217
Comunicazione con i dispositivi I/O 217
Sommario sulle periferiche...... .. 227
Scheduling d'Ingresso/Uscita ... 228
Som m ario... 241
Esercizi..241

CAPITOLO 7 - DISPOSITIVI INGRESSO/USCITA
Introduzione... 243
Il PIO convenzionale 6520.. 243
Il registro di controllo interno ..246
Il 6530..247
Programmazione di un P IO ..247
Il 6522..247
Il 6532... 250
Som m ario...250

CAPITOLO 8 - ESEMPI DI APPLICAZIONE
Introduzione..251
Azzeramento di una sezione della m em oria 251
Polling dei dispositivi di I /O ..252
Accettazione dei caratteri all'ingresso 252
Verifica di un carattere.. 253
Verifica di paren tesi.. 254
Generazione di p a r ità .. 255
Conversione di codice: da ASCII a B C D256
Ricerca dell'elemento maggiore di una tabella 256
Somma di N elem enti.. 258
Un calcolo chccksum ..258

Conteggio di ze ri..259
Ricerca di una stringa... 260
Som m ario...261

CAPITOLO 9 - STRUTTURE DEI DATI
PARTE I: CONCETTI DI PROGETTO
Introduzione.. 263
Puntatori...263
Liste...264
Ricerca e classificazione..270
Som m ario...271

PARTE II: ESEMPI DI PROGETTO
Introduzione...273
Rappresentazione dei dati di una lis ta273
Una lista sem plice.. 275
Lista alfabetica .. 279
Linkcd lisi ...288
Albero b inario ...302
Un algoritmo hashing..308
Bubble-son...319
Un algoritmo m erge..328
Som m ario.. 330

CAPITOLO 10 - SVILUPPO DEL PROGRAMMA
Introduzione..331
Scelte di base della program mazione...331
Supporto software..334
La sequenza di sviluppo del program m a.................................. 336
Le alternative hardw are... 339
Sommario delle risorse hardw are...343
L'assemblatore.. 343
M ac ro ... 351
Assembly condizionale... 354
Som m ario...355

CAPITOLO 11 - CONCLUSIONI
Sviluppo tecnologico..357
La fase successiva..359

APPENDICE A - TABELLA DI CONVERSIONE
ESADECIMALE...361

vn

APPENDICE B - ISTRUZIONI IN ORDINE ALFABETICO
DEL 6502 ...362

APPENDICE C -LISTING BINARIO DELLE ISTRUZIONI
DEL 6502...363

APPENDICE D - SET DI ISTRUZIONI DEL 6502:
ESADECIMALE E TIMING................................... 364

APPENDICE E - TABELLA DI CONVERSIONE ASCII................ 366
I simboli A SC II.. 366

APPENDICE F - TABELLA DELLE DIRAMAZIONI
RELATIVE...367

APPENDICE G - LISTING DEL CODICE OPERATIVO
ESADECIMALE...368

APPENDICE H -CONVERSIONE DA DECIMALE A BCD.........369

v in

CAPITOLO 1

CONCETTI DI BASE

INTRODUZIONE

Questo capitolo introdurrà i concetti di base e le definizioni relative
alla programmazione di calcolatori. Il lettore già familiare con questi
concetti può scorrer velocemente i contenuti di questo capitolo e poi
passare al secondo capitolo. Comunque è consigliabile che anche i lettori
esperti osservino i contenuti di questo capitolo di introduzione: qui sono
compresi, molti concetti significativi comprendendo, per esempio il
complemento a due, BCD, ed altre rappresentazioni.

COS’E’ LA PROGRAMMAZIONE?

Dato un problema occorre innanzi tutto escogitare un metodo di
soluzione. Questa soluzione è espressa come una procedura di fasi
successive chiamata algoritmo. Un algoritmo è quindi una specificazione
fase-per-fase della soluzione da dare ad un problema. È necessario
inoltre terminare la soluzione di un numero finito di fasi. Questo algo­
ritmo può essere espresso in qualsiasi linguaggio.

Un algoritmo tipico può essere per esempio:

1 - inserire la chiave nella toppa
2 - girare la chiave a sinistra per un giro completo
3 - impugnare la maniglia
4 - girare la maniglia a sinistra e spingere la porta

A questo punto, se questo algoritmo è corretto per il tipo di serratura
considerato, la porta si aprirà. Questa procedura formata da 5 fasi, viene
considerata come un algoritmo per l'apertura della porta.

Una volta che la soluzione del problema è stata espressa sotto forma di
un algoritmo occorre che questo algoritmo venga eseguito dal calcola­
tore. Sfortunatamente è ora ben noto il fatto che i calcolatori non
possono capire, ed eseguire, il linguaggio comunemente impiegato. Que­
sto a causa àe\Y ambiguità sintattica di tutti i comuni linguaggi umani.
Solo una parte ben definita del linguaggio naturale può essere “capita"
dal calcolatore. Questa parte è chiamata linguaggio di programmazione.

La conversione di un algoritmo in una sequenza di istruzioni in
linguaggio di programmazione è delta programmazione. Per essere più
specifici, l’attuale fase di traduzione dell'algoritmo in linguaggio di
programmazione, è chiamalo codifica.

In realtà la programmazione fa riferimento non solo alla codifica ma
comprende il progetto globale dei programmi e le “strutture dati” che
realizzano l’algoritmo.

La programmazione effettiva richiede non solo la comprensione delle
tecniche di realizzazione possibili per gli algoritmi convenzionali ma
anche l’abilità di impiego di tutte le caratteristiche hardware del calcola­
tore come i registri interni, la memoria ed i dispositivi periferici, più un
impiego costruttivo di opportune strutture di dati. Queste tecniche
saranno sviluppate nei capitoli successivi.

La programmazione richiede anche una severa disciplina di documen­
tazione, in modo che i programmi siano comprensibili da altre persone
oltre all'autore. La documentazione deve essere interna ed esterna al
programma.

La documentazione interna del programma fa riferimento ai com­
menti introdotti nel corpo di un programma, allo scopo di spiegare il suo
modo di operare.

La documentazione esterna consiste nei documenti di progetto che
sono separati dal programma: spiegazioni scritte, manuali e diagrammi
di flusso.

DIAGRAMMI DI FLUSSO

Esiste quasi sempre una fase intermedia fra l'algoritmo ed il pro­
gramma. Questa fase utilizza i diagrammi di flusso. Un diagramma dì
flusso è semplicemente una rappresentazione simbolica dell'algoritmo,
espressa come sequenza di blocchi contenenti le fasi dell’algoritmo.
Questi blocchi sono dei rettangoli se utilizzati per comandi ovvero "state­
ment eseguibili” . Invece per tesi come: se l'informazione X è vera esegue
l’azione A, altrimenti B si utilizzano dei blocchi a forma rombica.
Anziché presentare qui una definizione formale dei diagrammi di flusso,
questi saranno introdotti e discussi in seguito quando si considereranno i
programmi.

Il metodo dei diagrammi di flusso è una fase intermedia altamente
raccomandabile tra la specificazione dell’algoritmo e la codifica effettiva
della soluzione. Si fa notare che forse solo il 10% dei programmatori può
scrivere con successo un programma senza l'utilizzo del diagramma di
flusso. Sfortunatamente è stato anche osservato che il 90% di questa
popolazione crede di appartenere a questo I0%!

Il risultato è questo: mediamente l’80% dei programmi si interrom­
pono la prima volta che vengono eseguiti su un calcolatore. (Natural­
mente questi numeri non si propongono di essere accurati). In breve, la
maggior parte dei non iniziati alla programmazione raramente intravede
la necessità di disegnare un diagramma di flusso. Questo si risolve
normalmente in programmi “non puliti” ovvero errati. Essi devono cosi
impiegare una grande quantità di tempo per provare e correggere i loro
programmi (questa fase è detta di collaudo o debugging).

Si raccomanda vivamente quindi di passare attraverso la disciplina dei
diagrammi di flusso in tutti i casi. Questo richiederà una piccola quantità
di tempo addizionale prima della codifica ma normalmente si risolverà
in un programma chiaro che verrà eseguito correttamente e veloce­
mente. Una volta che è stata ben compresa la tecnica dei diagrammi di
flusso una piccola percentuale di programmatori sarà in grado di ese­
guire mentalmente questa fase senza trascriverla su carta. Sfortunata­
mente in tali casi i programmi che essi scriveranno saranno normalmente
difficili da capire a chiunque senza la documentazione fornita dai dia­
grammi di flusso. Come risultato si raccomanda universalmente di
impiegare la disciplina dei diagrammi di flusso come una stringente
disciplina di programmazione per qualsiasi programma significativo.
Molti esempi saranno fomiti in seguito nel corso del libro.

IN IZ IO

Figura 1-1: Un diagramma di flusso di un sistema di termostatazlone

a

RAPPRESENTAZIONE DELL’INFORMAZIONE

Tutti i calcolatori manipolano informazione, sotto forma di numeri o
di caratteri. Si esamineranno di seguito le rappresentazioni esterna ed
interna dell’informazione di un calcolatore.

RAPPRESENTAZIONE INTERNA

Tutte le informazioni sono immagazzinate in un calcolatore come
gruppi di bit. Un bit significa un digit binario cioè “0” oppure “ 1". A
causa delle limitazioni deH'elettronica convenzionale, la sola rappresen­
tazione pratica dell’informazione impiega la logica a due stati, cioè la
rappresentazione degli stati “0” ed “ 1". Ne risulta che virtualmente tutta
l'elaborazione dell'informazione attualmente è eseguita in formato bina­
rio. Nel caso dei microprocessori in generale, e del 6502 in particolare,
questi bit sono strutturati in gruppi di 8. Un gruppo di 8 bit è chiamato
un byte.

Un gruppo di quattro bit è chiamato un nibble.
Si esamini ora come l'informazione è rappresentata internamente nel

suo formalo binario. Due entità devono essere rappresentate aH’intemo
del calcolatore. La prima è il programma, che è una sequenza di istru­
zioni. La seconda sono i dati sui quali esso opera, e che possono
comprendere numeri di un testo alfanumerico. Si esaminino queste tre
rappresentazioni.

Rappresentazione del programma

Tutte le istruzioni sono rappresentate internamente come byte singoli
o multipli. Una cosiddetta “ istruzione breve” è rappresentata da un
singolo byte. Un'istruzione più lunga sarà rappresentata da due o più
byte. Poiché il 6502 è un microprocessore ad 8 bit, esso preleva i byte
sequenzialmente dalla sua memoria. Perciò un'istruzione a singolo byte
è sempre potenzialmente di esecuzione più veloce di un'istruzione a due
o tre byte. Si vedrà in seguito che questa è un'importante caratteristica
del set di istruzioni di qualsiasi microprocessore ed in particolare del
6502 dove è stato fatto uno sforzo speciale per fornire più istruzioni a
singolo byte possibile in modo da migliorare l'efficienza di esecuzione
del programma. Comunque la limitazione ad 8 bit in lunghezza, si
risolve in importanti limitazioni che verranno sottolineate. Questo è un
esempio classico del compromesso tra efficienza di velocità e flessibilità
nella programmazione.

La rappresentazione binaria delle istruzioni ì dettata dal costruttore
ed il 6502, come qualsiasi altro microprocessore, viene equipaggiato con

un set di istruzioni fisso. Queste istruzioni sono definite dal costruttore e
sono elencate alla fine di questo libro. Qualsiasi programma sarà
espresso come sequenza di queste istruzioni binarie. L'effettiva codifica
binaria delle istruzioni del 6502 è rappresentata nel Capitolo 4.

Rappresentazione di dati numerici

La rappresentazione di numeri non è sufficientemente immediata ed,
in alcuni casi, deve essere distinta. Si devono innanzi tutto rappresentare
i numeri interi. Si devono anche rappresentare numeri con segno, cioè
positivi o negativi, ed infine si deve essere in grado di rappresentare i
numeri decimali. Si considereranno ora queste richieste e le soluzioni
possibili.

La rappresentazione di numeri interi deve essere eseguita impiegando
una rappresentazione binaria diretta. La rappresentazione binaria
diretta è semplicemente la rappresentazione del valore decimale di un
numero nel sistema binario. Nel sistema binario il bit più a destra
rappresenta 2 elevato alla potenza 0. Quello successivo a sinistra rappre­
senta 2 alla potenza 1, il successivo rappresenta 2 alla potenza 2 ed il bit
più a sinistra rappresenta 2 alla potenza 7 = 128:

b?b«bjb.ib)b]bibo
rappresenta

b72’ + b«2‘ + b j2 5 + b«24 + b 32J + b j2 2 + b .2 1 + b02“

Le potenze di 2 sono:

21 = 128, 2* = 64, 2* = 32, 24 = 16, 2 3 = 8, 21 = 4, 21 = 2, 2° = 1

La rappresentazione binaria dei numeri è analoga a quella decimale, nella
quale *‘123” rappresenta:

1X100=100
+ 2X 10= 20
+ 3 x 1 = 3

= 123

Si noti che 100 = 10J. 10 = IO1. 1 = 10°.
In questa “notazione posizionale" ogni cifra rappresenta una potenza di
10. Nel sistema binario ogni digit o “bit” rappresenta una potenza di 2,
invece di una potenza di 10 del sistema decimale.

Esempio: “00001001” ; in binario rappresenta:

in decimale

Si considerino alcuni esempi:

“ 10000001" rappresenta:

1 X 1 = 1 (2°)
Ox 2 = 0 (21)
Ox 4 = 0 (21)
I X 8 = 8 (2’)
0 x 16=0 (24)
0 x 32 = 0 (25)
0 x 64 = 0 (?)
0x128 = 0 <27)

= 9

l x 1 = 1
Ox 2 = 0
Ox 4 = 0
0 x 8 = 0
0 x 16 = 0
0 x 32 = 0
0 x 64 = 0
1x128 = 128

= 129in decimale

" 10000001” rappresenta perciò il numero decimale 129.

Esaminando la rappresentazione binaria dei numeri, si comprenderà
perchè i bit sono numerati da 0 a 7, andando da destra a sinistra. Il bit 0 è
“b0” e corrisponde a 2°. Il bit I è “b r e corrisponde a 21 ecc.

La Fig. 1-2 mostra gli equivalenti binari dei numeri da 0 a 255.

Esercizio 1.1: Qual’è il valore decimale di " i t i l i l l Q f f ' ?

Da decimale a binario

Inversamente, si calcoli l'equivalente binario del decimale “ 11” :

11 -5-2 = 5resto I — 1 (LSR'
5 -s- 2 = 2 resto I — 1
2 + 2 = 1 resto 0 — 0
1 -ì- 2 = 0 resto 1 — 1 (MSB)

Decimale Binario Decimale Binarlo

0 00000000 32 00100000
1 00000001 33 00100001
2 00000010 •
3 00000011 •
4 00000100 •
5 00000101 63 00111111
6 00000110 64 10000001
7 00000111 65 01000001
a 00001000 •
9 00001000 •

10 00001010 127 01111111
11 00001011 128 10000000
12 00001100 129 10000001
13 00001101
14 00001110 9

15 00001111 •
16 00010000 •
17 00010001 •
•
•
• 254 11111110

31 00011111 255 11111111

Figura 1-2: Tabella decimale binarlo

Il binario equivalente è quindi 1011 (lettura corretta della colonna dal
basso all’alto).
L’equivalente binano di un numero decimale può essere ottenuto
mediante divisioni successive per 2 finché non si ottiene un quoziente 0.

Esercizio 1.2: Qual’è l'equivalente binario di 257?

Esercizio 1.3: Si converta 19 in binario e quindi nuovamente in decimale.

Operazioni sui dati binari

Le regole aritmetiche sui numeri binari sono immediate.

0 + 0 = 0
0 + 1 = 1
1+ 0 = 0

1 + 1 = (1)0

dove (1) indica un •■riporto" (carry) di 1 (si noti che “ 10" è l’equivalente
binario del decimale “ 2"). La sottrazione binaria verrà eseguita "som­
mando il complemento” . Esempio:

(2) 10
+ (1) + 0 1
= (3) 11

L’addizione viene eseguita in modo perfettamente uguale al caso deci­
male, sommando colonna per colonna, da destra a sinistra:

Sommando la colonna più a destra:

(0 + 1 = ^ N e ssu n riporto.)

Sommando la colonna successiva:
1°

+Éi
[1 (1 + 0 = 1 . Nessun riporto.)

Esercizio 1.4: Si calcoli 5 + 10 in binario e si verifichi che il risultato è 15.

Altrimenti esempi di addizione binaria:

0010 (2) 0011 (3)
+0001 (1) +0001 (I)

= 0011 (3) =0100 (4)

L’ultimo esempio spiega il ruolo del riporto.

Si osservino i bit di estrema destra: 1 + 1 = (I) 0
Si genera un riporto di 1 che deve essere sommato ai bit successivi:

001 —la colonna 0 è stata appena sommata
+ 000-

+ 1 (riporto)
= (1)0 — dove (1) indica un nuovo riporto

nella colonna 2.

Il risultato finale è: 0100

Un altro esempio:

Ol i i (7)
+ 0011 + (3)

1010 = (1 0)

In questo esempio si genera un riporto fino alla colonna di estrema
sinistra.

Esercizio 1.5: Si calcoli il risultato di:

1111
+ 0001
= 7

Il risultato pud essere contenuto in 4 bit?

Con 8 bit è perciò possibile rappresentare direttamente i numeri da
00000000 a 11111111, cioè da 0 a 255. Si possono osservare immediata­
mente due ostacoli. Primo si stanno rappresentando solo numeri posi­
tivi. Secondo, la grandezza di questi numeri i limitata a 255 se si impie­
gano solo 8 bit.
Nell'ordine si considerano entrambi questi problemi.

Binario con Segno

In una rappresentazione binaria con segno il bit più a sinistra è
impiegato per indicare il segno del numero. Tradizionalmente “0" è
impiegato per denotare un numero positivo mentre “ 1” è impiegato per
denotare un numero negativo.
Ora “ 11111111” rappresenterà —127, mentre “01111111” rappresenterà
+ 127. Si possono ora rappresentare numeri positivi e negativi ma si è
ridotta la grandezza massima di questi numeri a 127.

Esempio: “0000 0001” rappresenta + 1 (lo “0" di testa è il “ + ” , seguito
da “0000 0001” = 1).

“ 1000 0001" è - 1 (l*“ i" di testa è il “ - “).

Esercizio 1.6: Qual'è la rappresentazione di 5" in binario con segno?

Si consideri ora il problema della grandezza: allo scopo di rappresen­
tare numeri più grandi sarà necessario utilizzare un maggior numero di

bit. Per esempio se si utilizzano 16 bit (due byte) per la rappresentazione
di numeri si è in grado di rappresentare numeri da — 32 k a + 32 k in
binario con segno (I k nel gergo del calcolatore rappresenta 1024).
Se questa grandezza è ancora troppo piccola si utilizzeranno 3 o più byte.
Se si desidera rappresentare interi molto grandi, sarà necessario utiliz­
zare un numero maggiore di byte interni per la loro rappresentazione.
Questa è la ragione per cui il più semplice BASIC, od altri linguaggi,
forniscono solo una precisione limitata per gli interi.

Si consideri ora un altro problema, quello dell’efficienza di velocità. Si
consideri l’esecuzione di un'addizione nella rappresentazione binaria
con segno precedentemente introdotto. Si sommi “—5" e " + 7” .

+ 7 è rappresentato da 00000111
— 5 è rappresentato da 10000101
La somma binaria è 10001100, ovvero — 12

Questo risultato non è esatto. Il risultato corretto sarebbe + 2. In altre
parole l'addizione binaria di numeri binari con segno non opera in modo
corretto. Questo è fastidioso. Chiaramente il calcolatore non deve sol­
tanto rappresentare l'informazione ma deve anche eseguire operazioni
aritmetiche su questa.

La soluzione a questo problema è chiamala rappresentazione comple­
mento a due. che sarà impiegata invece della rappresentazione binaria con
segno. Allo scopo di introdurre il complemento a due si introdurrà una
fase intermedia: il complemento ad uno.

Complemento ad uno

Nella rappresentazione in complemento ad uno tutti gli interi sono
rappresentati nel loro formato binario corretto. Per esempio “ + 3” è
rappresentato come comunemente da 00000011. Comunque il suo com­
plemento 3” è ottenuto mediante complementazione di ogni bit della
rappresentazione originaria. Ogni 0 è trasformato in un 1 ed ogni 1 è
trasformato in uno 0. Nell'esempio considerato la rappresentazione in
complemento ad uno di 3” sarà 11111100.

Un’altro esempio:
+ 2 è 00000010
—2è 11111101

Si noti che i numeri positivi iniziano con 0 e quelli negativi con 1

Esercizio 1.7: La rappresentazione di + 6 è 00000110. Quarè la rappresen­
tazione di meno 6 in complemento ad uno?

Si esegua ora la prova convenzionale, cioè si sommi meno 4 e più 6:

—4 è 11111011
+ 6 è 00000110

la somma è (1) 00000001 ovvero “ I"
più un riporto.

Il “ risultato corretto” sarebbe “ 2", ovvero “00000010” .

Riproviamo:

— 3 è 11111100
— 2 è 11111101

la somma è (1) 00000001

o “ 1” , più un riporto. Il risultato corretto dovrebbe essere 5". La
rappresentazione di 5” è 11111010. Non ha funzionato.

Inoltre questa rappresentazione rappresenta numeri positivi e nega­
tivi. Comunque il risultato di un’addizione ordinaria non esce corretta­
mente. Si considererà quindi un'ulteriore rappresentazione. Questa è
un’evoluzione dal complemento ad uno ed è chiamata rappresentazione
in complemento a due.

Rappresentazione in complemento a due

Nella rappresentazione in complemento a due i numeri positivi sono
rappresentati come al solito, in binario con segno, proprio come in
complemento ad uno. La differenza risiede nella rappresentazione di
numeri negativi. Un numero negativo, rappresentato in complemento a
due, è ottenuto dal primo sommando uno al complemento ad uno. Si
consideri un esempio: + 3 è rappresentato in forma binaria con segno da
00000011. La sua rappresentazione in complemento ad uno è 11111100.
Il complemento a due è ottenuto aggiungendo uno. Esso è 11111101.
Se non si consideri il riporto il risultato è 00000001, cioè 1 in decimale.
Questo è il risultato corretto.

Si verifichi un'addizione:

(3) 00000011
-I- (5) + 00000101
= (8) =00001000

Il risultato è corretto.

Si verifichi una sottrazione:

(3) 00000011
___ (-5) +11111011

=11111110

Si determina il risultato calcolando il complemento a due:

il complemento ad uno di 11111110 è 00000001
Aggiungendo 1 + 1

perciò il complemento a 2 è 00000010 cioè + 2

Il risultato precedente, “ 11111110" rappresenta — 2. È corretto.
Si è quindi trovato che i risultati di addizioni e sottrazioni sono corretti
(non considerando il riporto). Sembra che il complemento a due operi
correttamente!

Esercizio 1.8: Quaf i la rappresentazione in complemento a due di “+
127"?

Esercizio 1.9: Querèla rappresentazione in complemento a due di 128"?

Si consideri ora la somma di + 4 e — 3 (la sottrazione si esegue som­
mando il complemento a due):

+ 4ÉOOOOOIOO
— 3è 11111101

11 risultato è (1) 00000001

dove (I) indica il riporto. Senza fornire una dimostrazione matematica
completa si è stabilito che questa rappresentazione opera correttamente.
In complemento a due è possibile sommare e sottrare numeri con segno.
Impiegando le regole usuali dell'addizione binaria si ottiene un risultato
corretto, compreso il segno. Il riporto viene trascurato. Questo è un
vantaggio molto importante, infatti, in caso contrario, si dovrebbe cor­
reggere il segno ogni volta, con un tempo di esecuzione notevolmente
superiore.

Per completezza si può affermare che la rappresentazione in comple­
mento a due è la più conveniente per i processori più semplici quali i
microprocessori. Sui processori più complessi si possono utilizzare altre
rappresentazioni. Per esempio si può utilizzare la rappresentazione in
complemento ad uno, ma essa richiede una circuiteria speciale per "cor­
reggere il risultato".

D’ora in poi tutti gli interi con segno verranno, in modo implicito,
rappresentati internamente con la notazione in complemento a due. La
Fig. 1-3 rappresenta una tabella dei numeri in complemento a due.

Esercizio 1.10: Quali sono i numeri più piccolo e più grande che si possono
rappresentare con la notazione in complemento a due impiegando solo un
byte?

Esercizio 1.11: Si calcoli il complemento a due di 20. Quindi si calcoli il
complemento a due del risultalo. Si ottiene ancora 20?

Di seguito vengono riportati degli esempi per dimostrare le regole della
notazione in complemento a due. In particolare C rappresenta un possi­
bile riporto (o prestito). (Esso è il bit 8 del risultalo).

Invece V rappresenta un overflow del complemento a due, cioè indica
una variazione “accidentale" del segno del risultato a causa di numeri
troppo grandi. Si tratta sostanzialmente di un riporto interno dal bit 6 al
bit 7 (il bit del segno).

Questo verrà chiarito in seguito.

Si considera ora il ruolo del riporto “C" e dell’overflow "V ” .
\

Il riporto C

Ecco un esempio di un riporto:

(128) 10000000
+ (129) + 10000001

(257) = (1) 00000001

dove (I) indica un riporto.

Il risultato richiede un nono bit (bit “8" poiché quello di estrema destra è
il bit “0”). Questo è il bit carry.

Si assume quindi che il carry sia il nono bit del risultato e si riconosce
che il risultato i 100000001 = 257.

Comunque il carry deve essere riconosciuto e manipolato accurata­
mente. All'interno del microprocessore, i registri utilizzati per conser­
vare l'informazione sono larghi generalmente solo otto bit. Nella memo­
rizzazione del risultato saranno conservati soltanto i bit da 0 a 7.

Quindi un riporto richiede sempre un'azione speciale: esso deve essere
rivelato da istruzioni particolari e quindi deve essere elaborato. L'elabo­
razione del riporto può significare, a seconda dei casi, la sua memorizza­
zione (con un’istruzione particolare), non tenerne conto oppure decidere

+ Codice In
complemento a 2

— Codice in
complemento a 2

+ 127 01111111 - 1 2 8 10000000
+ 126 01111110 - 1 2 7 10000001
+ 125 01111101 - 1 2 6 10000010

- 1 2 5 10000011

+ 65 01000001 - 65 10111111

+ 64 01000000 - 64 11000000

+ 63 00111111 - 63 11000001

+ 33 00100001

w

•
o

■
1 11011111

+ 32 00100000 - 32 11100000

+ 31 00011111 — 31 11100001

+ 17 00010001 - 17 11101111

+ 16 00010000 - 16 11110000
+ 15 00001111 - 15 11110001
+ 14 00001110 — 14 11110010

+ 13 00001101 - 13 11110011
+ 12 00001100 — 12 11110100

+ 11 00001011 — 11 11110101

+ 10 00001010 - 10 11110110

+ » 00001001 - 9 11110111

+ 8 00001000 - 8 11111000

+ 7 00000111 - 7 11111001

+ 6 00000110 — 6 11111010

+ 5 00000101 — 5 11111011

+ 4 00000100 — 4 11111100

+ 3 00000011 - 3 11111101

+ 2 00000010 - 2 11111110

+ 1 00000001 — 1 11111111

+ o 00000000

Figura 1-3: Tabella del complementi a due

che si tratta di un errore (se i] risultato più grande consentito è
**11111111").

Overflow V

Consideriamo un esempio di overflow:

61000000 (64)
+ 01000001 + (65)
= 10000001 = (- 127)

In questo caso è stato generato un riporto interno dal bit 6 al bit 7.
Questo è ciò che si chiama un overflow.

Accidentalmente il risultato è negativo. Occorre rivelare situazioni di
questo tipo in modo da intervenire.

Si consideri un'altra situazione:

111111 II (- 1)
+ l l l l l l l l + (- I)

= (1) 10000001 = (- 2)
▼

carry

Anche in questo caso è stato generato un riporto interno dal bit 6 al bit 7,
ma questo ha generato a sua volta un riporto dal bit 7 al bit 8 (il “ Carry"
C formale, considerato al paragrafo precedente). Le regole dell’aritme­
tica in complemento a 2 specificano che questo riporto dovrebbe essere
ignorato. Il risultato è quindi corretto.

Questa è una conseguenza del fatto che il riporto dal bit 6 al bit 7 non
cambia il segno.

Questa non è una condizione di overflow. Quando si opera su numeri
negativi l'overflow non è semplicemente un riporto dal bit 6 al bit 7. Si
consideri un ulteriore esempio:

11000000 (- 6 4)
+ 10111111 (- 6 5)

= (1) 0111 (111 (+127)
▼

carry

Questa volta non si è verificato un riporto interno dal bit 6al bit 7, ma si è
verificato un riporto esterno. Il risultato non è corretto in quanto è stato
cambiato il bit 7. In questo caso è quindi indispensabile indicare una
condizione di overflow.

bit 6
bit 7

L’overflow si verificherà nelle quattro situazioni:

1 - somma di numeri positivi troppo grandi

2 -somma di numeri negativi troppo grandi in valore assoluto

3 - sottrazione di un numero positivo molto grande da un numero nega­
tivo molto grande in valore assoluto

4 - sottrazione di un numero negativo molto grande in valore assoluto da
un numero positivo molto grande.

Precisiamo la definizione di overflow precedentemente fornita.

Tecnicamente l'indicatore di overflow, uno speciale bit riservato per
questo scopo, cioè un “flag", sarà posto ad uno quando si verifica un
riporto dal bit 6 al bit 7 ma non un riporto esterno, oppure quando non
c’è riporto dal bit 6 al bit 7 ma si verifica un riporto esterno. Questo
indica che il bit 7, cioè il segno del risultato, è stato cambiato accidental­
mente. Come si ricorderà, il flag di overflow è posto ad 1 dall’OR
ESCLUSIVO del bit 7 entrante ed uscente (il bit segno). Praticamente
ogni microprocessore è dotato di un flag di overflow speciale per rivelare
automaticamente questa condizione, che richiede un’azione correttiva.

Overflow indica che il risultato di un'addizione o di una sottrazione
richiede più bit di quelli disponibili nel registro standard di otto bit,
utilizzato per contenere il risultato.

/ / Carry e ì'Overflow

I bit carry ed overflow vengono denominati “ flag” . Essi sono disponi­
bili su tutti i microprocessori e, nel corso del capitolo successivo, si
apprenderà come utilizzarli per la programmazione effettiva. Questi due
indicatori sono posizionati in un registro speciale denominato registro di
“stato” o dei flag. Questo registro contiene altri indicatori le cui funzioni
saranno chiarite al Capitolo 4.

Esempi

Si considerano ora degli esempi pratici per mostrare la funzione del
carry e deH’overflow. Il simbolo V indica overflow e C carry.

Se non si verifica overflow è V = 0. Se si è verificato un overflow è V =
1 (analogamente per il cany C). Si ricordi che le regole del complemento
a due specificano che il carry deve essere ignorato. (In questa sede non
viene fornita la dimostrazione matematica).

000001 IO (+ 6)
+ 00001000 (+ 8)
= 00001110 (+ 14) V:0 C:0

(CORRETTO)

Positivo-Positivo con Overìlow

01111111(+ 127)
+ 00000001 (+ 1)
= 10000000 (- 128) V: 1 C:0

Il risultato non £ valido perché si è verificato in overflow

(ERRORE)

Positivo-Negalivo (risultato positivo)

00000100 (+ 4)
+ 111 111 10 (- 2)
= (1)00000010 (+ 2) V:0 C:1 (ignorato)

(CORRETTO)

Positivo-Negativo (risultato negativo)

00000010 (+ 2)
+ 11111100 (— 4>
= 11111110 (- 2)

(CORRETTO)

Negativo-Negativo

11111110 (- 2)
+ m u o i o (-4)
= (1)11111010 (- 6)

(CORRETTO)

V:0 C:0

V:0 C:1 (ignorato)

Negativo-Negativo con overflow

10000001 (+ 127)
+ 11000010 (- 6 2)
= (1)01000011 (67) V: 1 C:1

(ERRORE)

Questa volta si è verificato un “underflow", sommando due numeri
negativi molto grandi in valore assoluto. 11 risultato dovrebbe essere
—189. che è troppo grande per essere contenuto in otto bit.

Esercìzio 1.12: Si completino le seguenti addizioni Si indichi il risultato, il
carry C, l'overflow V e si specifichi se il risultato è corretto o no.

10111111 (___)
+ 11000001 (__)

= __________ V :___ C: ______
□ CORRETTO OERRORE

00010000 (___)
+ 01000000 (___)

C:
□ CORRETTO DERRORE

m u o i o ()
+ 11111001 ()

V :___ C:
□ CORRETTO DERRORE

o m i n o (__)
+ 00101010 ()

= __________ V :___ C: ___
□ CORRETTO DERRORE

Esercizio 1.13: Potete fornire un esempio di overflow sommando un numero
positivo ed uno negativo? Perche?

Rappresentazione in Formato Fisso

A questo punto si conosce la rappresentazione degli interi con segno.
Comunque non è ancora stato risolto il problema della grandezza. Se si
vogliono rappresentare numeri interi più grandi, è necessario utilizzare
più byte. Per eseguire efficientemente operazioni aritmetiche, è necessa­
rio utilizzare un numero fisso di byte piuttosto che un numero variabile.
Perciò, una volta scelto il numero di byte, è fissa la grandezza massima
del numero che può essere rappresentato.

Esercizio 1.14: Quali sono i numeri più grande e più piccolo che possono
essere rappresentati in due byte impiegando la notazione in complemento a
due?

Il problema della grandezza

La somma di numeri è limitata dal fatto che il microprocessore opera
internamente su otto bit alla volta. Questa restrizione consente di utiliz­
zare numeri nella gamma da — 128 a + 127.
Chiaramente questo non è sufficiente per numerose applicazioni.

Per aumentare il numero di digit che possono essere rappresentati
occorre utilizzare la precisione multipla. Si può utilizzre un formato a
due, tre, oppure N byte.
Per esempio si consideri un formato in doppia precisione a 16 bit:

oooooooo oooooooo è “0"
oooooooo 00000001 i “ 1"

01111111 u m i l i i "32767'
11111 II 1 m i m i è 1”
l i m i l i m i m o è 2”

Esercizio 1.15: QuaFè l ’intero negativo più grande, in senso assoluto, che
può essere rappresentato, in un formato in tripla precisione, in comple­
mento a due?

Comunque, questo metodo presenta degli svantaggi. Per esempio
sommando due numeri occorrerà sommarli otto bit alla volta. Questo
verrà spiegato al Capitolo 4 (Tecniche di Programmazione di Base). Ne
risulta un'elaborazione più lenta. Inoltre questa rappresentazione
impiega 16 bit per un numero qualsiasi, anche se esso potrebbe essere
rappresentato con soli otto bit. Quindi è comune utilizzare 16 od anche
32 bit ma talvolta è sovrabbondante.

Si consideri ora il seguente punto importante: qualunque sia il numero
N di bit scelti per la rappresentazione in complemento a due, esso è fisso.
Se qualsiasi risultato o calcolo intermedio dovesse generare un numero
che richiede più dì N bit. alcuni bit andranno persi. Normalmente il
programma conserva gli N bit di sinistra (quelli più .significativi) e perde
quelli di basso ordine. Questo è il troncamento del risultato.

Ecco un esempio nel sistema decimale, utilizzando una rappresenta­
zione a sei digit:

123456
x______12

246912
123456

= 148147,2

Il risultato richiede 7 digit! Il *'2” dopo la virgola andrà perso ed il
risultato finale sarà 148147. Si ha cosi un troncamento. Normalmente,
non perdendo la posizione della virgola questo metodo viene utilizzato
per estendere la gamma di operazioni che possono essere eseguite, a
scapito della precisione.

Il problema è analogo per la rappresentazione binaria. I dettagli della
moltiplicazione binaria saranno mostrati al Capitolo 4.

Questa rappresentazione in formato fisso può causare una perdita di
precisione, ma questa è generalmente sufficiente per i calcoli comuni e le
operazioni matematiche.

Sfortunatamente, nel caso dei calcoli contabili, non c tollerata nes­
suna perdita di precisione. Per esempio un venditore potrebbe non
tollerare un arrotondamento del risultato di cassa. Quindi quando è
essenziale la precisione del risultato i indispensabile utilizzare un’altra
rappresentazione.

Normalmente la soluzione i la rappresentazione BCD, cioè decimale
codificato binario.

Rappresentazione BCD

Il principio utilizzato nella rappresentazione di numeri in BCD è di
codificare separatamente ogni digit decimale e di utilizzare tutti i bit
necessari per rappresentare esattamente il numero completo. Per codifi­
care tutti i digit da 0 a 9 sono necessari quattro bit. Tre bit consentireb­
bero soltanto otto combinazioni e quindi non sono sufficienti per le dieci
cifre decimali. Quattro bit consentono sedici combinazioni e sono quindi

sufficienti per codificare i digit da 0 a 9. Si può anche notare che nella
rappresentazione BCD saranno inutilizzati sei dei codici possibili
(Vedere Fig. 1.4).
Questo rappresenterà successivamente un potenziale problema da risol­
vere successivamente durante le addizioni e le sottrazioni. Poiché sono
necessari solo quattro bit per codificare un digit bed, ogni byte può
codificare due digit BCD. Questo viene denominato “BCD impaccato” .

Per esempio “00000000” sarà “00" in CD, “ 10011001" sarà “99” .

CODICE
SIMBOLO

BCD CODICE
SIMBOLO

BCD

0000 0 1000 B

0001 1 1001 9

0010 2 1010 non Impiegato

0011 3 1011 non Impiegato

0100 4 1100 non impiegato

0101 5 1101 non Impiegato

0110 6 1110 non Impiegato

0111 7 1111 non Impiegato

Figura 1-4: Tabella BCD

Un codice BCD si legge come segue:

0010 0001

Digit BCD “2"-*-----1
Digit BCD “ l"-« -----------------
Numero BCD “ 21"

Esercizio 1.1$: Qua!'è la rappresentazione BCD di "29"? "91"?

Esercizio 1.17: “10100000” è una rappresentazione BCD valida? Perchè

Per rappresentare tutti i digit BCD verranno utilizzati tutti i bit
necessari. Tipicamente, all'inizio della rappresentazione, saranno utiliz­
zati uno o più nibble per indicare il numero totale degli stessi, cioè il
numero totale di digit BCD utilizzati. Un altro nibble o byte sarà
utilizzato per indicare la posizione della virgola. Comunque le conven­
zioni possono essere diverse.

Questo è un esempio della rappresentazione di interi BCD multibyte.

3 + 2 ; 2 i I

1
numero
di digit 1

numero “ 221”
'

(fino a 2S5) segno

Questo rappresenta + 221.
(Il segno può essere rappresentato da 0000 per + e da 0001 per —, per
esempio).

Esercizio 1.18: Si rappresemi 23123", impiegando la stessa conven­
zione. Si utilizzi inizialmente un formato BCD e quindi binario.

Esercizio 1.19: Si ricavi il corrispondente BCD di "222’’ e d i" I l l" , quindi
del risultato di 222 X III. (Si calcoli il risultato a mano e quindi si utilizzi la
rappresentazione precedente).

La rappresentazione BCD può essere utilizzata facilmente con i numeri
decimali.

Per esempio + 2,21 può essere rappresentato da:

3 2 + 2 2 1 1

?
3 digit

l 1
La è a sinistra +
del secondo digit

221

Il vantaggiò della rappresentazione BCD è quello di ricavare dei
risultati esatti in modo assoluto. Il suo svantaggio è di utilizzare una
grande quantità di memoria e, conseguentemente, un procedimento
aritmetico lento. Questo è accettabile solo nel settore della contabilità e,
normalmente, non viene impiegato negli altri casi.

Eseeizio 1.20: Quanti bit sono richiesti per codificare "9999" in BCD? Ed
in complemento a due?

Abbiamo ora risolto il problema connesso con la rappresentazione dei
numeri interi, degli interi con segno e dei numeri interi di valore assoluto

elevato. È già stato presentato un metodo possibile di rappresentazione
dei numeri decimali, per mezzo della rappresentazione BCD. Si conside­
rerà ora il problema della rappresentazione dei numeri decimali in ui>
formato di lunghezza fissa.

Rappresentazione a Virgola Mobile

Il principio di base i che i numeri decimali devono essere rappresentati
con un formato fisso. Allo scopo di non sprecare bit, la rappresentazione
normalizzerà tutti i numeri.

Per esempio “0,000123*' spreca tre zeri a sinistra del numero che non
hanno altro significato che di indicare la posizione del punto decimale.
La normalizzazione di questo numero porge 0,123 x 10"3. “0,123” è detta
mantissa normalizzata. 3” è detto esponente. È stato normalizzato
questo numero eliminando tutti gli zeri non significativi alla sua sinistra
ed aggiustando l'esponente.

Consideriamo un altro esempio:

22,1 viene normalizzato come 0,221 x I0 'J
cioè M x 10E dove M è la mantissa ed E l'esponente.

Si può vedere facilmente che un numero normalizzato è caratterizzato
da una mantissa minore di uno e maggiore uguale a 0,1, in tutti i casi
dove il numero considerato non è zero.
In altre parole questo può essere rappresentato matematicamente da:

0,1 M < 1 oppure IO"1 ^ M < 10°

Analogamente nella rappresentazione binaria:

2 '1 *£ M < 2“ (oppure 0,5 < M < 1)

Dove M è il valore assoluto della mantissa (trascurando il segno).

Per esempio:
111,01 è normalizzato come: 0,11101 X 21.

La mantissa è 11101.

L'esponente è 3

È stato ora definito il principio della rappresentazione.

Si esamini il formato effettivo. La rappresentazione tipica a virgola
mobile è mostrata in figura 1-5.

Figura 1-5: Rappresentazione tipica in virgola mobile.

Nella rappresentazione utilizzata in questo esempio sono impiegati
quattro byte per un totale di 32 bit. Il primo byte a sinistra dell'illustra­
zione è impiegato per rappresentare l'esponente. Sia l’esponente che la
mantissa saranno indicati mediante la rappresentazione in complemento
a due.
Come risultato il massimo esponente sarà 2,2T ed il più piccolo 2 '118.

Tre byte sono impiegati per rappresentare la mantissa.
Poiché il primo bit della rappresentazione in complemento a due indica il
segno, rimangono 23 bit per la rappresentazione della grandezza della
mantissa.

Esercizio 1.21 : Quante cifre decimali possono essere rappresentate con i 23
bit della mantissa?

Questo è solo uno degli esempi possibili di una rappresentazione a
virgola mobile. È possibile utilizzare solo tre byte, oppure i possibile
utilizzare più byte. La rappresentazione a quattro byte proposta sopra è
proprio quella comune che rappresenta un ragionevole compromesso
tra precisione, grandezza dei numeri, utilizzazione della memoria ed
efficienza nelle operazioni aritmetiche.

Sono stati ora esaminati i problemi associati con la rappresentazione
di numeri ed ora si conosce come rappresentarli in Torma intera, con
segno oppure in forma decimale. Si esaminerà ora come rappresentare
internamente i dati alfanumerici.

Rappresentazione dei Dati Alfanumerici

La rappresentazione di dati alfanumerici, cioè caratteri, è compieta-
mente diretta: tutti i caratteri sono codificati in un codice di 8 bit. Solo
due codici sono generalmente utilizzati nella parola del calcolatore, il
Codice ASCII ed il Codice EBCDIC. ASCII significa ‘'American Stan­
dard Code for Information Interchangc" ed è universalmente utilizzato
nella parola dei microprocessori. “EBCDIC” è una variante dell’ASCII
utilizzata dalla IBM e perciò non è utilizzato nella parola di un microcal­
colatore se non è realizzata un'interfaccia ad un terminale IBM.

Si esamini brevemente la codifica ASCII. Si possono codificare 26
lettere delKalfabeto, maiuscole e minuscole, più IO simboli numerici più
circa 20 simboli addizionali speciali.
Questo può essere facilmente realizzato con 7 bit, che consentono 128
codici possibili. Tutti i caratteri sono perciò codificati in 7 bit: l'ottavo
bit, quando utilizzato, i il bit di parità. La parità è una tecnica per
verificare che i contenuti di una parola non siano stati accidentalmente
cambiati. Viene contato il numero di uni della parole e l'ottavo bit è
posto ad uno se il conteggio è disparì, rendendo cosi pari il numero
totale. Questa è chiamata parità pari. Si può anche utilizzare la parità
dispari, cioè scrivendo uno zero invece di un uno.

Esempio: si calcoli il bit di parità di *‘0010011" impiegando la parità
pari. Il numero di uni è 3. Il bit di parità deve perciò essere un + 1,
cosicché il numero totale di uni è 4, cioè pari. Il risultato è 10010011,
dove l'uno di testa è il bit di parità ed il numero 0010011 identifica il
carattere.

L a tabella dei codici ASCII a 7 b it appare in Fig. 1.6.

HEX MSD 0 1 2 3 4 5 6 7
LSD BIT 000 001 010 011 100 101 110 111

0 0000 NUL OLE SPAZIO 0 @ P — P
1 0001 SOH DC1 1 1 A 0 a q
2 0010 STX DC2 2 B R b r
3 0011 ETX DC3 # 3 C S c s
4 0100 EOT DC4 5 4 O T d t
5 0101 ENQ NAK % 5 E U e u
6 0110 ACK SYN & 6 F V f V

7 0111 BEL ETB. • 7 G w g w
e 1000 BS CAN (a H X h X

9 1001 HT EM) 9 1 V i y
A 1010 LF SUB t J z i z
B 1011 VT ESC + ; K 1 k 1
c 1100 FF FS ■ < L \ I
D 1101 CR GS — - M 1 m 1
E 1110 SO RS > N A n -
F 1111 SI US / 7 O - 0 DEL

Figura 1-6: Tabella di conversione (vedere Appendice E per le abbreviazioni)

In pratica essa viene utilizzata sia direttamente, cioè senza parità,
aggiungendo uno 0 nella posizione di estrema sinistra, sia con la parità,
aggiungendo il bit opportuno sulla sinistra.

Esercizio 1.22: Si calcoli la rappresentazione ad 8 bit delie cifre da " ff ' a
”9". utilizzando la parità pari. (Questo codice verrà utilizzalo nel!'esempio
di applicazione del Capitolo 8).

Esercizio 1.23: Si esegua lo stesso procedimento sulle lettere dalla "A" alla
“F \

In settori specifici, come quello delle telecomunicazioni, possono
essere utilizzati altri metodi di codifica, come i codici a correzione di
errore. Comunque essi esulano dallo scopo di questo libro.

Si è imparato come rappresentare sia il programma che i dati all'in­
terno del calcolatore. Si esamineranno ora le possibili rappresentazioni
esterne.

RAPPRESENTAZIONE ESTERNA DELL'INFORMAZIONE

La rappresentazione esterna fa riferimento al modo in cui l'informa­
zione è presentata all 'utente, cioè generalmente al programmatore. L'in­
formazione può essere rappresentata esternamente essenzialmente in tre
formati.

1. Binario

Si è visto che l’informazione è immagazzinata internamente in bit
(sequenze di zeri ed uni). È talvolta desiderabile mostrare questa infor­
mazione interna direttamente nel suo formato binario e questa è chia­
mata rappresentazione binaria.
Un semplice esempio è fornito dalle luci del pannello frontale di un
microcalcolatore (se esso ha un pannello frontale). Nel caso di un
microprocessore ad 8 bit. un pannello frontale sarà tipicamente fornito
di 8 LED per mostrare i contenuti di qualsiasi registro.
Un LED illuminato indica un uno, un LED che non è illuminato indica
uno zero. Tale rappresentazione binaria può essere necessaria per un
debugging accurato di un programma complesso, specialmente se esso
coinvolge operazioni di ingresso-uscita, ma i naturalmente impratica­
bile a livello umano. Si sono evolute rappresentazioni più convenienti.

2. Oliale ed Esadecimale
L’“ Ottale” e P'Esadecimalc’' codificano rispettivamente tre e quattro

bit binari in un’unico simbolo. Nel sistema ottale, qualsiasi rappresenta­
zione di tre bit binari è rappresentata da un numero tra 0 e 7.

“Ottale” è un formato che impiega tre bit, nel quale ogni combina­
zione di tre bit è rappresentata da un simbolo tra 0 e 7:

binario ottale

000 0
001 1
010 2
011 3
100 4
101 5
110 6
111 7

Figura 1.7: Simboli ottali

Per esempio, “00 100 100" in binario, nella rappresentazione ottale
diventerebbe: T T T

0 4 4

cioè “ 044” in ottale.

Un altro esempio: Il 111 111 è:
T T 1
3 7 7

ovvero “ 377” in ottale.

Inversamente in numero ottale “ 211” rappresenta:

010 001 001 .

o “ 10001001” binario.

Tradizionalmente Toltale è stato utilizzato nei computer più vecchi che
interamente utilizzavano vari numeri di bit da 8 a circa 64.

Più recentemente, col dominio dei microprocessori ad 8 bit, il formato
ad 8 bit è divenuto quello convenzionale ed è utilizzata un'altra rappre­
sentazione che è più pratica. Questa è Yesadecimale.

Nella rappresentazione esadecimale un gruppo di quattro bit è codifi­
cato come digit esadecimale. I digit esadecimali sono i numeri da 0 a 9,
seguiti dalle lettere A, B, C, D, E, F. Per esempio “0000" è rappresentato
da “ 0", “0001” è rappresentato da “ 1" ed “ 1111" è rappresentato dalla
lettera “ F". (Vedere Fig. 1-8).

OECIMALE BINARIO ESADEC. OTTALE

0 0000 0 0

1 0001 1 1

2 0010 2 2

3 0011 3 3 '

4 0100 4 4

5 0101 5 5

6 0110 6 6

7 0111 7 7

B 1000 8 10

9 1001 9 11

10 1010 A 12

11 1011 B 13

12 1100 C 14

13 1101 O 15

14 1110 E 16

15 1111 F 17

Figura 1.8: Codici esadecimali

Esempio: 1010 0001 in binario, è rappresentato da:

A I in esadecimale

Esercizio 1.24: Qual'è la rappresentazione esadecimale di "10101010"?

E serc iz io 1.25: Inversamente qual'è il binario equivalente di “FA” esadeci-
male?

Esercizio 1.26: Qual'è fattale di “01000001"?

L’esadecimale offre il vantaggio di codificare i bit in soli due digit.
Questo è più facile da visualizzare o memorizzare e più veloce da
rappresentare. Perciò, su tutti i nuovi microcalcolatori, l'esadecimale è il
metodo preferito di rappresentazione di gruppi di bit.

Naturalmente, ogni volta che l'informazione presente nella memoria
ha un significato, cioè rappresenta un testo, onumeri, l’esadecimale non
è conveniente rispetto ad altri per rappresentare il significato di questa
informazione, per l'impiego umano diretto.
In questi casi si potrebbe utilizzare un terzo metodo.

3. Rappresentazione Simbolica

La rappresentazione simbolica conduce alla rappresentazione esterna
dell'informazione in forma effettiva. Per esempio i numeri decimali sono
rappresentati come numeri decimali e non come sequenze di simboli
esadecimuli o bit. Analogamente il lesto è rappresentato come tale.
Naturalmente la rappresentazione simbolica è molto più pratica all'u­
tente. Essa è impiegata ogni volta che è disponibile un appropriato
dispositivo display, come un display CRT oppure una stampante. Sfor­
tunatamente, nei sistemi più piccoli come i microcomputer su scheda
singola, non è economico fornire tali display e l'utente è limitato alla
comunicazione in esadecimale col microcalcolatore.

Sommario delle Rappresentazioni Esterne

La rappresentazione simbolica dcU'informazione è la più auspicabile
poiché è la più naturale per l’utente umano. Comunque essa richiede
un'interfaccia dispendiosa sotto forma di una tastiera alfanumerica più
una stampante oppure un display CRT. Per questa ragione essa non può
essere disponibile sui sistemi meno dispendiosi. Un tipo alternativo di
rappresentazione viene quindi utilizzato ed in questo caso l'esadecimalc
è la rappresentazione dominante.
Solo in rari casi di correlazione con un accurato debugging a livello
hardware o software viene utilizzata la rappresentazione binaria. Il
Binario mosira direttamente i contenuti dei registri o della memoria in
formato binario.

Si è ora im parato come rappresentare l’inform azione internam ente ed
esternamente. Si esaminerà ora il microprocessore effettivo che m anipo­
lerà quest’inform azione.

Ulteriori Esercizi

Esercizio 1.27: QuaFè il vantaggio del complemento a due rispetto alle
altre rappresentazioni?

Esercizio 1.28: Come si potrebbe rappresentare ”1024" direttamente in
binario? In binario con segno? In complemento a due?

Esercizio 1.29: Cos'è il bit V? Il programmatore dovrebbe veri/icario dopo
un'addizione o sottrazione?

Esercizio 1.30: Si calcolino i complementi a due di " + 16", “ + I T ’,
"+ 18". ' - 17', ' - 18".

Esercizio 1.31: Si mostri la rappresentazione esadecimale del testo
seguente, che è stato memorizzato internamente nel formato A SC II senza
parità: = "MESSAGE".

CAPITOLO 2

ORGANIZZAZIONE HARDWARE
DEL 6502

INTRODUZIONE

Per programmare a livello elementare non è necessario comprendere
in dettaglio la struttura interna del processore che si sta utilizzando.
Comunque, per una programmazione efficiente, tale comprensione è
richiesta. Lo scopo di questo capitolo è di presentare i concetti hardware
di base necessari per la comprensione del funzionamento del sistema
6S02. Il sistema completo del microcalcolatore comprende non solo
l'unità del microprocessore (cioè il 6502) ma anche altri componenti.
Questo capitolo presenta il 6S02 vero e proprio; invece gli altri dispositivi
(principalmente d'ingresso/uscita) saranno presentati in un capitolo
separato. (Capitolo 7).

Si analizzerà di seguito l’architettura di base del sistema microcalcola­
tore, quindi si studierà in dettaglio l’organizzazione interna del 6S02. Si
esamineranno in particolare, i vari registri. Si studierà poi l’esecuzione
del programma ed i meccanismi sequenziali. Da un punto di vista
hardware questo capitolo è solo una presentazione semplificata. Il let­
tore interessato ad ottenere una comprensione dettagliata si riferisca al
nostro libro ("Microprocessori” , dello stesso autore).

ARCHITETTURA DEL SISTEMA

L’architettura del sistema microcalcolatore è mostrata in Figura 2.1,
L'unità del microprocessore (MPU), che in questo caso sarà un 6S02,
appare a sinistra dell'illustrazione. Essa realizza le funzioni di una unità
di elaborazione centrale (CPU) all’interno di un chip: essa comprende
un'unità aritmetico-logica (ALU), più i suoi registri interni, ed una unità
di controllo (CU) avente il compito di sequenziare il sistema. Il suo
funzionamento sarà spiegato in questo capitolo.

La MPU origina tre buss: un bus dati bidirezionale ad 8 bit, che
compare alla sommità dell’illustrazione, un bus indirizzi bidirezionale a
16 bit ed un bus di controllo che appaiono in basso nell'illustrazione. Si
descriverà la funzione di ciascuno di questi bus.

Il bus dati trasferisce i dati che devono essere scambiati dai vari
elementi del sistema. Tipicamente esso trasferirà i dati dalla memoria
alla MPU, oppure dalla MPU alla memoria, oppure dalla MPU ad un
chip d’ingresso/uscita. (Un chip d’ingresso/uscita è un componente che
si incarica di comunicare con un dispositivo esterno).

P Q T E N 2A

Figura 2.1: Architettura di un sistema a microprocessore convenzionale

Il bus indirizzi trasferisce un indirizzo generato dalla MPU, che selezio­
nerà un registro interno di uno dei chip connessi al sistema. Questo
indirizzo specifica la sorgente, ovvero la destinazione dei dati che transi­
teranno lungo il bus dati.

Il bus controllo trasferisce i vari segnali di sincronizzazione richiesti dal
sistema.

Descritto lo scopo dei bus, si considerano ora le connessioni dei
componenti addizionali richiesti da un sistema completo.

Ogni MPU richiede un preciso timing di riferimento che è fornito da
un clock e da un quarzo. Nella maggior parte dei microprocessori “ più
vecchi” , l’oscillatore del clock è esterno alla MPU e richiede un ulteriore
chip. Nei microprocessori più recenti, l'oscillatore del clock è normal­
mente incorporato all’interno della MPU. Il cristallo di quarzo, comun­
que, a causa del suo volume, è sempre esterno al sistema. Il cristallo ed il
clock compaiono a sinistra del blocco MPU nell'illustrazione.

Si rivolga ora l’attenzione ad altri elementi del sistema.
Andando da sinistra a destra nell’illustrazione, si distingue: il blocco
ROM è la memoria a sola lettura e contiene il programma per il sistema. Il
vantaggio della memoria ROM i che i suoi contenuti sono permanenti e

non scompaiono ogni volta che il sistema viene spento. La ROM perciò
contiene sempre un bootstrap ovvero un programma monitor (la loro
funzione sarà spiegata in seguito) che consente il funzionamento iniziale
del sistema. Nei controlli di processo quasi lutti i programmi risiedono
su ROM poiché essi probabilmente non saranno mai cambiati. In tali
casi l'utente industriale deve proteggere il sistema contro interruzioni
deH’alimentazione: i programmi possono non essere volatili. Essi
devono essere su ROM.

Comunque, nelle condizioni di hobby, ovvero in uno sviluppo di
programma (quando il programmatore prova il suo programma), la
maggior parte dei programmi risiederanno su RAM cosicché essi pos­
sano essere facilmente cambiati. In seguito essi possono rimanere su
RAM oppure essere trasferiti su ROM, se richiesto. Comunque la RAM
è volatile. I suoi contenuti vanno persi se viene a mancare l’alimenta­
zione.

La RAM (Random-Access-Memory) è la memoria di lettura/scrittura
del sistema. Nel caso di sistema di controllo la quantità di RAM sarà
tipicamente piccola (solo per i dati).

D ’altra parte, nel caso di sviluppo di programma, la quantità di RAM
sarà grande e conterrà i programmi più il software di sviluppo. Tutti i
contenuti RAM devono essere caricati prima dell'impiego da un disposi­
tivo esterno.

Infine il sistema conterrà uno o più chip di interfaccia. Quello usato
più spesso è il "PIO” ovvero chip d’Ingresso/Uscita Parallelo. È quello
mostrato in figura. Questo PIO come tutti gli altri chip del sistema, £
collegato a tutti e tre i bus e fornisce almeno due porte a 16 bit per
comunicare col mondo esterno. Per maggiori dettagli, su come effettiva­
mente lavora un PIO, ci si riferisca al libro “Microprocessori" ovvero
anche, specificamente per il sistema 6502, si faccia riferimento al Capi­
tolo 7 (dispositivi di Ingresso-Uscita).

Tutti questi chip sono connessi a tutti i tre bus, compreso il bus
controllo. Comunque, per chiarire l’illustrazione, le connessioni tra bus
controllo e questi vari chip non sono mostrate sul diagramma.

I moduli funzionali descrìtti non necessariamente risiedono su un
unico chip LSI. Infatti si useranno chip di combinazione che compren­
dano sia un PI O ed una limitata quantità di ROM o RAM. Per maggiori
dettagli si faccia riferimento al Capitolo 7.

Ancora più componenti saranno richiesti per costruire un sistema
reale. In particolare i bus normalmente richiedono dei buffer. Anche la
logica di decodifica può essere utilizzata per i chip di memoria RAM ed
infine qualche segnale può richiedere di essere amplificato per mezzo di
driver.

Questi circuiti ausiliari non verranno descritti perchè non sono impor­
tanti dal punto di vista della programmazione. Il lettore interessato in
particolare all’assembly ed alle tecniche di realizzazione di interfacce
viene indirizzato al libro: “Tecniche di Interfacciamento dei Micropro­
cessori".

ORGANIZZAZIONE INTERNA DEL 6502

Un diagramma semplificato dell'organizzazione interna del 6502
appare in Figura 2.2.

L’unità aritmetico logica (ALU) compare sulla destra dell'istruzione.
Essa può essere facilmente riconosciuta dalla caratteristica sagoma a
‘'V” . La funzione dell'ALU è l’esecuzione di operazioni aritmetiche e
logiche sui dati che la alimentano attraverso le sue due porte d’ingresso.
Queste due porte d’ingresso della ALU sono rispettivamente l’“ Ingresso
sinistro" e T 'Ingresso destro". Essi corrispondono alle due estremità più
alte della sagoma a “ V". Dopo l'esecuzione di un’operazione aritmetica
come una addizione o sottrazione. l'ALU fa uscire i suoi contenuti dal
fondo dell’illustrazione.

L'ALU è equipaggiata di uno speciale registro, l ’accumulatore (A).
L'accumulatore i sull’ingresso sinistro. L'ALU fa riferimento automati­
camente a questo accumulatore come ad uno degli ingressi. (Comunque

esiste anche un by-pass). Questo ì un progetto classico basato sull'accu­
mulatore. Nelle operazioni aritmetiche e logiche, uno degli operandi
sarà neU'accumulatore e l’altro si troverà tipicamente in una locazione di
memoria. Il risultato sarà depositato nell’accumulatore. Il riferimento
dell'accumulatore come sorgente e destinazione dei dati è la ragione del
suo nome: esso accumula i risultati. Il vantaggio di questo approccio
basato sull’accumulatore è la possibilità di impiegare istruzioni molto
corte, appena un singolo byte (8 bit) per specificare il codice operativo od
“opcode” , cioè la natura dell'operazione da eseguire. Se uno degli
operandi deve essere prelevato da uno degli altri registri (diversi dall'ac­
cumulatore), sarebbe necessario utilizzare ulteriori bit per indicare quale
registro all’interno dell'istruzione. Perciò l’architettura dell’accumula­
tore si risolve in una maggiore velocità di esecuzione. Lo svantaggio è
che l'accumulatore deve sempre essere caricato con i dati richiesti prima
della sua utilizzazione. Questo può risolversi in qualche punto ineffi­
ciente.

Si ritorni all'illustrazione. Di fianco alla ALU, alla sua sinistra, appare
uno speciale registro ad 8 bit, i Jìag di stato del processore (P). Ciascuno
di questi bit, realizzato fisicamente da un flip-flop all’interno del registro
è utilizzato per denotare una condizione speciale. La funzione dei vari bit
di stato sarà spiegata successivamente durante gli esempi di programma­
zione che saranno presentati nel capitolo successivo e saranno completa­
mente descritti nel Capitolo 4 che presenta il set di istruzini completo.
Come esempio tre di tali flag di stato sono i bit N, Z e C.

N sta per “ negativo” . Esso è il bit 7 (cioè il più a sinistra) del registro P.
Ogni volta che questo bit è al livello logico uno indica che il risultato
dell’operazione eseguita dalla ALU è negativo.

Il bit Z sta per zero. Ogni volta che questo bit (posizione di bit 1) è ad
uno. si denota che è stato ottenuto un risultato zero.

Il bit C, nella posizione più a destra, (posizione 0), è un bit carry, cioè
di riporto. Ogni volta che sono sommati due numeri di 8 bit ed il risultato
non può essere contenuto i/i 8 bit, il bit C è il nono bit del risultato. Il
carry è usato in modo estensivo durante le operazioni aritmetiche.

Questi bit di stalo sono controllati automaticamente dalle varie istru­
zioni. Una lista completa delle istruzioni ed il modo in cui esse influen­
zano i bit di stato del sistema appare nell’Appendice a come pure al
Capitolo 4. Questi bit saranno utilizzati dal programmatore per varie
verifiche speciali o condizioni eccezionali, oppure per verificare veloce­
mente alcuni risultati errati. Per esempio la verifica del bit Z può essere
associata con istruzioni speciali e dirà immediatamente se il risultato di
una prcedentc operazione era 0 oppure no. Tutte le decisioni in un

programma in linguaggio assembly, cioè in tutti i programmi che
saranno sviluppati in questo libro, saranno basati sulla verìfica di bit.
Questi bit saranno sia i bit che saranno letti dal mondo esterno, oppure i
bit di stato della ALU. È perciò molto importante capire la funzione e
l'uso di tutti i bit di stato del sistema. La ALU è dotata di un registro di
stato contenente questi bit. Tutti gli altri chip di ingresso/uscita del
sistema saranno anch'essi equipaggiati con bit di stato. Questo sarà
studiato al Capitolo 7.

Ci si muova ora verso sinistra dalla ALU nel!‘illustrazione 2.2. I
rettangoli orizzontali rappresentano i registri interni del 6502.

PC è il coniatore di programma. È un registro a 16 bit ed è realizzato
fisicamente come due registri ad 8 bit: PCL e PCH, PCL costituisce la
metà di basso livello del contatore di programma, cioè i bit da 0 a 7. PCH
costituisce la parte ad alto livello del contatore di programma cioè i bit
da 8 a 15. Il contatore di programma è un registro a 16 bit che contiene
l'indirizzo d d l’istruzione successiva da eseguire. Ogni calcolatore è equi­
paggiato con un contatore di programma in modo da conoscere quale
istruzione deve essere successivamente eseguita. Si analizza brevemente
il meccanismo di accesso alla memoria in modo da mostrare il ruolo del
contatore di programma.

mpu non

PC
l i i l l l É É l PC:

m m BUS INOIAIZZO k

V

Figura 2.3: Prelievo di un'istruzione dalla memoria

IL CICLO DI ESECUZIONE DI UN’ISTRUZIONE

Si faccia riferimento alla Figura 2-3. L’unità microprocessore appare
a sinistra e la memoria a destra. Il chip di memoria può essere una ROM
oppure una RAM oppure qualsiasi altro chip che svolga le funzioni di
memoria. La memoria è utilizzata per immagazzinare istruzioni e dati.

Ora si seguirà il prelievo di un'istruzione della memoria per illustrare il
molo del contatore di programma. Si supponga che il contatore di
programma abbia un certo contenuto valido. Esso conserva cosi un
indirizzo a 16 bit che è l’indirizzo dell'istruzione successiva da prelevare
dalla memoria. Qualsiasi processore procede in tre cicli:

1 — Prelievo dell’istruzione successiva
2 — Decodifica dell'istruzione
3 — Esecuzione dell'istruzione

Prelievo (fetch)

Si segue la sequenza. Nel primo ciclo i contenuti del contatore di
programma sono depositati sul bus indirizzo c portati alla memoria (sul
bus indirizzo stesso). Contemporaneamente un segnale di lettura può
essere emesso sul bus controllo del sistema, se richiesto. La memoria
riceverà l’indirizzo. Questo indirizzo è utilizzalo per specificare una
locazione all’interno della memoria. Dopo la ricezione del segnale di
lettura la memoria decodificherà l'indirizzo ricevuto, per mezzo di deco­
dificatori interni, e selezionerà la locazione specificata dall'indirizzo.
Alcune centinaia di nanosecondi più tardi, la memoria depositerà i dati
ad 8 bit, corrispondenti all'indirizzo specificato, sul suo bus dati. Questa
parola ad 8 bit è l’istruzione che si vuole prelevare. Nell’illustrazione
precedente quest'istruzione sarà depositata sulla sommità del bus dati.

Si riassuma brevemente la sequenza: i contenuti del contatore di
programma sono inviati sul bus indirizzo. Viene generato un segnale di
lettura. La memoria entra in funzione. Circa 300 nanosecondi più tardi,
l'istruzione dell'indirizzo specificato è depositata sul bus dati. Il micro-
processore quindi legge il bus dati e depone i suoi contenuti in un registro
interno specializzato, il registro IR. Il registro IR è il registro di istru­
zione. Esso è largo 8 bit ed è utilizzato per contenere l'istruzione appena
prelevata dalla memoria. IJ ciclo di prelievo è cosi completato. Gli 8 bit
dell'istruzione si trovano ora fisicamente nello speciale registro interno
del 6S02, il registro IR. Questo registro IR appare a sinistra nella Figura
2-4.

Decodifica ed Esecuzione

Una volta che l’istruzione è contenuta nell’IR, l'unità di controllo del
microprocessore decodificherà i contenuti e sarà in grado di generare la
sequenza corretta dei segnali interni ed esterni per l’esecuzione dell'istru­
zione specificata. C 'è perciò un breve ritardo di decodifica seguito da

una fase di esecuzione, la cui larghezza dipende dalla natura dell'istru­
zione specificata. Alcune istruzioni saranno eseguite interamente all'in­
terno della MPU. Altre istruzioni preleveranno o depositeranno dati
dalla o nella memoria. Questa è la ragione per cui le diverse istruzioni del
6502 richiedono diversi tempi di esecuzione. La durata c espressa come
numero di cicli (di clock). Si faccia riferimento all’Appendice per il
numero di cicli richiesti da ciascuna istruzione. Tipicamente il 6502
utilizza un clock di 1 MHz. La lunghezza di ogni ciclo è perciò un
microsecondo. Poiché possono essere utilizzate varie velocità di clock
con componenti diversi, la velocità di esecuzione è normalmente
espressa in numero di cicli piuttosto che in numero di nanosecondi.

Si noterà anche che sulla parte più a sinistra ddl'illustrazione compare
un oscillatore interno al 6502. Questo è il clock che è interno nel caso del
6502.

Prelievo dell’istruzione successiva

È stata appena descritta l’utilizzazione del contatore di programma e
come un’istruzione può essere prelevala dalla memoria. Durante l’esecu­
zione di un programma, le istruzioni sono prelevate in sequenza dalla
memoria. Occorre perciò fornire un meccanismo automatico per prele­
vare le istruzioni in modo sequenziale. Questo compito è eseguito da un
semplice incrementatore connesso al contatore di programma. Questo è
illustrato in Figura 2-4. Ogni volta che i contenuti del contatore di
programma (in basso nell’illustrazione) sono posizionati sul bus indi­
rizzo, i contenuti dello stesso contatore saranno incrementati e riscritti
nel contatore stesso. Per esempio, se il contatore di programma conte­
nesse il valore 0, il valore 0 uscirebbe sul bus indirizzo. Allora i contenuti
del contatore di programma sarebbero incrementati ed il valore I
sarebbe riscritto nel contatore stesso. In questo modo la volta successiva
che il contatore di programma viene utilizzato, sarà prelevata l’istru­
zione all'indirizzo 1. Si è cosi realizzato un meccanismo automatico per
sequenziare le istruzioni.

Si deve sottolineare che la precedente descrizione è semplificata. In
realtà alcune istruzioni possono essere lunghe 2 od anche 3 byte cosicché
i byte successivi saranno prelevati in questo modo dalla memoria.
Comunque il meccanismo i identico. Il contatore di programma è
utilizzato per prelevare byte successivi di un’istruzione allo stesso modo
del prelievo di istruzioni successive. Il contatore di programma, assieme
al suo incrementatore, fornisce un meccanismo automatico per il punta­
mento alle locazioni di memoria successive.

r r ^ l

■ <■>
IS T R U Z IO N E

1}

C ì7 t * f
S E G N A L I

• 4 *C a

)»•

BUS OATI

LETTURA

BUS INDIRIZZO

ISTRUZIONE

MEMORIA
PROPRIA

DECOO. INDIRIZZO

Figura 2 4: Sequenza automatica

Altri Registri del 6502

Un'ultima area della Figura 2-2 non è ancora stata spiegata. Questa
comprende l'insieme dei tre registri indicati X, Y ed S. I registri X ed Y
sono chiamali registri indice. Essi sono larghi 8 bit. Essi possono essere
utilizzati per contenere dati su cui opererà il programma. Comunque essi
sono normalmente utilizzati come registri indice.

Il ruolo dei registri indice sarà descrìtto al Capitolo S sulle tecniche di
indirizzamento. Brevemente, i contenuti di questi due registri indice
possono essere sommati in diversi modi a qualsiasi registro specificato
all’interno del sistema per fornire una scelta automatica. Questa è una
caratterìstica importante per recuperare in modo efficiente i dati quando
sono immagazzinati in tabelle. Questi due registri non sono compieta-
mente simmetrici ed il loro ruolo sarà differenziato nel capitolo sulle
tecniche di indirizzamento.

Il registro dello stack S è utilizzato per contenere un puntatore alla
sommità dell’area dello stack all'interno della memoria.

Si introdurrà ora il concetto formale di uno stack.

LO STÀCK

Lino stack è formalmente chiamato una struttura LIFO (last-in, first-
out). Uno stack è un insieme di registri, o locazioni di memoria, allocati
per questa struttura dati. La caratteristica essenziale di questa struttura è
che si tratta di una struttura cronologica. Il primo elemento introdotto
nello stack è sempre in fondo allo stack. L’ultimo elemento depositato
nello stack è sempre alla sommità dello stack. Si può tracciare un'analo­
gia con i piatti su un contatore di un ristorante.

C’è un foro sul contatore con una molla sul fondo. I piatti sono infilati
sopra il foro. Con questa organizzazione è sicuro che il piatto introdotto
per primo nello stack è sempre in fondo. Quello che è stato posizionato
più recentemente sullo stack è quello alla sommità. Questo esempio
illustra anche un'altra caratteristica dello stack. Nell’impiego normale
uno stack è accessibile solo attraverso due istruzioni “push” e "pop” (o
“ pulì"). L’operazione push (spinge) fa depositare un elemento alla som­
mità dello stack. L’operazionepu//(estrae) consiste nella rimozione di un
elemento dallo stack. In patica, nel caso di un microprocessore, è taccu­
mulatore che sarà depositato alla sommità dello stack. L’operazione pop
conduce ad un trasferimento dell'elemento di sommità dello stack nel­
l’accumulatore. Possono esistere altre istruzioni specializzate per trasfe­
rire la sommità dello stack tra altri registri specializzati, come il registro
di stato.

È richiesta la disponibilità di uno stack per realizzare tre possibilità di
programmazione all’intemo del sistema calcolatore: subroutine, inter-
rupt ed immagazzinamento temporaneo di dati. Il ruolo dello stack
durante le subroutine sarà spiegato nel Capitolo 3 (Tecniche di Program­
mazione di Base).
Il ruolo dello stack durante gli interrupt sarà spiegato al Capitolo 6
(Tecniche di Ingresso/Uscita). Infine il ruolo dello stack nella conserva­
zione di dati ad alta velocità sarà spiegato nel corso di programmi
specifici di applicazione.

A questo punto si assumerà semplicemente che lo stack è una caratte­
ristica richiesta in qualsiasi sistema calcolatore.
Uno stack può essere realizzalo in due modi:

1. Un numero fisso di registri può essere fornito all’interno del micro­
processore stesso. Questo è uno “stack hardware". Questo ha il vantag­
gio di un'alta velocità. Comunque ha lo svantaggio di un limitato
numero di registri.

2. La maggior parte dei microprocessori general-purpose scelgono un
altro approccio, lo stack software, in modo da non restringere lo stack ad

un numero molto piccolo di registri. Questo è l'approccio scelto nel
6502. Nell’approccio software un registro orientato aU'interno del
microprocessore, il registro S in questo caso, immagazzina il puntatore
dello stack, cioè l'indirizzo dell'elemento di sommità dello stack più
uno). Lo stack è poi realizzato come un’area di memoria. Il puntatore
dello stack richiederà perciò 16 bit per poter puntare ovunque nella
memoria.

Comunque, nel caso del 6502, il puntatore dello stack è ristretto ad 8
bit. Esso comprende un nono bit, nella posizione più a sinistra, sempre
posto ad 1. In altre parole l'area riservata allo stack nel caso del 6502 va
daU’indirizzo 256 all'indirizzo 51 !. In binario questo è da "100000000" a
“ 111111111". Lo stack inizia sempre all’indirizzo 111111111 e può avere
fino a 255 parole. Questo può essere visto come una limitazione del 6502
e sarà discusso successivamente in questo libro. Nel 6502 lo stack è
all'indirizzo più alto e si sviluppa “all’indietro": il puntatore dello stack
£ decrementato da un’istruzione PUSH.

Per utilizzare lo stack il programmatore inizializzerà semplicemente il
registro S. Il resto è automatico.

Lo stack viene considerato risiedere nella pagina I della memoria. Si
introdurrà ora il concetto di impaginazione.

MICROPROCESSORE MEMORIA 0

• BASE

Figura 2.5: Le 2 Istruzioni di manipolazione dello stack

IL CONCETTO DI IMPAGINAZIONE

11 microprocessore 6502 è equipaggiato con un bus indirizzo a 16 bit.
Si possono utilizzare 16 bit binari per creare fino a 216 = 64 K combina­
zioni (l K è uguale a 1024). A causa delle caratteristiche di indirizza­
mento del 6502 che saranno presentate al Capitolo 5, è conveniente la

partizione della memoria in pagine logiche. Una pagina è semplicemente
un blocco di 256 parole. Cosi le locazioni di memoria da 0 a 255 sono la
pagina 0 della memoria. Esse saranno utilizzate per l'indirizzamento
“ Pagina zero” . La pagina I della memoria comprende le locazioni di
memoria da 256 a 511. È stato appena stabilito che la pagina 1 è
normalmente riservata all'arca stack. Tutte le altre pagine del sistema
non sono coinvolte dal progetto e possono essere utilizzate liberamente.
Nel caso del 6502 è importante ricordare l'organizzazione a pagina della
memoria. Ogni volta che viene attraversata la frontiera di una pagina si
introduce spesso un ulteriore ciclo di ritardo neiresecuzione di un’istru­
zione.

INDIRIZZO

i a t

PAGINA » LOCAZIONE

2bb

LOCAZIONE
INTERNA

ALLA PAGINA

MEMORIA

PAGINA 0

PAGINA 1

Figura 2.6: tl concetto di Impaginazlone

IL CHIP 6502

Per completare la nostra descrizione del diagramma, il bus dati,
riportato nella parte superiore della Figura 2-2, rappresenta il bus dati
esterno. Esso sarà utilizzato per comunicare con i dispositivi esterni ed in
particolare la memoria.

AO-7 ed A8-15 rappresentano rispettivamente le parti di basso ed alto
ordine del bus indirizzo creato dal 6502.

Per completezza si presenta di seguito l'effettiva disposizione dei pin
del microprocessore 6502. Non è necessario leggere questo per capire il
resto di questo libro. Comunque se si intende connettere il dispositivo ad
un sistema questa descrizione sarà preziosa.

L'effettiva disposizione dei pin del 6502 appare in Figura 2*7. Il bus
dati è indicato con la label DB0-7 ed ì facilmente riconoscibile sulla
destra dell'illustrazione. Il bus indirizzo è indicato con la label A0-11 ed
A 12-15. Esso comprende i pin dal 9al 20a sinistra del chip ed i pin 22 a
destra.

I segnali rimanenti sono l'alimentazione ed i segnali di controllo.

Figura 2.7: Disposizione dal pin del 6502

I segnali di controllo

—R/W: è la linea di controllo di LETTURA/SCRITTURA nella
direzione del trasferimento dei dati sul bus dati.

— IRQ ed NMI sono la “ Richiesta di Interrupt” e rin tem ip t Non
M ascherarle. Queste sono due linee di interrupt e saranno utiliz­
zate al Capitolo 7.

—SYNC è un segnale che indica il prelievo di un codice operativo dal
mondo esterno.

— RDY i normalmente utilizzato per il sincronismo con una memoria
lenta; esso arresterà il processore.

—SO comanda il flag di overflow. Normalmente non viene utilizzato.
—ft>, di e d; sono i segnali di clock.
—RES è il RESET, impiegato per inizializzare.
—Vss e Vcc sono le alimentazioni (5V).

SOMMARIO HARDWARE

Questo completa la nostra descrizione hardware deirorganizzazione
interna del 6502. L'esatta struttura interna dei bus del 6502 non è
importante a questo punto. Comunque il ruolo esatto di ogni registro è
importante e dovrebbe essere pienamente compreso prima di proseguire
la lettura. Quindi si prosegua solo se si ha familiarità con i concetti
presentati, diversamente si suggerisce di rileggere ancora le parti essen­
ziali di questo capitolo non appena queste sono utilizzate nei capitoli
successivi. Si suggerisce di osservare ancora la Figura 2-2 e di assicurarsi
la comprensione della funzione di ogni registro di questa illustrazione.

TECNICHE DI PROGRAMMAZIONE
DI BASE

INTRODUZIONE

Lo scopo di questo capitolo è di presentare tutte le tecniche di base
necessarie per scrivere un programma utilizzando il 6502. Questo capi­
tolo introdurrà concetti addizionali come la gestione dei registri, i cicli e
le subroutine. Esso sarà focalizzato sulle tecniche di programmazione
utilizzando solo le risorse interne del 6502, cioè i registri. I programmi
effettivi saranno sviluppati come programmi aritmetici. Questi pro­
grammi serviranno per illustrare i vari concetti presentati ed utilizze­
ranno istruzioni effettive. Si vedrà così come le istruzioni possono essere
utilizzate per manipolare l’informazione tra la memoria la MPU, come
pure per manipolare l'informazione all’interno della MPU stessa. Il
capitolo successivo discuterà quindi i dettagli completi delle istruzioni
disponibili sul 6502. Il Capitolo 6 presenterà le tecniche disponibili per
manipolare l’informazione all'esterno del 6502: le tecniche d'ingresso/u­
scita.

In questo capitolo si apprenderà essenzialmente mediante esecuzione
diretta. Esaminando programmi di complessità crescente si apprenderà
il ruolo delle varie istruzioni, dei registri, e si applicheranno i concetti
precedentemente sviluppati. Comunque un concetto importante che non
verrà presentato è il concetto delle tecniche di indirizzamento. A causa
della sua apparente complessità esso sarà presentato separatamente al
Capitolo 5.

Si inizierà immediatamente scrivendo alcuni programmi perii 6502. Si
partirà dai programmi aritmetici.

PROGRAMMI ARITMETICI

I programmi aritmetici comprendono l'addizione, sottrazione, molti­
plicazione e divisione. Il programma che verrà ora presentato opera su
numeri interi. Questi interi possono essere binari positivi oppure anche

espressi nella notazione in complemento a 2 nel qual caso il bit più a
sinistra è il bit del segno (Vedere il Capitolo 1 per la notazione in
complemento a due).

Addizione ad 8 bit

Si sommeranno due operandi ad 8 bit chiamati OPI ed OP2, rispetti­
vamente immagazzinati agli indirizzi di memoria ADRI ed ADR2. La
somma sarà chiamata RES e sarà immagazzinata all’indirizzo di memo­
ria ADR3. Questo è illustrato in Figura 3-1. Il programma che eseguirà
questa addizione è il seguente:

LDA ADRI CARICA OPI IN A
ADC ADR2 SOMMA OP2 AD OPI
STA ADR3 CONSERVA IL RISULTATO AD ADR3

MEMORIA

Figura 3.1: Addizione ad 6 bit: Res = OP1 + OP2

Questo è un programma di tre istruzioni. Ogni riga costituisce un’i­
struzione, in forma simbolica. Ogni istruzione sarà trasformata dal
programma assemblatore in 1, 2 o 3 byte binari. Non si considererà

questa trasformazione qui, ma si osserverà solo la rappresentazione
simbolica. In particolare la prima riga è un'istruzione LDA. LDA
significa “carica l’accumulatore A dall’indirizzo che segue".

L'indirizzo specificato sulla prima riga è ADRI. ADR1 è una rappre­
sentazione simbolica di un indirizzo effettivo a 16 bit. Da qualsiasi altra
parte del programma sarà definito il simbolo ADRI. Esso potrebbe
essere, per esempio, l'indirizzo 100.

L’istruzione LDA specifica “carica l’accumulatore A" (all'interno del
6502) dalla locazione di memoria 100. Questo si risolverà in un’opera­
zione di lettura dall’indirizzo 100, i cui contenuti saranno trasmessi
lungo il bus dati e depositati aH’interno dell’accumulatore. Si ricorderà
che le operazioni aritmetiche e logiche operano sull’accumulatore come
uno degli operandi sorgente (per maggiori dettagli si faccia riferimento
al Capitolo precedente). Poiché si desidera sommare assieme i due valori

^ BUS DATI

. ^
Afift’

<AD*t|

™ BUS INUIHI/ZO

MEMORIA

'! !
I I

Figura 3.2: LDA ADRI: OP1 è caricato dalla memoria

OP1 ed OP2, innanzitutto si carica OP1 nell'accumulatorc. Quindi si
sarà in grado di sommare i contenuti dell’accumulatore (OP1) ad OP2.

Il campo più a destra di questa istruzione è detto campo del commenta.
Esso è ignorato dal processore ma viene fornito per la leggibilità del
programma. Per comprendere cosa fa il programma è di importanza
suprema impiegare dei buoni commenti.

Questa tecnica è la documentazione di un programma. Qui il com­
mento i auto esplicativo: il valore di OP1, che é allocato all’indirizzo
ADRI, viene caricato nell’accumulatore A.

Il risultato della prima istruzione è illustrato dalla Figura 3-2.

La seconda istruzione del programma in esame è:

ADC ADR2

Essa specìfica “somma i contenuti della locazione di memoria ADR2
all’accumulatore” . Con riferimento alla Figura 3-1, i contenuti della
locazione di memoria ADR2 sono OP2, il secondo operando. I contenuti
effettivi dell’accumulatore sono ora OP1, il primo operando. Come
risultato dell'esecuzione della seconda istruzione, OP2 sarà prelevato
dalla memoria e sommato ad OP1. La somma sarà depositata ncll’accu-
mulatore. Il lettore ricorderà che i risultati di un’operazione aritmetica,
nel caso del 6S02, sono rideposti nell'accumulatore. Negli altri micro­
processori, può essere possibile depositare questi risultati in altri registri
o nella memoria.

La somma di OP1 ed OP2 è ora nell’accumulatore. Occorre ora
trasferire i contenuti dcll'accumulatore nella locazione di memoria
ADR3 in modo da immagazzinare i risultati alla Locazione richiesta.
Anche qui il campo più a destra della seconda istruzione è semplice-
mente un campo commento che spiega il ruolo dell’istruzione (somma
OP2 ad A).

Figura 3.3: ADC ADR2

L’effetto della seconda istruzione è illustrato dalla Figura 3-3.
Si può verificare dalla Figura 3-3 che inizialmente l’accumulatore

conteneva OP1. Dopo l’addizione un nuovo risultato è stato scritto
nell’accumulatore. Questo c O P 1 + OP2.1 contenuti di qualsiasi registro
aU’intemo del sistema, come pure di qualsiasi locazione di memoria,
rimangono invariati quando viene eseguita un’operazione di lettura. In
altre parole, la lettura dei contenuti di un registro a di una locazione di
memoria non cambia i suoi contenuti. Soltanto, ed esclusivamente, un’o­

perazione di scrittura cambierà i contenuti di un registro. In questo
esempio i contenuti delle locazioni di memoria ADRI ed ADR2sono
invariati. Comunque dopo la seconda istruzione di questo programma, i
contenuti dell'accumulatore sono stati modificati poiché l'uscita della
ALU è stata scritta nell’accumulatore. I suoi contenuti precedenti sono
andati persi.

Si conserverà ora questo risultato all’indirizzo ADR3 e questa sem­
plice addizione sarà così completata.

La terza istruzione specifica: STA ADR3. Questo significa "immagaz­
zina i contenuti dell'accumulatore A all'indirizzo ADR3". Questo è
auto-esplicativo ed è illustrato in Figura 3-4.

m e m o r i a

Figura 3.4: STA A0R3 (Immagazzina in memoria i contenuti dell'accumulalore)

Peculiarità del 6502

Il precedente programma di tre istruzioni sarebbe davvero un pro­
gramma completo per la maggior parte dei microprocessori. Comunque
esistono due peculiarità del 6502 che normalmente richiederanno due
istruzioni addizionali.

Primo, l'istruzione ADC in realtà significa "somma con cany” piutto­
sto che “somma". La differenza sta nel fatto che una normale addizione
somma due numeri assieme. Un’adduione-con-carry somma due
numeri assieme più il valore del bit carry. Poiché qui si stanno som­
mando due numeri di 8 bit il carry non dovrebbe essere utilizzato. Ora
all'inizio dell'addizione non si conosce necessariamente la condizione
del bit carry (esso può essere stato posto ad uno da un’istruzione
precedente), si deve quindi azzerarlo. Questo sarà eseguito dall’istru­
zione CLC “azzera carry” .

Sfortunatamente il 6502 non possiede entrambi i tipi di operazione di
addizione. Esso possiede solo l'operazione ADC. Come risultato, per
singole addizioni ad 8 bit, una precauzione necessaria è quella di azze­
rare sempre il bit carry. Questo non è uno svantaggio significativo ma
non deve essere dimenticato.

La seconda peculiarità del 6502 concerne il fatto che esso è equipag­
giato con istruzioni decimali potenti che saranno impiegate al paragrafo
successivo con l’aritmetica BCD. Il 6502 funziona sempre in uno dei due
modi: binario o decimale. Lo stato in cui si trova è condizionato dal bit di
stato, il bit *‘D” (del registro P). Poiché in questo esempio si sta conside­
rando un funzionamento un modo binario è necessario assicurarsi che D
sia posizionalo correttamente. Questo sarà fatto da un’istruzione CLD,
che azzererà il bit D. Naturalmente se tutte le operazioni aritmetiche
aH’inierno del sistema sono eseguite in binario il bit D sarà azzerato una
sola volta e per tutte all’inizio del programma e non sarà necessario
posizionarlo tutte le volte. Perciò questa istruzione può di fatto essere
omessa nella maggior parte dei programmi. Comunque il lettore che farà
pratica di questi esercizi su un calcolatore, può passare da esercizi in
BCD ad esercizi in binario e questa ulteriore istruzione inclusa qui deve
apparire almeno una volta prima dell’esecuzione di qualsiasi addizione
binaria.

Per riassumere: il programma ad 8 bit completo e sicuro ì ora:

CLC AZZERA IL BIT CARRY
CLD AZZERA IL BIT DECIMALE
LDA ADRI CARICA OP1 IN A
ADC ADR2 SOMMA OP2 AD OP1
STA ADR3 CONSERVA RES AD ADR3

Si possono utilizzare indirizzi fìsici effettivi invece di ADRI, ADR2ed
ADR3. Se si desidera mantenere gli indirizzi simbolici sarà necessario
utilizzare le cosiddette “pseudo-operazioni” che specificano il valore di
questi indirizzi simbolici cosicché il programma assembly può, durante
la traduzione, sostituire gli indirizzi fisici effettivi. Tali pseudo­
operazioni sarebbero per esempio:

ADRI = $ 1 0 0
ADR2 = $ 120
ADR3 = t 200

Esercizio 3.1: Facendo riferimento soltanto alla lista delle istruzioni alla
fine delllbro, siscriva un programma che sommi due numeri immagazzinati
alle locazioni di memoria LO C I e LOC2. Si depositino i risultati alla

locazione di memoria L0C3. Quindi si confronti il programma con quello
precedente.

Addizione a 16 bit

Un’addizione ad S bit consentirà solo l'addizione di numeri ad 8 bit,
cioè numeri tra Oe 225, se è utilizzalo il binario assoluto. Per applicazioni
più pratiche è necessario utilizzare una precisione multipla per sommare
numeri maggiori o uguali a 16 bit. Si presenteranno qui degli esempi di
aritmetica a 16 bit. Essi possono essere facilmente estesi a 24, 32 oppure
più bit. (Ma sempre multipli di 8 bit). Si assumerà che il primo operando
sia immagazzinato alla locazione di memoria ADRI ed ADR 1-1. Poiché
questa volta OPI è un numero a 16 bit, esso richiederà due locazioni di
memoria ad B bit.

Analogamente OP2 sarà depositato agli indirizzi dì memoria ADR2
ed ADR2-I. Il risultato deve essere depositato agli indirizzi di memoria
ADR3 ed ADR3-1. Questo è illustrato in Figura 3-5.

MEMORIA

Figura 3.5: Addizione a 16 bit: gli operandi

La logica di questo programma è esattamente la stessa di quello
precedente. Prima sarà sommata la metà di basso ordine degli operandi

poiché il microprocessore può sommare soltanto su 8 bit alla volta.
Qualsiasi riporto generato dall'addizione di questi due byte di basso
ordine sarà automaticamente immagazzinato nel bit carry interno
(“C"). Quindi le metà di ordine elevato dei due operandi saranno
sommate insieme con qualsiasi carry ed il risultato sarà conservato nella
memoria.

Il programma è il seguente:

CLC
CLD
LDA ADRI META’ BASSA DI OPI
ADC ADR2 (OP + OP2) BASSO
STA ADR3 CONSERVA LA META’ BASSA DI RES
LDA A D R I-I META’ ALTA D I OPI
ADC ADR2-I (OPI + OP2) ALTO + RIPORTO
STA ADR3-I CONSERVA LA META' ALTA DI RES

Le prime due istruzioni di questo programma sono utilizzate per
sicurezza: CLC, CLD. II loro ruolo è stato spiegato nel paragrafo
precedente. Si esamini ora il programma: le successive tre istruzioni sono
essenzialmente identiche a quelle dell’addizione della metà meno signifi­
cativa (bit da 0 a 7) di OPI ed OP2. La somma, chiamata RES, è
immagazzinata alla locazione di memoria ADR3.

Automaticamente, ogni volta che viene eseguita un'addizione, qual­
siasi riporto risultante è conservato nel bit carry del registro dei flag
(registro P). Se i due numeri non generano nessun riporlo, il valore del
bit carry sarà zero. Se i due numeri generano un riporto allora il bit C
sarà uguale ad 1.

Le successive tre istruziuni del programma sono inoltre essenzial­
mente identiche alla precedente addizione ad 8 bit. Esse sommano
assieme le metà più significative (i bit da 8 a 15) di OPI ed OP2, più
qualsiasi carry, ed immagazzinano il risultato all'indirizzo ADR3-1.
Dopo che è stato eseguito questo programma, il risultato a 16 bit è
immagazzinato alle locazioni di memoria ADR3 ed ADR3-1.

Qui é slato assunto che nessun riporto sia generato da questa addi­
zione a 16 bit. Si è assunto infatti che il risultato sia un numero a 16 bit.
Se il programmatore sospetta per qualunque ragione che il risultato
possa avere 17 bit allora dovrebbe essere inserita un’istruzione addizio­
nale per verificare il bit carry dopo questa addizione. La locazione degli
operandi nella memoria è illustrata in Figura 3-5.

Nota: qui è stato assunto che la parte più alta dell’operando sia
immagazzinata “alla sommità" della pane più bassa cioè all’indirizzo di
memoria più basso. Questo può non essere generale. Infatti gli indirizzi

sono immagazzinati in modo opposto: la parte bassa è memorizzata per
prima nella memoria e poi la parte più alta è immagazzinata nella
successiva locazione di memoria. Per utilizzare una convenzione
comune per i dati e gli indirizzi si raccomanda che anche i dati siano
conservati con la parte più bassa sopra la parte più alta. Questo è
illustrato in Figura 3-6 a e b.

M E M O R I A

KHi ■

<3*1
MOi • I

MKQ
«e»i* i

lOHMÌ»

icmui

«si

Figura 3.6a: Immagazzinamento degli operandi di ordine inverso

Esercizio 3.2: SI riscriva il programma dell'addizione a 16 bit con lo
schema di memoria indicato in Figura 3-6a.

Esercizio 3.3: Si assuma ora che ADRI non punti alla metà più bassa di
OPRI (vedere Figura 3-óa). ma punti alla parte più alta di OPR1. Questo è
illustrato in Figura 3~6b. Si scriva nuovamente il programma corrispon­
dente.

Il programmatore deve decidere come immagazzinare i numeri a 16
b>t (cioè prima la parte bassa o quella alta) ed anche se l’indirizzo di
riferimento punti alla met& più bassa o più alta di tali numeri. Questa e la
prima di molte scelte che si imparerà ad eseguire quando si progettano
Algoritmi oppure strutture dati.

UM1 1
AMI

«4>V3-1
A Q I?

AC«» I
AO*J

■ 0«Hi
.o rtj H

\HU

Figura 3.6b: Puntamento al byte elevalo

Si è cosi imparato ad eseguire l'addizione binaria. Si considererà ora la
sottrazione.

Sottrazione dì numeri a 16 Bit

L'esecuzione di una sottrazione ad 8 bit è troppo semplice. Si eseguirà
ora per esercizio una sottrazione a 16 bit. Come al solito i numeri che si
considerano, OPRI ed OPR2, sono immagazzinati agli indirizzi ADRI
ed ADR2. Lo schema di memoria sarà assunto essere quello di Figura
3-6. Per sottrarre si eseguirà l'operazione di sottrazione (SBC) invece di
un'operazione di addizione (ADC). L’unica variazione, rispetto all’ad­
dizione, i che si utilizzerà un’istruzione SEC all'inizio del programma
invece di un CLC. SEC significa “pone ad 1 carry” . Questo indica una
condizione di “non prestito". Il resto del programma è identico a quello
dell’addizione. Il programma è il seguente:

CLD
SEC PONE CARRY AD 1
LDA ADRI (OPRI) L I N A
SBC ADR2 (OPRI» L - (OPR2) I.

STA
LDA
SBC
STA

ADR3 IMMAGAZZINA (RESULT) L
ADRI + I (OPRI) H IN A
ADR2 + 1 (OPRI) H - (OPR2) H
ADR3 + 1 IMMAGAZZINA (RESULT) H

Esercizio 3.4: Si scriva il programma della sol trazione per gli operandi ad
8 bit.

Si deve ricordare che nel caso dell’aritmetica in complemento a 2 il
valore finale del flag carry non è significativo. Se si è verificata una
condizione di overflow come risultato della sottrazione allora viene
posto ad uno il bit di overflow (bit V) del registro dei (lag. Questo può
quindi essere verificato.

Gli esempi appena presentati sono semplici addizioni binarie.
Comunque può essere necessaria un altro tipo di addizione: è l'addizione
BCD.

ARITMETICA BCD

Addizione BCD ad 8 Bit

Il concetto dell’aritmetica BCD è stato presentato al Capitolo I. Essa è
utilizzata essenzialmente per applicazioni commerciali dove è impera­
tivo conservare ogni digit significativo di un risultato. Nella notazione
BCD, viene utilizzato un nibble di 4 bit per immagazzinare un digit
decimale (da 0 a 9). Ne risulta che ogni byte di 8 bit può immagazzinare
due digit BCD. (Questo è chiamato BCD packed). Si sommino ora due
byte contenenti due digit BCD ciascuno.

Per definire i problemi si provino innanzi tutto alcuni esempi nume­
rici.

Si sommi “01" e “02” :

“01” è rappresentato da 0000 0001.

“02" è rappresentto da 0000 0010.
Il risultato è 0000 0011.

Questa è la rappresentazione BCD di “03". (Per assicurarsi dell’equiva­
lente BCD si consulti la tabella di conversione alla fine del libro). Le cose
sono molto semplici in questo caso.
Si consideri un altro esempio.

“08” è rappresentato da 0000 1000.
“03” è rappresentato da 0000 0011.

Esercizio 3.5: Calcolare la somma dei due numeri precedenti nella rappre­
sentazione BCD. Che cosa si ottiene? (lo risposta è riportata di seguito).

Se è stato ottenuto 0000 1011 è stata calcolata la somma binaria di “8"
c "3". Si è infatti ottenuto “ 11” in binario. Sfortunatamente “ 10 11" è un
codice BCD non consentito. Si doveva ottenere la rappresentazione BCD
di “ 11" cioè “0001 0001” !

Il problema deriva dal fatto che la rappresentazione BCD utilizza solo
le prime dieci combinazioni di 4 digit in modo da codificare i simboli
decimali da “0” a “9". Le rimanenti sei combinazioni di 4 digit sono
inutilizzate ed il valore non consentito “ 1011" è una di queste combina­
zioni. In altre parole ogni volta che la somma di due digit binari è
maggiore di ”9” si deve aggiungere “6” al risultato in modo da saltare i
6 codici inutilizzati. Si sommi quindi la rappresentazione binaria di
"6" ad “ 1011":

1011 (risultato binario non consentito)
+ 0110 (+ 6)

Il risultato c: 0001 0001.

Questo è. infatti, “ l ì " nella notazione BCD! Quindi è stato ottenuto il
risultato corretto.

Questo esempio illustra una delle difficoltà di base dell’impiego del
BCD. Occorre compensare 6 codici inutilizzati. Nella maggior parte dei
microprocessori, un’istruzione speciale, chiamata “aggiustamento deci­
male" deve essere utilizzata per aggiustare il risultato di un’addizione
binaria. (Somma 6 se il risultato è maggiore di 9). Nel caso del 6502
l’istruzione ADC fa questo automaticamente. Questo è un indubbio
vantaggio del 6502 quando opera nell'aritmetica BCD.

Il problema successivo è illustrato dallo stesso esempio. Nell’esempio
considerato il riporto sarà generato dal digit BCD più basso (quello più a
destra) in quello più a sinistra. Questo riporto interno deve essere consi­
derato e sommato al secondo digit BCD. L’istruzione di addizione del
6502 fa questo automaticamente. Comunque è spesso conveniente rive­
lare questo riporto interno dal bit 3 al bit 4 (il “ riporto intermedio”).
Non esistono flag per questo scopo nel 6502.

Infine, come nel caso dell’addizione binaria, occorre utilizzare le
usuali istruzioni SED e CLC prima dell’esecuzione dell’addizione BCD
vera e propria. Come esempio si riporta un programma per la somma

BCD dei numeri ‘MI" e “ 22":

CLC AZZERA CARRY
SF.D POSIZIONA MODO DECIMALE
LDA # $ 1 1 BCD LETTERALE "11"
ADC * S 22 BCD LETTERALE “ 22”
STA ADR

In questo programma sono stati utilizzati due nuovi simboli: ed
Il simbolo denota che segue un “ letterale" (o costante). Il

segno all’interno del campo operando dell'istruzione, specifica che i
dati che seguono sono espressi in notazione esadecimale. Le notazioni
esadecimali e BCD per i digit da “0" a “9” sono identiche. Qui si
desidera sommare i letterali (o costanti) “ 11” e “ 22” . Il risultato è
immagazzinato all’indirizzo ADR. Quando l'operando è specificato
come parte dell’istruzione, come nell’esempio precedente, si ha il cosid­
detto indirizzamento immediato. (I vari modi di indirizzamento saranno
discussi in dettaglio al Capitolo 5).

MEMORIA

T.-*

11 •
1

AiX

1
1

J i
1

d
|

RISULTATO

Figura 3.7: Immagazzinamento dei digit BCD

L'immagazzinamento del risultato ad un indirizzo specificato, come con
STA ADR. è chiamato indirizzamento assoluto quando ADR rappre­
senta un regolare indirizzo a 16 bit.

Esercizio 3.6: È possibile spostare l'istruzione CLC nel programma sotto
l'istruzione LDA?

La sottrazione BCD è apparentemente complessa. Per eseguire una
sottrazione BCD si deve sommare il complemento a IO del numero
proprio come occorre sommare il complemento a 2 di un numero per
eseguire la sottrazione binaria. Il complemento a 10 si ottiene calcolando
il complemento a 9 ed aggiungendo 1. Questo richiede tipicamente tre o
quattro operazioni su un microprocessore convenzionale. Comunque il
6502 è equipaggiato con una speciale istruzione di sottrazione BCD che
esegue questo con una semplice istruzione! Naturalmente, e come nell’e-
sempio binario, il programma sarà preceduto dalle istruzioni SED (che
seleziona il modo decimale, se non è stato fatto precedentemente) ed
SEC che pone il carry ad 1. Cosi il programma per sottrare “ 25” a “ 26"
in BCD è il seguente:

SED PONE MODO DECIMALE
SEC PONE CARRY
LDA * S26 CARICA IL BCD 26
SBC * $25 MENO IL BCD 25
STA ADR IMMAGAZZINA IL RISULTATO

Addizione BCD a 16 bit

L'addizione a 16 bit viene eseguita allo stesso modo del caso binario. Il
programma per tale addizione è il seguente:

CLC
SED
LDA ADRI
ADC ADR2
STA ADR3
LDA ADR1-I
ADC ADR2-1
STA A D R M

Esercizio 3.7: Si confronti il programma precedente con quello utilizzalo
per l’addizione binaria a 16 bit. Quarè la differenza?

Esercizio 3.8: Si scriva il programma per la sottrazione per II BCD a 16 bit.
(Non si utilizzi CLC ed ADC!).

Flag BCD

Nel modo BCD il (lag carry durante un'addizione indica che il risultato
è maggiore di 99. Questo non è come nella situazione del complemento a

2 poiché i digit BCD sono rappresentati in binario vero. Inversamente
l’assenza del flag carry durante una sottrazione indica un prestito.

Suggerimenti di Programmazione per la Somma e la Sottrazione

—Azzerare sempre il flag carry prima di eseguire un’addizione.
—Porre sempre ad 1 il flag carry prima di eseguire una sottrazione.
—Porre il modo appropriato: binario o decimale.

Tipi di Istruzioni

Sono stati utilizzati tre tipi di istruzioni del microprocessore. Sono
state impiegate LDA e STA che, rispettivamente, caricano l’accumula­
tore da un indirizzo di memoria, ed immagazzinano i suoi contenuti
all'indirizzo specificato. Queste sono due istruzioni di trasferimento dati.

Successivamente sono state utilizzate istruzioni aritmetiche, come
ADC ed SBC. Queste eseguono rispettivamente le operazioni di addi­
zione e sottrazione. Ulteriori istruzioni ALU saranno introdotte nel
corso di questo capitolo.

Infine sono state utilizzate istruzioni, come CLC e SED, ed altre, che
manipolano i bit di flag (rispettivamente il bit caiTy ed il bit decimale
negli esempi considerati). Queste sono istruzioni di manipolazione di
stato o di controllo. Un’estesa descrizione delle istruzioni del 6S02 sarà
presentata al Capitolo 4.

Ancora altri tipi di istruzioni sono disponibili aU'interno del micro­
processore e non sono ancora state utilizzate.

Queste sono in particolare le istruzioni di “diramazione" e di “ salto"
che modificheranno l'ordine secondo il quale il programma deve essere
eseguito. Questo nuovo tipo di istruzioni sarà introdotto nell’esempio
successivo.

Moltiplicazione

Si consideri ora un problema aritmetico più complesso: la moltiplica­
zione di numeri binari. Per introdurre l'algoritmo di una moltiplicazione
binaria si inizia esaminando l'ordinaria moltiplicazione decimale: Si
moltiplicherà 12 x 23.

12 (Moltiplicando)
x 23 (Moltiplicatore)

36 (Prodotto parziale)
-I- 24
= 276 Risultato finale

La moltiplicazione è eseguita moltiplicando la cifra più a destra del
moltiplicatore, col moltiplica cioè “ 3” x 12” . Il prodotto parziale è
"36” . Quindi si moltiplica la cifra successiva del moltiplicatore cioè “2”
per “ 12". “24” è sommato al prodotto parziale.

Ma c'è un’ulteriore operazione: 24 è spostato a sinistra di una posi­
zione. In modo equivalente si potrebbe dire che il prodotto parziale (36)
è stato spostato a destra di una posizione prima di sommarlo.

I due numeri, correttamente spostati, sono poi sommati e la somma è
276. Questo è semplice. Si consideri ora la moltiplicazione binaria. La
moltiplicazione binaria è eseguita esattamente nello stesso modo.

Si consideri un esempio. Si moltiplicherà 5 x 3 :

(5) 101 (MPD)
(3) x Oli (MPR)

101 (PP)
101

_______ 000_________
(15) O lil i (RES)

Per eseguire la moltiplicazione si opera esattamente come sopra. La

FATTO

Figura 3.B: L'algoritmo di base della moltiplicazione: diagrammi-di flusso

rappresentazione formale di questo algoritmo appare in Figua 3-8. Que­
sto è un diagramma di flusso per l’algoritmo, il primo diagramma di
flusso. Esaminaniamolo più in dettaglio.

Questo diagramma di flusso è una rappresentazione simbolica dell’al­
goritmo appena considerato. Ogni rettangolo rappresenta un ordine da
eseguire. Esso sarà tradotto in una o più istruzioni di programma. Ogni
simbolo a forma di rombo rappresenta un test da eseguire. Questo sarà
un punto di diramazione del programma. Se il test si verifica si entra in
un'altra locazione. Il concetto di diramazione sarà spiegato successiva­
mente nel programma stesso. Il lettore dovrebbe ora esaminare questo
diagramma di flusso ed accertare che esso rappresenta esattamente
l'algoritmo presentato precedentemente. Si noti che c'è una freccia che
csce dall’ultimo rombo in fondo al diagramma di flusso ed una che entra
nel primo rombo in alto. Questo perchè la stessa porzione di diagramma
di flusso sarà eseguita otto volte, una volta per ogni bit del moltiplica­
tore. Una situazione di questo genere dove l’esecuzione riparte dallo
stesso punto è detta un ciclo di programma (loop) per ovvie ragioni.

Esercìzio 3.9: Si moltiplichi in binario "4" per "7" utilizzando il diagramma
diflussc > verificando che si ottiene "28". Se ciò non accade si provi ancora.
Solo se è stato ottenuto il risultalo corretto si è in grado di tradurre questo
diagramma di flusso in un programma.

Si traduca ora questo diagramma di flusso in un programma per il
6502. Il programma completo appare in figura 3-9. Si studierà questo in
dettaglio. Come si ricorderà dal Capitolo 1, la programmazione in
questo caso consiste nella traduzione del diagramma di flusso di Figura
3-8 nel programma di Figura 3-9. Ciascun blocco del diagramma di
flusso sarà tradotto in una o più istruzioni.

È stato assunto che MPR ed MPD abbiano già un valore.

Il primo blocco del diagramma di flusso è un blocco di inizializzazione.
È necessario porre a “0” un certo numero di registri o locazioni di
memoria poiché questo programma li utilizzerà. I registri che saranno
utilizzati dal programma della moltiplicazione appaiono in Figura 3-10.

Sulla sinistra dell’istruzione appare la porzione rilevante del micro-
processore 6502. Sulla destra dell’illustrazione appare una sezione rile­
vante dalla memoria. Qui si assumerà che gli indirizzi di memoria
aumentino dall'alto al basso dell’illustrazione. Naturalmente si potrebbe
utilizzare la convenzione opposta. Il registro X, riportato all’estrema
sinistra (uno dei due registri indice del 6502) sarà utilizzato come conta­

LDA # 0 AZZERA L’ACCUMULATORE
STA TMP AZZERA QUESTO INDIRIZZO
STA RESAD AZZERA
STA RESAD + 1 AZZERA
LDX # 8 X È IL CONTATORE

MULT LSR MPRAD SPOSTA MPR A DESTRA
BCC NO ADD TEST DEL BIT DEL CARRY
LDA RESAD CARICA CON RES BASSO
CLC PREPARA A SOMMARE
ADC MPDAD SOMMA MPD A RES
STA RESAD CONSERVA IL RISULTATO
LDA RESAD + 1 SOMMA IL RESTO DI MPD SPOSTATO
ADC TMP
STA RESAD + l

NOADD ASL MPDAD SPOSTA MPD A SINISTRA
ROL TMP CONSERVA IL BIT DA MPD
DEX DECREMENTA IL CONTATORE
BNE MULT RIPETI SE CONTATORE # 0

Figura 3.9: Moltiplicazione 8x8 bil

tare. Poiché si sta eseguendo una moltiplicazione ad 8 bit si devono
verificare gli 8 bit del moltiplicatore. Sfortunatamente non ci sono
istruzioni nel 6S02 che consentono di provare detti bil in sequenza. I soli
bit che possono essere verificati convenientemente sono i flag del registro
di stato. Come risultato di questa limitazione della maggior parte dei
microprocessori, per verificare successivamente tutti i bit del moltiplica­
tore sarà necessario trasferire il valore del moltiplicatore nelPaccumula-
tore. Quindi i contenuti dell'accumulatore saranno fatti scorrere a
destra.

Un’istruzione di scorrim ento muove ogni bit del registro di una
posizione a destra oppure a sinistra. L’effetto di un’operazione di scorri­
mento è illustralo in Figura 3-10. Esistono molte varianti possibili in
dipendenza del bit che entra nel registro ma queste differenze saranno
discusse al Capitolo 4 (set di istruzioni del 6502).

Si ritorni alle successive verifiche di ciascuno degli 8 bit del moltiplica­
tore. Poiché si può verificare facilmente il bit carry, il moltiplicatore sarà
spostato di una posizione 8 volte. Ogni volta il suo bit più a destra cadrà
nel bit carry e sarà verificato. Il problema successivo da risolvere é che il
prodotto parziale che sarà accumulato durante le addizioni successive
richiederà 16 bit. La moltiplicazione di due numeri ad 8 bit può produrre
un risultato a 16 bit. Questo perché 2* X 2S = 216. È quindi necessario

Figura 3.10: Moltiplicazione i registri

riservare 16 bit per questo risultato. Sfortunatamente il 6502 ha vera­
mente pochi registri interni cosicché questo prodotto parziale non può
essere memorizzato all'interno del 6502 stesso. Infatti, a causa del limi­
tato numero di registri non si è in grado di immagazzinare il moltiplica­
tore, il moltiplicando oppure i prodotti parziali airinterno del 6502. Essi
saranno immagazzinati in memoria. Questo originerà un'esecuzione più
lenta di quella che sarebbe possibile ottenere memorizzandoli tutti nei
registri interni. Questa è una limitazione del 6502. L’area di memoria
utilizzata per la moltiplicazione appare sulla parte destra della Figura
3-10. In altosi può vedere la parola di memoria allocata per il molliplica-

SCORRIMEWTO A SINISTRA

r \ f'ì r _(
CARRY

C A R R V

Figura 3.11: Scorrimento e rotazione

torc. Si assumerà, per esempio, che esso contenga ‘'3” in binario. L'indi­
rizzo di questa locazione di memoria è MPRAD. Sotto a questo si trova
un “ temporaneo" il cui indirizzo è TMP. Il ruolo di questa locazione
sarà chiarito di seguito. Si sposterà il moltiplicando a sinistra nella
locazione principale aggiungendolo al prodotto parziale. 11 moltipli­
cando è successivo e si assumerà contenere il valore “ 5'* in binario. Il suo
indirizzo è MPDAD.

Infine, in fondo alla memoria, si trovano due parole allocate per il
prodotto parziale ovvero il risultato. Il loro indirizzo è RESAD.

Queste locazioni di memoria saranno i “ registri di lavoro" e la parola
“ registro" può essere utilizzata come sinonimo di “ locazione" in questo
contesto.

La freccia che compare nella parte destra in alto deH'illustrazione che
fa entrare MPR nel bit C è un modo simbolico per mostrare come il
moltiplicatore sia fatto scorrere nel bit carry. Naturalmente questo bit
carry è fisicamente contenuto aU'interno del 6502 e non all'interno della
memoria.

Si ritorni ora al programma di Figura 3-9. Le prime cinque sono
istruzioni di inizializzazione.

Le prime quattro istruzioni azzereranno i contenuti dei “ registri"
TMP, RESAD e RESAD + 1. Si verifichi questo.

LDA # 0

Questa istruzione carica l’accumulatore con il valore letterale “0". Come
risultato di questa istruzione l'accumulatore conterrà "00000000".

I contenuti dell'accumulatore verranno ora utilizzati per azzerare i tre
“ registri'’ della memoria. Occorre ricordare che la lettura di un valore da
un registro non altera il suo contenuto. Così è possibile leggere il
contenuto di un registro tante volte quanto è necessario. 1 suoi contenuti
non vengono cambiati dall'operazione di lettura. Si proceda:

STA TMP

Questa istruzione immagazzina i contenuti dcll’accumulatore nella loca­
zione di memoria TMP. Si faccia riferimento alla Figura 3-11 per capire
il flusso dei dati nel sistema. L'accumulatore contiene “00000000". Il
risultato di questa istruzione sarà la scrittura di tutti zeri nella locazione
di memoria TMP. Si ricordi che i contenuti dell'accumulatore riman­
gono 0 dopo un'operazione di lettura. Sono invariati. Si sta per utiliz­
zarli ancora.

STA RESAD

Questa istruzione opera esattamente come la precedente ed azzera i
contenuti dell'indirizzo RESAD. Analogamente opera:

STA RESAD + 1

Infine si azzera la locazione di memoria RESAD + I che £ stata riservata
per memorizzare la parte alta del risultato. (La parte alta sono i bit 8-15;
la parte bassa sono i bit 0-7).

Infine, per arrestare lo scorrimento dei bit del moltiplicatore all'i­
stante corretto, c necessario contare il numero di scorrimenti che sono
stati eseguiti. Sono necessari otto scorrimenti. II registro X sarà utiliz­
zato come contatore ed inizializzato al valore “ 8". Ogni volta che viene
eseguito uno scorrimento, i contenuti di questo contatore saranno decre-
mentati di 1. Quando il valore del contatore diventa "0" la moltiplica­
zione è terminata. Si inizializza questo registro ad “ B":

LDX # 8
Questa istruzione carica il letterale “8” nel registro X.

Con riferimento al diagramma di flusso dì Figura 3-8si deve verificare
il bit meno significativo del moltiplicatore. È stato indicato precedente­
mente che questa prova non può essere eseguita in una singola istru­
zione. Occorre utilizzare due istruzioni. Prima il moltiplicatore sarà
fatto scorrere a destra, poi il bit che esce sarà verificato. Questo è il bit
carry. Si esegua quest'operazione:

LSR MPRAD
Questa istruzione i uno Spostamento Logico a Destra dei contenuti della
locazione di memoria MPRAD.

Esercizio 3.10: Assumendo che il moltiplicatore neliesempio sia "3" qual'è
il bil che cade dalla parte della locazione di memoria MPRAD? (In altre
parole quale sarà il valore del carry dopo questo scorrimento?).

La successiva istruzione verifica il valore del bil carcy:

BCC NOADD
Questa istruzione significa “Se il Carry è Zero “vai" all'indirizzo
NOADD.

Questa è la prima volta che si incontra un’istruzione di diramazione.
Tutti i programmi fin’ora considerati erano strettamente sequenziali.
Ogni istruzione era eseguita dopo la precedente in ordine sequenziale.
Per capire l’utilizzazione di test logici, come quello del bit carry, si deve

essere in grado di eseguire istruzioni dovunque nel programma dopo il
tesi. L'istruzione di diramazione esegue appunto tale funzione. Si esami­
nerà il valore del bit carry. Se il carry era “0". cioè azzerato, allora
l'esecuzione del progamma proseguirà all’indirizzo NOADD. Questo
significa che la successiva istruzione eseguila dopo BCC sarà l’istruzione
all'indirizzo NOADD, se il test è soddisfatto.

Altrimenti, se il lest non è soddisfatto, non si verificherà alcuna
diramazione e sarà eseguita l’istruzione sequenziale successiva BCC
NOADD.

NOADD necessita di un'ulteriore spiegazione: questa è una label
simbolica. Essa rappresenta fisicamente un indirizzo effettivo all'interno
della memoria. Per convenienza del programmatore, il programma
assemblatore consente l'utilizzazione di nomi simbolici al posto di indi­
rizzi effettivi. Durante il processo assembly, l'assemblatore sostituirà
l’indirizzo fisico reale al posto del simbolo “NOADD” . Questo migliora
la leggibilità del programma in modo sostanziale e consente anche al
programmatore di inserire istruzioni addizionali tra il punto di dirama­
zione e NOADD, senza dover riscrivere ogni cosa. Questi artifici
saranno studiati in maggior dettaglio al Capitolo 9 sull’assemblatore.

Se il test non è soddisfatto viene eseguita l’istruzione sequenzialmente
successiva nel programma. Si esamineranno ora entrambe le alternative.

Alternativa l: il carry sia “ 1".
Se il carry è I il tesi da BCD non è soddisfatto e viene eseguita l'istruzione
immediatamente sucessiva BCC in ordine sequenziale.
LDA RESAD

Alternativa 2: il carry sia "0”.

Il testo è soddisfatto e la successiva istruzione è quella con la label
“ NOADD".

Con riferimento alla Figura 3-B, il diagramma di flusso specifica che,
se il bit carry era I, il moltiplicando deve essere sommato al prodotto
parziale (nel caso consideralo i registri RES). Inoltre occorre eseguire
uno scorrimento. Il prodotto parziale deve essere mosso di una posizione
a destra ovvero il moltiplicando deve essere mosso di una posizione a
sinistra. Si adotterà qui la convenzione normalmente impiegata nell’ese­
cuzione manuale della moltiplicazione e si muoverà il moltiplicando di
una posizione a sinistra.

Il moltiplicando è contenuto nei registri TMP ed MPDAD. (Per
semplicità saranno normalmente chiamate “ registri" le locazioni di
memoria). I 16 bit del prodotto parziale sono contenuti agli indirizzi di
memoria RESAD e RESAD + 1.

Per spiegare questo si assuma che il moltiplicando sia *'5'*. I vari
registri appaiono in Figura 3-10.

Si devono semplicemente addizionare due numeri a 16 bit. Questo è un
problema che si è già imparato a risolvere. (Se si ha qualche dubbio si
Faccia riferimento al precedente paragrafo sull’addizione a 16 bit). Si
sommeranno prima i byte di basso ordine e poi quelli di ordine elevato.
Si procede così:

LDA RESAD

L’accumulatore è caricato con la parte bassa di RES.

CLC

Prima di qualsiasi addizione il 6502 richiede che il bit cary sia azzerato.
Qui è particolarmente importante perchè si sa che il bit carry era stato
posto ad 1. Perciò esso deve essere azzerato.

ADC MPDAD

Il moltiplicando è sommato all’accumulatore, che contiene (RES)
BASSO.

STA RESAD

Il risultato dell’addizione è conservato all’appropriata locazione di
memoria (RES) BASSO. Viene poi eseguita la seconda metà dell’addi­
zione. Durante l’esecuzione del controllo manuale di questo programma
non si dimentichi che l’addizione porrà il bit carry. Il carry sarà posto a
“ 0” o ad “ 1" in dipendenza del risultato dell’addizione. Qualsiasi
riporto che deve essere generato sarà portato automaticamente nella
parte di ordine elevato del risultato.

Si completa ora l’addizione:

LDA RESAD + I
ADC TMP
STA RESAD + I

Queste istruzioni completano l’addizione a 16 bit. Si è ora sommato il
moltiplicando a RES. Occorre ora spostarlo di una posizione a sinistra
prima dell'addizione successiva. Si può anche considerare lo sposta­
mento del moltiplicando di una posizione a sinistra prima dell'addizione,
eccetto che per la prima volta. Questa è una delle molte scelte di pro­
grammazione sempre aperte al programmatore.

Si faccia scorrere il moltiplicando a sinistra:

NOADD ASL MPDAD

Questa istruzione è uno “ Spostamento Aritmetico a Sinistra” .
Essa sposterà di una posizione a sinistra i contenuti della locazione di

memoria MPDAD che contiene la parte bassa del moltiplicando. Questo
non basta. Non ci si può permettere di perdere il bit che cade dalla parte
estrema sinistra del moltiplicando. Questo bit cadrà nel bit carry. Esso
qui non può essere immagazzinato permanentemente perchè poi può
essere distrutto da qualsiasi operazione aritmetica. Questo dovrebbe
essere conservato in un registro “permanente". Esso dovrebbe essere
fatto scorrere nella locazione di memoria TMP. Questo è infatti realiz­
zato dall'istruzione successiva:

ROL TMP

Questa specifica: “ Rotazione a sinistra” dei contenuti di TMP.
Qui si può fare un'interessante osservazione. Sono stati appena utiliz­

zati due diversi tipi di istruzioni di scorrimento per fare scorrere un
registro di una posizione a sinistra. La prima è ASL. La seconda i ROL.
Qual’è la differenza?

L’istruzione ASL fa scorrere i contenuti del registro. L’istruzione
ROL è un'istruzione di rotazione. Essa sposta i contenuti del registro di
una posizione a sinistra ed il bit che cade dall'estrema sinistra va nel bit
carry, come al solito. La differenza sta nel fatto che i contenuti precedenti
del bit carry sono forzati nella posizione più a destra. Questa in matema­
tica è chiamata rotazione circolare (rotazione a 9 bit). Questo è esatta­
mente quello che si vuole come risultato della ROL, il bit spinto fuori da
TMP sulla sinistra e preservato nel bit carry C arriverà nella posizione
più a destra del registro TMP. Cosi opera come si voleva.

Si è così terminato con la parte aritmetica di questo programma. Si
dovrà verificare se l'operazione è stata eseguita otto volte, cioè se la
moltiplicazione è terminata. Normalmente nella maggior parte dei
microprocessori questo richiede due istruzioni:

DEX

Questa istruzione decrementa i contenuti del registro X. Se esso conte­
neva 8, dopo l'esecuzione di questa istruzione esso conterrà 7.

BNE MULT

Questa è un’altra istruzione di verifica e diramazione. Essa specifica
“salta alla locazione MULT se il risultato non è uguale a 0'*. Finché il
registro contatore decrementa ad un intero non zero, c’è un salto auto­
matico indietro alla label MULT. Questo è chiamato ciclo di moltiplica­

zione. Con riferimento al precedente diagramma di flusso questo corri­
sponde alla freccia che esce dall'ultimo blocco. Questo ciclo sarà ese­
guito 8 volte.

Esercizio 3.11: Cosa succede quando X è decrementato a 0? Qual'è la
successiva istruzione che viene eseguita?

Nella maggior parte dei casi il programma appena sviluppato sarà una
subroutine e l'istruzione finale della subroutine sarà RTS. Il meccanismo
della subroutine sarà spiegato in seguito nel corso di questo capitolo.

AUTO-TEST IMPORTANTE

Se si desidera imparare come programmare è estremamente impor­
tante capire un programma tipico nei dettagli completi. Sono state
introdotte molte nuove istruzioni. L’algoritmo è ragionevolmente sem­
plice ma il programma è molto più lungo dei programmi precedente­
mente sviluppati. Si suggerisce vivamente di eseguire completamente e
correttamente il seguente esercizio prima di procedere nel corso di questo
capitolo. Se si fa questo correttamente si avrà realmente capito il mecca­
nismo mediante il quale le istruzioni manipolano i contenuti della
memoria e dei registri del microprocessore e come deve essere utilizzato
il flag carry. Se non si fa questo è probabile che si provino difficoltà nella
scrittura da soli dei programmi. Si proceda quindi all'esecuzione del
seguente esercizio.

Esercizio 3.12: Ogni volta che viene scritto un programma si dovrebbe
verificarlo manualmente in modo da accertare che i suoi risultati saranno
corretti. S i farà proprio questo: lo scopo di questo esercizio è di riempire la
tabella di Figura 3.12.

Si può scrìvere direttamente su questa ovvero su una sua copia. Lo
scopo è determinare i contenuti di ogni registro e locazione di memoria
di rilievo del sistema dopo l’esecuzione di ogni istruzione di questo
programma, dall'inizio alla line. Nella Figura 3.12 si troveranno ripor­
tati orizzontalmente tutti i registri e locazioni utilizzati dal programma:
X, A. MPR, C (il bit di flag carry), TMP, MPD, RESL, RESH. Sulla
parte sinistra dell'istruzione si deve riportare la label, se disponibile, c
l'istruzione da eseguire. A destra dell'istruzione si devono scrivere i
contenuti di ogni registro dopo l'esecuzione di questa istruzione. Ogni
volta che i contenuti di un registro sono indefiniti si utilizzerà un tratto.
Si inizia riempendo assieme questa tabella. Si dovrà poi riempirla Tino
alla fine.

X

Q
<
CD
UJ
(E

a
<
co
UJ
< r

O
a
2

CL
5
UJ
K

O

a
CL
5

<

X

UJz
o
N
D
< r
K
CO

_j
UJ
a

5

Fi
gu

ra

3.
12

:
Ta

bu
la

lo

da
rie

m
pi

re

pe
r

l'e
se

cu
zi

on
e

de
ll'

es
er

ci
zi

o
3-

12

La prima riga è la seguente:

LABCLf c r f l j ■IU

Figura 3.13: Prima istruzione della moltiplicazione

La prima istruzione da eseguire è LDA # 0.
Dopo l'esecuzione di questa istruzione, i contenuti del registro X non

sono noti. Questo è indicato con trattini. I contenuti dell'accumulatore
sono tutti zeri. Si assume anche che il moltiplicatore ed il moltiplicando
siano stati caricati dal programmatore precedente l'esecuzione di questo
programma. (Altrimenti sono necessarie istruzioni addizionali per posi­
zionare i contenuti di M PRcdM PD). In MPRsi trova il valore binario di
"3". In MPD si trova il valore binario d> “ 5” . Il bit carry non è definito e
cosi pure il registro TMP ed entrambi i registri utilizzati per RES. Si
riempia ora la riga successiva. Essa è riportata di seguito: la sola diffe­
renza è che i contenuti del registro TMP sono stati posti a “0” . L’istru­
zione successiva porrà a “0" i contenuti di RESAD e quella ancora
successiva porrà a “0" i contenuti di RESAD + 1'

Figura 3 14: Prime due righe della moltiplicazione

La quinta istruzione: LDX # 8 porrà i contenuti di X ad “ 8". Si consideri
un’ulteriore istruzione (vedere Figura 3-15).

L'istruzione LSR MPRAD farà scorrere i contenuti di MPRAD a
destra di una posizione. Si può vedere che dopo lo scorrimento i conte­
nuti di MPR sono “0000 0001” . L’“ l” più a destra di MPR è caduto nel
bit carry. Il bit C è ora posto ad 1. Gli altri registri sono invariati.

Si proceda ora da soli: si riempia completamente il resto di questa
tabella. Non è difficile ma questo richiede attenzione. Se si hanno dubbi
sulle regole di alcune istruzioni, si può far riferimento al Capitolo 4 dove
si può trovare ciascuna di queste elencate c descritte, oppure anche alla
parte di Appendice di questo libro dove esse sono riportate in forma di
tabella.

Il risultato finale della moltiplicazione dovrebbe essere “ 15" in forma
binaria, contenuto nei registri RES basso ed alto. RES alto dovrebbe

essere posto a “0000 0000*’. RES basso dovrebbe essere posto a “0000
1111” . Se è stato ottenuto questo risultato, l’esercizio è stato risolto
correttamente. Diversamente si provi ancora una volta. La sorgente più
frequente di errori è una manomissione del bit carry. Ci si assicuri che il
bit carry sia cambiato ogni volta che si esegue un'istruzione aritmetica.
Non si dimentichi che la ALU porrà il bit carry dopo ogni operazione di
addizione.

LABEL

Figura 3.15: Tabulato parzialmente compialo per l'esercizio 3-12

Alternative di Programmazione

Il programma appena sviluppato i solo uno dei molti modi in cui esso
potrebbe essere scritto. Ogni programmatore può trovare modi per
cambiare e talvolta migliorare un programma. Per esempio è staio
spostato il moltiplicando a sinistra prima di sommare. Sarebbe stato
matematicamente equivalente allo spostamento del risultato di una
posizione a destra prima di sommarlo al moltiplicando. Il vantaggio è
che non sarebbe richiesto il registro TMP, risparmiando cosi una loca­
zione di memoria. Questo potrebbe essere un metodo preferito in un
microprocessore equipaggiato con suflicienti registri interni cosicché
MPR, MPD e RES potrebbero essere contenuti all'interno del micropro­
cessore. Poiché si i obbligati ad utilizzare la memoria per eseguire queste

-operazioni, il risparmio di una locazione di memoria non è di rilievo. Il
punto è quindi se il secondo metodo può portare ad una moltiplicazione
più veloce, Questo é un esercizio interessante:

Esercizio 3.13: Si scriva una moltiplicazione di 8 x 8 bit impiegando lo
stesso algoritmo ma facendo scorrere il risultato di una posizione a destra

oc

pìhm
i« « M •

tlM» >
■a

invece di fa r scorrere il moltiplicando di una posizione a sinistra. Si
confrontino i due programmi precedenti e si determini se questo diverso
approccio potrebbe essere più veloce o più lento di quello precedente.

Può sorgere un altro problema: per determinare la velocità del pro­
gramma si può far riferimento alla tabella del paragrafo di Appendice
che elenca il numero di cicli richiesti da ciascuna istruzione. Comunque il
numero di cicli richiesti da alcune istruzioni dipende da dove esse sono
localizzate. Esiste uno speciale modo di indirizzamento del 6302 chia­
mato Modo di Indirizzamento Diretto dove la prima pagina (locazioni da
0 a 255) è riservata all'esecuzione veloce. Questo sarà spiegato al Capi­
tolo 5sulletecnichedi indirizzamento. Brevemente tutti i programmi che
richiedono un'esecuzione veloce saranno localizzati in pagina 0 cosicché
le istruzioni richiedono solo due byte per indirizzare le locazioni di
memoria (l'indirizzamento di 256 locazioni richiede solo un byte), men­
tre le istruzioni localizzate in posizione generica nella memoria richiede­
ranno tipicamente istruzioni di 3 byte. Quest'analisi verrà ripresa al
Capitolo 5.

Un Programma di Moltiplicazione migliorato

Il programma appena sviluppato è una traduzione diretta in codice
deH'algoritmo. Comunque la programmazione effettiva richiede una
stringente attenzione ai dettagli cosicché la lunghezza del programma
può essere ridotta per migliorare la sua velocità di esecuzione. Si presen­
terà ora una realizzazione migliorata dello stesso algoritmo.

Uno dei compiti che consuma istruzioni e tempo è lo scorrimento del
risultato e del moltiplicatore. Un “espediente” convenzionale utilizzato
neU’algoritmo della moltiplicazione è basato sull'osservazione seguente:
ogni volta che il moltiplicatore è fatto scorrere di una posizione di bit a
destra, diventa disponibile sulla sinistra una posizione di bit. Contempo­
raneamente si può osservare che il primo risultato (o prodotto parziale)
utilizzerà, al più, 9 bit. Dopo il successivo scorrimento di moltiplica­
zione, la dimensione del prodotto parziale aumenterà ancora di un bit.
In altre parole si può riservare, inizialmente, una locazione di memoria
per il prodotto parziale e poi utilizzare la posizione di bit che è stata
liberata dal moltiDlicatore in virtù del suo scorrimento.

Si sta ora facendo scorrere il moltiplicatore a sinistra. Si libererà una
posizione di bit sulla destra. Si fa entrare il bit più a destra del prodotto
parziale in questa posizione di bit appena liberata. Si consideri ora il
programma.

Si consideri anche l'utilizzazione ottima dei registri. I registri interni
del 6502 appaiono in Figura 3-16. X è meglio utilizzato come un conta­
tore. Questo sarà utilizzato per contare il numero di bit spostati. L'accu­
mulatore (sfortunatamente) è il solo registro interno che può essere fatto
scorrere. Per migliorare l'efficienza, si dovrebbe immagazzinare in esso il
moltiplicatore oppure anche il risultalo.

A C C U M U L A T O L E

MGISTRI INDICE

STACK POINTER

CONTATOLE IX PROGRAMMA

FLAG3

Figura 3.16: I registri del 6502

Quale si metterà nell'accumulatore? Il risultato deve essere sommato
al moltiplicando ogni volta che scorre fuori un l. Poiché il 6502 somma
sempre soltanto qualcosa all’accuinulaiore. è il risultato che risiederà
nell'accumulatore.

Gli altri numeri devono risiedere nella memoria (vedere Figura 3-17).
A e B conserveranno il risultato. A conserverà la parte alta del

risultato e B quella bassa. A è l'accumulatore e B una locazione di

(g£02| MEMORIA

Figura 3.17: Allocazione dei registri (moltiplicazione migliorata)

memoria, preferibilmente in pagina 0. C conserverà il moltiplicatore
(una locazione di memoria). D conserva il moltiplicando (una locazione
di memoria). Il programma risulta quindi:

MULT LDA P 0 1N1ZIALIZZA IL RISULTATO A ZERO (ALTO)
STA B INIZIALIZZA IL RISULTATO (BASSO)
LDX # 8 X È IL CONTATORE DI SCORRIMENTI

LOOP LSR C SCORRE MPR
BCC NOADD
CLC CARRY ERA UNO. VIENE AZZERATO
ADC D A = A - MPD

NOADD ROR A SCORRE IL RISULTATO
ROR 0 BIT INSERITO IN B
DEX DF.CREMENTA IL CONTATORE
BNE LOOP ULTIMO SCORRIMENTO?

Figura 3.18: Moltiplicazione migliorala

Si esamini il programma. Poiché A e B conservano il risultato e
devono essere inizializzati al valore 0. Questo viene eseguito da:

MULT LDA # 0
STA B

Si utilizzerà quindi il registro X come contatore di scorrimento e sarà
inizializzato al valore 8:

LDX # 8

Si è ora pronti per entrare nel ciclo di moltiplicazione principale come
in precedenza. Si farà scorrere prima il moltipliatore, quindi si verifi­
cherà il bit carry che conserva il bit più a destra del moltiplicatore caduto
fuori. Operano questo:

LOOP LSR c
BCC NOADD

Qui si fa scorrere il moltiplicatore a sinistra (invece che prima a
destra). Questo è equivalente al precedente algoritmo perchè l'opera­
zione di addizione è commutativa.

Esistono due possibilità: se il carry era 0 si andrà a NOADD. Si

assuma che il carry sia 1. Si procederà:

CLD
ADC D

Poiché il Carry era 1, esso deve essere azzerato e quindi sommare il
moltiplicando all'accumulatore. (L'accumulatore conserva i risultati, 0
fin’ora).
Si faccia ora scorrere il prodotto parziale:

NOADD ROR A
ROR B

Il prodotto parziale in A è fatto scorrere a destra di un bit. Il bit più a
destra cade nel bil carry. Il bit cary è catturato e ruotato nel registro B,
che conserva la parte bassa del risultato.

Si deve ora verificare semplicemente se l'operazione è conclusa:

DEX
BNE LOOP

Se si esamina questo nuovo programma risulta che è formato da un
numero di istruzioni circa metà di quello precedente. Esso sarà anche
eseguito molto più velocemente. Questo mostra l'importanza del selezio­
namento corretto dei registri che contengono l'informazione.

Un progetto diretto originerà un programma che lavora. Ma non
originerà un programma ottimizzato. Perciò è molto importante utiliz­
zare i registri disponibili e le locazioni di memoria nel modo migliore
possibile. Questo esempio illustra un approccio razionale alla selezione
dei registri per ottenere la massima efficienza.

Esercizio 3.14: Si calcoli la velocità di un'operazione di moltiplicazione
utilizzando quest'ultimo programma. Si assuma che una diramazione si
verifichi nel quindici per cento dei casi. Si ricavi il numero di cicli richiesti
da ogni istruzione nella tabella alla fine del libro. S i assuma una velocità di
clock con un ciclo = l microsecondo.

Divisione Binaria

L'algoritmo per la divisione binaria è analogo a quello utilizzalo per la
moltiplicazione. Il divisore è successivamente sottratto dai bil di ordine
elevato del dividendo. Dopo ogni sottrazione, il risultato è utilizzato al
posto del dividendo iniziale. Il valore del quoziente è contemporanea­
mente aumentato di 1 ogni volta. Eventualmente il risultato della sottra-

rione è negativo. Questo è chiamato un eccesso. Si deve quindi immagaz­
zinare il risultato parziale riaggiungendo il divisore ad esso. Natural­
mente il quoziente deve essere contemporaneamente decrementato di 1.
Il quoziente e dividendo sono poi fatti scorrere di una posizione di bit e
l'algoritmo è ripetuto.

Il metodo appena descritto è chiamato metodo a ri-immagazzinamento.
Una variazione di questo metodo che produce un miglioramento di
velocità di esecuzione è detto metodo senza ri-immagazzinamento.

OMMMMt

Figura 3.19: Diagramma di flusso della divisione binaria ad 8 bit

La divisione a 16 bit

Verrà ora descritta la divisione senza rimemorizzazionc per un divi­
dendo a 16 bit ed un divisore di 8 bit. La Fig. 3-20 riporta il registro e la

locazione di memoria di questo programma. Il dividendo è contenuto
n d l’accumulatore (parte alta) e nella locazione di memoria 0, qui indi­
cata con B. Il risultato è contenuto in Q (locazione di memoria 1). Il
divisore è contenuto in D (locazione di memoria 2). Il risultato sarà
contenuto in D ed A (A conterrà il resto).

M lZ IO

C O N T A TO R E O l Bj T - l

f t iS lA J A T O - O V I 0 0 4 0 0

0

1
r u o t a a

IL O U Ù
S W J9 TRA
Z IEM Tf

Figura 3.20: Diagramma di flusso divisione 16x8

fS H irr a S m flT M . p i P t à j

La Fig. 3-21 riporta il programma, mentre il diagramma di flusso
corrispondente è riportato in Fig. 3-22.

LINE » IO C COOE Il NE

000? 0000 * - IO
0003 0000 e • = • . 1
0004 0001 (3 ■ .= • + 1
0005 0002 O • = * + 1
0006 00Q3 ■ = $200
0007 0200 Aooe DIV iDY#a
oooe 02Q] 39 SEC
0009 0203 (5 02 SBC D
0010 020S 08 LOOP PHP
0011 0706 260) R OtQ
0012 0206 06 00 ASL B
0013 020A 7A BOI A
0014 070B 26 PLP
0015 020C «005 BCC ADD
00*6 OTOf (5 02 s e c o
0017 0210 4C 15 02 JMP NEX1
0018 0213 65 07 AOO ADC D
0019 0315 88 NEX1 0EY
0020 0216 DO ED BNE LOOP
00?i 0218 B003 BCSlAST
0022 021A 6S02 ADC D
0021 0?|C 18 ClC
0074 0210 26 01 LAST K X Q
OO? i 02IF 00 BRK
0026 0770 END

Figura 3.21 : Programma

Esercizio 3-15: Si verifichi il funzionamento carretto di questo programma
eseguendo la divisione a mano e verificando il programma in modo analogo
all’Esercizio 3-12. Si divida 33 per 3. Il risultato, naturalmente, dovrebbe
essere I I con resto 0.

OPERAZIONI LOGICHE

L'altra classe di istruzioni che la ALU può eseguire all'interno del
microprocessore è il set di istruzioni logiche. Queste comprendono
AND, OR ed OR esclusivo (EOR). Inoltre si possono comprendere qui
anche le operazioni di scorrimento che sono già stale utilizzate e l'istru­
zione di confronto chiamata CMP per il 6502. L'impiego singolo di
AND, ORA, EOR sarà descritto al Capitolo 4 sul set di istruzioni del
6502. Si svilupperà ora un breve programma che controllerà se una data

locazione di memoria chiamata LOC contiene il valore “0", il valore ” 1”
oppure qualcos’altro. Il programma è il seguente:

LDA LOC LEGGE CARATTERE IN LOC
CMP # $00 CONFRONTA CON ZERO
BEQ ZERO È UNO ZERO?
CMP a sol 1?
BEQ ONE

TROVATO NIENTE

ZERO

ONE

La prima istruzione: LDA LOC legge i contenuti della locazione di
memoria LOC. Questo è il carattere che si vuole provare.

CMP # $00

Questa istruzione confronta i contenuti dell'accumulatore col valore
esadecimale letterale ”00” cioè con la struttura di bit ”00000000” .
Questa istruzione di confronto porrà il bit Z del registro dei flag, che sarà
poi controllato dall'istruzione successiva.

PROGRAMMA

iraCi

Figura 3,22: Diagramma di flusso della divisione 18*8 (senza rimomorizzazionedal
risultato ad 8 bit)

BEQ ZERO

L'istruzione BEQ specifica “diramazione se uguale". L'istruzione di
diramazione determinerà se la verifica è soddisfatta esaminando il bit Z.
Se sì il programma salterà a ZERO. Se il test non è soddisfatto allora
viene eseguita l'istruzione successiva in ordine sequenziale:

CMP # $01
Il processo sarà ripetuto per un'altra struttura. Se il test è verificato

l’istruzione successiva risulterà da un salto alla locazione uno. Se fallisce
viene eseguita l'istruzione successiva in ordine sequenziale.

Esercizio 3.16: Si scrìva un programma che legga i contenuti della loca­
zione di memoria ''24" e salti all'indirizzo chiamato "STAR" se c'era ur
......nella locazione di memoria 24. La struttura di bit per un nella
notazione in linguaggio assembly è rappresentato da "00I010IQ".

Sommario

Sono state ora studiate le istruzioni più importanti del 6502 mediante
la loro utilizzazione diretta. I valori sono stati trasferiti tra la memoria ed
i registri. Sono state eseguite operazioni aritmetiche e logiche su tali dati.
Sono state verificate ed, in dipendenza del risultato di questo test, sono
state eseguite varie porzioni di programma. È stata anche introdotta una
struttura chiamata ciclo nel programma della moltiplicazione. Verrà ora
introdotta un’importante struttura della programmazione: la Subrou­
tine.

SUBROUT1NE

Concettualmente una subroutine è semplicemente un blocco di istru­
zioni alle quali e stato assegnato un nome dal programmatore. Da un
punto di vista pratico, una subroutine deve iniziare con una speciale
istruzione chiamala la dichiarazione della subroutine che la identifica
per l’assemblatore. Inoltre deve terminare con un’altra speciale istru­
zione chiamata ritorno. Innanzi tutto si illustrerà l'uso delle subroutine
nel programma in modo da illustrarne l’importanza. Quindi si esami­
nerà come esse sono effettivamente realizzate.

L’impiego di una subroutine è illustrato in Figura 3.23. Il programma
principale appare sulla sinistra dell’illustrazione. La subroutine è rap­
presentata simbolicamente sulla destra. Si esamini il meccanismo della
subroutine. Le righe del programma principale sono successivamente
eseguite finché non si incontra una nuova istruzione di chiamata “SUB” .
Questa istruzione speciale è una chiamala di subroutine e si risolve in un

trasferimento dell’esecuzione alla subroutine. Questo significa che
l'istruzione successiva da eseguire dopo la CALL SUB è la prima istru­
zióne all'interno della subroutine. Questo è illustrato dalla freccia 1
neirillustrazione.

PROGRAMMA PRINCIPALE

Figura 3.23: Chiamate di subroutine

Quindi il sottoprogramma all'interno della subroutine viene eseguito
proprio come qualsiasi altro programma. Si assumerà che la subroutine
non contenga nessun'altra chiamata. L'ultima istruzione di questa
subroutine è un RETURN. Questa è un'istruzione speciale che originerà
un ritorno al programma principale. L'istruzione successiva da eseguire
dopo RETURN è quella seguente la CALL SUB. Questo è mostrato
dalla freccia 3 nell’illustrazione. L'esecuzione del programma continua
quindi come illustrato dalla freccia 4.

Nel corpo del programma principale appare una seconda CALL SUB.
Si verifica un nuovo trasferimento, mostrato dalla freccia 5. Questo
significa che il corpo della subroutine è ancora eseguito successivamente
all'islruzionc CALL SUB.

Ogni volta che si incontra RETURN all'interno della subroutine si
verifica un ritorno all'istruzione successiva la CALL SUB in questione.
Questo è illustrato dalla freccia 7. In seguito al ritorno al programma
principale, l’esecuzione del programma procede normalmente, come
illustrato dalla freccia 8.

Il ruolo delle due istruzioni speciali CALL SUB e RETURN è così
chiarito. Qual’è l'importanza della subroutine?

L’importanza essenziale della subroutine è che essa può essere richia­
mata da un qualsiasi numero di punti del programma principale ed
utilizzata ripetutamente senza la sua riscrittura. Un primo vantaggio è
che questo approccio risparmia spazio di memoria e non c'è necessità di
riscrivere la subroutine ogni volta. Un secondo vantaggio è che il pro­

grammatore può progettare una subroutine specifica solo una volta e
quindi usarla ripetutamente. Questo è una semplificazione significativa
del progetto del programma.

Esercizio 3.17: Qual'è il principale svantaggio di una subroutine?

Lo svantaggio di una subroutine potrebbe essere chiaro proprio dal­
l'esame del flusso di esecuzione tra il programma principale e la subrou­
tine. Una subroutine si risolve in una esecuzione pi i l i lenta poiché devono
essere eseguite ulteriori istruzioni: la CALI. SUB ed il RETURN.

Realizzazione del Meccanismo della Subroutine

Si esaminerà qui come le due speciali istruzioni CALL SUB e
RETURN, sono realizzate all'interno del processore. L'effetto dell'istru­
zione CALL SUB òdi causare il prelievo dell'istruzione successiva ad un
nuovo indirizzo. Si ricorderà (altrimenti si rilegga il Capitolo I) che
l'indirizzo dell'istruzione successiva da eseguire in un calcolatore è
contenuto nel contatore di programma (PC). Questo significa che l'ef­
fetto della CALL SUB è la sostituzione di nuovi contenuti nel registro
PC. Il suo effetto è di caricare l'indirizzo iniziale della subroutine nel
contatore di programma. Questo è in realtà sufficiente?

Per rispondere a questa domanda si consideri l'altra istruzione che
deve essere realizzala: il RETURN. Il RETURN deve originare, come
indica il suo nome, un ritorno all'istruzione che segue la CALL SUB.
Questa è possibile solo se l’indirizzo di questa istruzione è stato preser­
vato da qualche parte. Questo indirizzo deve essere il valore del conta­
tore di programma all’istante in cui si incontra la CALL SUB. Questo
perchè il contatore di programma è incrementato automaticamente ogni
volta che viene utilizzato (vedere Capitolo 1). Questo è precisamente
l'indirizzo che si vuole preservare così da poter successivamente eseguire
il RETURN.

PROGRAM** PRINCIPALE

Figura 3.24: Chiamale annidate

Il oroblema successivo è: dove si può conservare questo indirizzo di

ritorno? Questo indirizzo deve essere conservato in una locazione ragio­
nevole dove è sicuro che non sarà cancellato. Comunque si consideri ora
la situazione seguente, illustrata dalla Figura 3-24: in questo esempio la
subroutine 1 contiene una chiamata a SUB 2. Il meccanismo potrebbe
lavorare correttamente in questo caso. Naturalmente possono esserci
molte più di due subroutines, dette N chiamate “annidate". Ogni volta
che si incontra una nuova CALL il meccanismo deve perciò immagazzi­
nare ancora il contatore di programma. Questo implica la necessità di
almeno 2N locazioni di memoria per questo meccanismo. Addizional­
mente sarà necessario ritornare da SUB 2 prima e SUB I poi. In altre
parole è necessaria una struttura che possa preservare l'ordine cronolo­
gico in cui i dati devono essere conservati.

La struttura ha un nome. È già stata introdotta. È lo stack. La figura
3-26 mostra i contenuti effettivi dello stack durante le chiamate di
subroutine successive. Si osservi prima il programma principale. All'in­
dirizzo 100 si incontra la prima chiamata: CALL SUB 1. Si assumerà
che, in questo processore, la chiamata di subroutine utilizzi 3 byte.
L'indirizzo sequenzialmente successivo non è perciò “ ÌOI” ma “ 103” .
L’istruzione di chiamata utilizza gli indirizzi “ 100” , “ 101” , “ 102” . Poi­
ché l’unità di controllo del 6502 “sa” che si tratta di un'istruzione di 3
byte, il valore del contatore di programma quando la chiamata è stata
completamente decodificata sarà ” 103” . L’effetto della chiamata sarà di
caricare il valore “ 280” nel contatore di programma. “280” è l'indirizzo
di partenza di SUB 1.

iNOIAlZZO PROGRAMMA PRINCIPALE

Figura 3.25: Le chiamate di subroutine

n secondo effetto della CALL sarà di spingere nello stack (per preser­
vare) il valore “ 103” del contatore di programma. Questo è illustralo

nella parte destra in basso dell'illustrazione. Alla locazione 300 si incon­
tra una nuova chiamata. Analogamcne al caso precedente il valore
“900” sarà caricato nel contatore di programma. Questo è l'indirizzo di
partenza della SUB 2. Contemporaneamente il valore "303” sarà spinto
nello stack. Questo è mostrato in basso a sinistra nell'illustrazione dove
l'ingresso all’istante 2 è “303” , L’esecuzione procederà quindi a destra
dell’illustrazione aH'interno di SUB 2.

Si è ora pronti per dimostrare l’effetto dell’istruzione RETURN e per
il funzionamento corretto del meccanismo dello stack. L’esecuzione
procede all’interno di SUB 2 finché non si incontra l'istruzione
RETURN all'istante 3. L'effetto dell'istruzione RETURN è semplice­
mente quello di far uscire la sommità dello stack inviandola nel conta­
tore di programma. In altre parole il contatore di programma è ri­
immagazzinato al suo valore precedente l’ingresso nella subroutine. La
sommità dello stack nell’esempio è ‘*303". La figura 3-26 mostra che,
all’istante 3, il valore “ 303” è stato rimosso dallo stack e riposizionato
nel contatore di programma. Come risultato l’esecuzione di istruzioni
procede dall’indirizzo “303". All’istante 4 si incontra il RETURN di
SUB I. Il valore alla sommità dello stack è “ 103". Esso viene prelevato e
portato nel contatore di programma. Come risultato l’esecuzione del
programma procederà dalla locazione “ 103" all’interno del programma
principale. Questo è proprio l’effetto che si voleva. La Figura 3-26
mostra che all'istante 4 lo stack è nuovamente vuoto. Quindi il mecca­
nismo funziona.

TEMPO ̂ 7) TEMPO (T) TEMPO (3) TEMPO (5)

103 103 103

303

Figura 3.26: Lo slack In (unzione del tempo

Il meccanismo di chiamata di subroutine funziona fino alla massima
dimensione dello stack. Questa è ia ragione per cui i primi microproces­
sori che avevano uno stack di 4od 8 registri erano essenzialmente limitati
a 4 od 8 livelli di chiamata di subroutine. In teoria il 6502, che ha uno
stack limitato a 256 locazioni di memoria (Pagina 1), può accomandare
fino a 256 successive chiamate di subroutine. Questo è vero solo se non ci
sono intem ipt, se lo stack non viene utilizzato per nessun altro scopo e

se nessun registro necessita di essere memorizzato all'interno dello stack.
In pratica vengono utilizzati pochi livelli di subroutine.

Si noti che, nelle illustrazioni 3-24 e 3-25, le subroutine sono state
indicate a destra del programma principale. Questo £ solo per chiarezza
del diagramma. In realtà le subroutine sono impostate dall’utente come
normali istruzioni del programma. Su un foglio di carta, ovvero la lista
di un programma completo, le subroutine possono essere all’inizio del
testo, a metà, oppure alla fine. Questo perché esse sono precedute da una
dichiarazione di subroutine: esse devono essere identificate, le istruzioni
speciali dicono alPassemblatorc che quello che segue deve essere trattato
come una subroutine. Tali direttive dell'assemblatore saranno presen­
tate al Capitolo 9.

Subroutine del 6502

È stato ora descritto il meccanismo della subroutine e come lo stack
viene impiegato per realizzarlo. L'istruzione di chiamata di subroutine
per il 6502 è detta JSR (salta alla subroutine). Questa è proprio un’istru­
zione a 3 byte. Sfortunatamente questo è un salto incondizionato: non
esistono dei bit di prova. Occorre inserire una diramazione esplicita
prima di JSR se deve essere eseguito un test.

Il ritorno da subroutine è l’istruzione RTS (ritorno da subroutine).
Questa è un’istruzione di I byte,

Esercizio 3-18: Perchè i! ritorno da una subroutine è molto più veloce della
chiamata? (Suggerimento: se la risposta non è ovvia si osservi ancora la
realizzazione dello stack del meccanismo della subroutine e si analizzino le
operazioni interne che devono essere eseguite).

Esempi di Subroutine

La maggior parte dei progammi da sviluppare e che si sviluppano
potrebbero essere normalmente scritti come subroutine. Per esempio il
programma della moltiplicazione potrebbe essere utilizzato da molte
aree del programma. Per facilitare lo sviluppo del programma e per
motivi di chiarezza, è perciò conveniente definire una subroutine il cui
nome sia per esempio MULT. Alla fine di questa subroutine si dovrebbe
aggiungere semplicemente l’istruzione RTS.

Esercizio 3.19: Se M ULT è utilizzato come subroutine. si potrebbe "dan­
neggiare" qualsiasi flag o registro interno?

Recnrsione

Recursione è una parola utilizzata per indicare che una subroutine sta
chiamando se stessa. Se è stato capito il meccanismo si dovrebbe essere
in grado di rispondere alle seguenti domande:

Esercizio 3.20: È giusto che una subroutine chiami se stessa? (In altre
parole, lavorerà sempre anche se una subroutine chiama se stessa? Se non si
è sicuri si disegni lo stack e lo si riempia con gli indirizzi successivi. Si
verificherà fisicamente se esso lavora oppure no. Questo risponderà alla
domanda se il meccanismo lavora. Quindi si osservino i registri e la
memoria e si determini se esiste un problema.

Parametri della Subroutine

Quando si chiama una subroutine, normalmente ci si aspetta che la
subroutine lavori su alcuni dati. Per esempio nel caso della moltiplica­
zione si vuole trasmettere due numeri alla subroutine che eseguirà la
moltiplicazione. Si vede nel caso della routine della moltiplicazione che
questa subroutine si aspetta di trovare il moltiplicando ed il moltiplica­
tore in assegnate locazioni di memoria. Questo illustra il primo metodo
di passaggio di parametri: attraverso la memoria. Sono usate altre due
tecniche cd i parametri possono essere passati in tre mod<:

1. Attraverso i registri
2. Attraverso la memoria
3. Attraverso lo stack

— I registri possono essere utilizzati per passare i parametri. Questa può
essere una soluzione vantaggiosa, supponendo che i registri siano dispo­
nibili, poichi non è necessario utilizzare una locazione di memoria
prefissata. La subroutine rimane quindi indipendente dalla memoria. Se
viene utilizzata una locazione di memoria prefissata, qualsiasi altro
utente di subroutine deve essere molto attento per utilizzare la stessa
conversione e che la locazione di memoria sia davvero disponibile (si
osservi il precedente Esercizio 3.19). Questo perchè, in molti casi, un
blocco di locazioni di memoria è riservato semplicemente per passare i
parametri tra le varie subroutine.
— L ’utilizzazione della memoria ha il vantaggio di maggiore Flessibilità
(più dati) ma si risolve in minor adempimento e conduce a legare la
subroutine ad una data area di memoria.
— Il deposito di parametri nello stack ha lo stesso vantaggio dell’utilizza­
zione dei registri: è indipendente dalla memoria. La subroutine semplice­

mente conosce che deve ricevere due parametri immagazzinati alla
sommità dello stack. Naturalmente questo vantaggio ha uno svantaggio:
si fa confusione introducendo dati nello stack e perciò si riduce il numero
di livelli possibili di chiamata di subroutine. La scelta i lasciata al
programmatore. Nel caso generale si desidera rimanere indipendenti
dalle locazioni di memoria effettive il più possibile.

Se i registri non sono disponibili, la miglior soluzione successiva è
normalmente l’impiego dello stack. Comunque se è necessario trasmet­
tere alla subroutine una grande quantità di informazioni occon-erà
utilizzare la memoria. Un modo elegante per aggirare il problema del
passaggio di blocchi di dati è di trasmettere semplicemente un puntatore
dell’informazione. Un puntatore (pointer) è l'indirizzo all'inizio del
blocco. Un puntatore può essere trasmesso in un registro (nel caso del
6502, questo limita il puntatore ad 8 bit), od anche, nello stack (due
locazioni dello stack possono essere utilizzate per immagazzinare un
indirizzo a 16 bit).

Infine se nessuna delle due soluzioni è applicabile allora si può trovare
un compromesso ritenendo che i dati si trovino in qualche locazione di
memoria prefissata (la "cassetta-postale”).

Esercizio 3.21: Quale dei tre metodi precedenti è il migliore per la recur-
sione?

Biblioteca di Subroutine

C’è un grosso vantaggio nella strutturazione di parti di un programma
in subroutine identificabili: esse possono essere collaudate indipendente­
mente e possono avere un nome mnemonico. Poiché esse possono essere
utilizzate in altre aree del programma, divengono condivisibili e si può
quindi costruire una biblioteca di subroutine di utilità immediata.
Comunque non esiste una panacea generale nella programmazione del
calcolatore.

L’impiego sistematico di subroutine per qualsiasi gruppo di istruzioni
che possono essere raggruppale da una funzione può anche risolversi in
una scarsa efficienza. Il programmatore accorto dovrà soppesare i van­
taggi in funzione degli svantaggi.

SOMMARIO

Questo capitolo ha presentato il modo in cui l'informazione ì manipo­
lata mediante istruzioni all’interno del 6502. Sono stati introdotti algo­
ritmi di complessità crescente e tradotti in programmi. Sono siati utiliz­
zati i principali tipi di istruzioni.

Sono state inoltre definite strutture importanti come cicli, stack e
subroutine.

Si dovrebbe ora aver acquisito una comprensione di base alla pro­
grammazione e le principali tecniche utilizzate nelle applicazioni con­
venzionali. Si studieranno ora le istruzioni disponibili.

IL SET DI ISTRUZIONI
DEL 6502

PARTE I - DESCRIZIONE GLOBALE

INTRODUZIONE

Questo capitolo analizzerà innanzitutto le varie classi di istruzione che
sarebbero disponibili in un calcolatore generai purpose. Si analizze­
ranno quindi una ad una tutte le istruzioni disponibili per il 6502 e si
spiegherà in dettaglio il loro scopo ed il modo in cui esse influenzano i
flag o possono essere utilizzate in relazione a vari modi di indirizza­
mento. Una discussione dettagliata delle tecniche di indirizzamento sarà
presentata al Capitolo 5.

CLASSI DI ISTRUZIONE

Le istruzioni possono essere classificate in molti modi e non esistono
convenzioni. Si distingueranno qui cinque categorie principali di istru­
zioni:

1. trasferimento di dati
2. elaborazione di dati
3. test e diramazione
4. ingresso/uscita
5. controllo

Si esaminerà in dettaglio ciascuna di queste classi di istruzioni.

Trasferimento Dati

Le istruzioni di trasferimento dati trasferiranno i dati ad 8 bit tra due
registri, oppure tra un registro e la memoria, ovvero tra un registro ed un
dispositivo d'ingresso/uscita. Istruzioni di trasferimento specializzate
possono esistere per registri che giocano un ruolo specifico. Per esempio:

un funzionamento di introduzione ad estrazione per un'efficiente realiz­
zazione dello stack. Queste muoveranno una parola di dati tra la som­
mità dello stack e l'accumulatore in una istruzione singola mentre si ha
l’aggiornamento automatico del registro puntatore dello stack.

Elaborazione Dati

Le istruzioni di elaborazione dati si dividono in quattro categorie
generali:

- operazioni aritmetiche (come più/meno)
• operazioni logiche (come AND, OR, OR esclusivo)
- operazioni di posizionamento e scorrimento (come scorrimento,

rotazione, scambio)
- incremento e decremento

Si potrebbe notare che per un’efficiente elaborazione dati è desidera­
bile aver una potente costruzione aritmetica come moltiplicazione e
divisione. Sfortunatamente questo non è disponibile sulla maggior parte
dei microprocessori. È anche desiderabile avere potenti istruzioni di
scorrimento e posizionamento, come lo spostamento di n bit, ovvero
uno scambio di nibble, dove vengono scambiati la metà destra e quella
sinistra di un byte. Queste non sono normalmente disponibili sulla
maggior parte di microprocessori.

Prima di esaminare le effettive istruzioni del 6502 si richiama la
differenza tra uno scorrimento e una rotazione. Lo scorrimento muoverà
i contenuti di un registro o di una locazione di memoria, di una posizione
di bit a destra o sinistra. Il bit che esce dal registro andrà nel bit carry. Il
bit che entra dall'altra parte sarà uno “0".

Nel caso di una rotazione il bit che esce va ancora nel carry. Comun­
que il bit che entra è il precedente valore del bit carry. Questo corri­
sponde ad una rotazione a 9 bit. Potrebbe essere spesso desiderabile
avere una vera rotazione ad 8 bit dove il bit che entra da una parte è
questo che esce dall'altra. Questo non è normalmente disponibile sulla
maggior parte di microprocessori. Infine nello scorrimento di una parola
a destra è conveniente avere più tipi di scorrimento chiamati un'esten­
sione di segno ovvero uno “spostamento aritmetico a destra” . Nelle
operazioni con numeri in complemento a 2, specialmente nella realizza­
zione dì routine a virgola mobile, è spesso necessario spostare a destra un
numero negativo. Quando si fa scorrere un numero in complemento a 2 a
destra, il bit che deve entrare dalla parte sinistra dovrebbe essere 1 (il bit
segno dovrebbe essere ripetuto tante volte quanto richiesto dagli scorri-

^ r ̂r \ r r \ r \ r \ r \ -

CARrRY:
A SINISTRAR O T A R N E

. r \ r \ r \ r ■ \ r \ r \ r
CARRY

Figura 4.1; Scorrimento e rotazione

menti successivi. Sfortunatamente questo tipo di scorrimento non esiste
nel 6502. Esso esiste in altri microprocessori.

Test e Diramazione

L'istruzione di test verificherà se tutti i bit del registro dei (lag sono
‘*0” od “ I” oppure combinazioni di questi. Quindi è desiderabile avere
più flag possibile in questo registro. Inoltre occorre essere in grado di
verificare qualsiasi posizione di bit all'interno di qualsiasi registra e di
verificare il contenuto di un registro rispetto al valore di qualunque altro
(maggiore, minore oppure uguale a). Le istruzioni di test del micropro­
cessore sono normalmente limitate alla verifica dei singoli bit del registro
dei flag.

Le istruzioni di salto possono essere generalmente disponibili in tre
categorie:

- il salto vero e proprio ad uno specificato indirizzo a 16 bit,
- la diramazione che spesso è ristretta ad un campo di spostamento di

8 bit.
- la chiamala che viene utilizzata con le subroutine.

È conveniente avere diramazioni a due oppure anche tre vie, in dipen­
denza, per esempio, se il risultato del confronto è “maggiore di",
"minore di” oppure “uguale". E anche conveniente avere operazioni di
salto che trasferiscono l’esecuzione in altri punti del programma. Infine,

nella maggior parte dei cicli, c'è un'operazione finale di decremento od
incremento, seguita da un test ed una diramazione. La disponibilità di
una singola istruzione di incremento/decremento più test e diramazione
è perciò un vantaggio significativo per l'efficienza della realizzazione del
ciclo. Questo non è disponibile nella maggior parte dei microprocessori.
Sono disponibili soltanto diramazioni semplici, combinate con semplici
test. Questo naturalmetne complica la programmazione e riduce l’effi­
cienza.

Ingresso/Uscita

Le istruzioni d'ingresso/uscita sono specializzate per la manipola­
zione di dispositivi ingresso/uscita. In pratica quasi tutti i microproces­
sori impiegano la mappa-memoria I/O . Questo significa che i dispositivi
d'ingresso/uscita sono connessi al bus indirizzo proprio come chip di
memoria ed indirizzati come tali. Essi appaiono al programmatore come
locazioni di memoria. Tutte le operazioni tipiche della memoria possono
essere applicate al dispositivo richiesto. Questo è vantaggioso per fornire
una grande varietà di istruzioni che possono essere applicate. Lo svan­
taggio è che le operazioni tipiche della memoria normalmente richie­
dono 3 byte e sono perciò lente. In queste condizioni per un'efficiente
manipolazione ingresso/uscita, è desiderabile avere disponibile un mec­
canismo di indirizzamento corto cosicché i dispositivi I/O con velocità
di manipolazione critica possano risiedere in Pagina 0. Comunque se è
disponibile ('indirizzamento in Pagina 0, questo viene normalmente
impiegato per la memoria RAM e perciò previene l’effettivo impiego per
i dispositivi ingresso/uscita.

Istruzioni di Controllo

Le istruzioni di controllo forniscono i segnali di sincronismo e pos­
sono sospendere oppure interrompere un programma. Esse possono
anche funzionare come un break oppure un intem ipt simulato. (Gli
interrupt saranno descritti al Capitolo 6 sulle Tecniche d’Ingresso/U-
scita).

ISTRUZIONI DISPONIBILI SUL 6502

Istruzioni di Trasferimento Dati

Il 6S02 ha un set completo di istruzioni di trasferimento dati, eccetto
che per il caricamento del puntatore dello stack che è ristretto in flessibi­
lità.

I contenuti dell'accumulatore possono essere cambiati con una loca­
zione di memoria con l'istruzione LDA (Carica) e STA (Immagazzina).
Le stesse istruzioni si applicano ai registri X e Y. Queste sono rispettiva­
mente le istruzioni LDX LDY cd STX STY. Non c’è invece un carica­
mento diretto per S. Vengono naturalmente fomiti i trasferimenti tra
registri: le istruzioni sono: TAX (trasferimento da A ad X), TAY, TSX,
TXA, TXS, TYA. C'è una leggera asimmetria poiché i contenuti dello
stack possono essere scambiati con X ma non con Y.

Non ci sono 2 indirizzi di memoria per le operazioni di memoria come
“somma i contenuti di LOCI e LOC2".

Operazioni dello Stack

Sono disponibili due operazioni “ introduci” ed “estrai” . Queste tra­
sferiscono A oppure il registro di stato (P) alla sommità dello stack nella
memoria aggiornando il puntatore dello stack S. Queste sono PMA e
PHP. Le istruzioni inverse sono PLA e PLP (estrai A ed estrai P), che
trasferiscono la sommità delio stack rispettivamente in A o P.

Elaborazione Dati

Aritmetica

Sono disponibili le usuali funzioni di aritmetica in complemento,
logica e scorrimento. Le operazioni aritmetiche sono: ADC, SBC. ADC
è un’addizione con riporto e perciò non esiste un’addizione senza
riporto. Questo è un piccolo svantaggio che richiede un'istruzione CLC
prima di qualsiasi addizione. La sottrazione è eseguita da SBC.

È disponibile uno speciale modo decimale che consente l’addizione e
sottrazione diretta di numeri espressi in BCD. in molti altri micropro­
cessori è disponibile solo una di queste istruzioni BCD con un codice
d’istruzione separato. La presenza del flag decimale moltiplica per due
l’effettivo numero di operazioni aritmetiche disponibili.

Incremento/Decremento

Le operazioni di incremento/decremento sono disponibili sulla
memoria e sui registri X ed Y ma non suH’accumulatore. Queste sono
rispettivamente: INC e DEC, che operano con la memoria, INX, INY e
DEX, DEY, che operano con i registri X ed Y.

Operazioni Logiche

Le operazioni logiche sono quelle classiche: AND, ORA, EOR. Verrà
chiarito il ruolo di ciascuna di queste istruzioni.

AND

Ogni operazione logica è caratterizzata da una tabella della verità che
esprìme il valore logico del risultato in funzione degli ingressi. La tabella
della verità per un AND è la seguente:

0 A N D 0 = 0
O A N D 1 = 0
I A N D 0 = 0
I AND 1 = 1

L’operazione AND è caratterizzata dal fatto che l'uscita è “ 1” solo se
entrambi gli ingressi sono “ 1". In altre parole se uno degli ingressi i “0"
il risultato è sicuramente “0” . Questa caratteristica viene impiegata per
azzerare una posizione di bif in una parola. Questo è chiamato “masche-
ratura” .

Uno degli impieghi importanti dell’istmzione AND è l'azzeramento o
mascheratura di una o più specifiche posizioni di bit in una parola. Si
assuma per esempio di voler azzerare le quattro posizioni di bit più a
destra di una parola. Questo sarà eseguito dal programma seguente:

LDA WORD WORD CONTENGA -10101010'
AND # % 11110000 ’ UMOOOO’ È LA MASCHERA

Si assuma che WORD sia uguale ad '10101010'. 11 risultato di questo
programma è di lasciare ncH'accumulatore il valore ‘10100000’. “S”
viene utilizzato per rappresentare un numero binario.

Esercizio 4.1: Si scriva un programma di due istruzioni che azzeri i bit l e 6
di WORD.

Esercizio 4.2: Cose*succede con la maschera: M ASK = '11111111'?

ORA

Quest'istruzione i l’operazione di OR inclusivo. Essa è caratterizzata
dalla seguente tabella di verità:

0OR0=0
OOR1=1
I OR0=1
1 OR 1 = 1

L’OR logico è caratterizzato dal fatto che se uno degli operandi è “ 1” ,
allora il risultato è sempre “ 1” . L’impiego ovvio dell’OR i quello di

porre ad “ 1” tutti i bit di una parola. Si pongano ad “ 1” i quattro bit più
a destra di WORD. Il programma è:

LDA # WORD
ORA t t % 00001111

Si assuma che WORD contenga *10101010’. Il valore finale dell'accu­
mulatore sarà *10101111".

Esercizio 4.3: Cosa succederebbe se si utilizzasse l'istruzione ORA # %
lOlOl ll l?

Esercizio 4.4: Qual'è l'effetto dell'OR con "F F ‘ esadecimale?

EOR

EOR significa “ OR-esclusivo". L’OR esclusivo differisce dall’OR
inclusivo appena descritto in quanto il risultato è **1" solo se uno degli
operandi, e solo uno degli operandi, è uguale ad *‘l". Se entrambi gli
operandi sono uguali ad “ 1" il normale ORdarcbberisultato “ 1". L’OR
esclusivo dà un risultato “0” . La tabella della verità è:

0 E O R 0 = 0
O E O R 1 - I
I E O R O = 1
1 E O R 1 = 0

L'OR esclusivo è utilizzato per i confronti. Se qualsiasi bit è diverso
l'OR esclusivo di due parole sarà diverso da zero. Inoltre nel caso del
6502, l’OR esclusivo è utilizzato per complementare una parola poiché
non esiste una specifica istruzione di complemento. Questo viene attuato
eseguendo l'OR della paroia con tutti uni. Il orogramma è il seguente:

LDA # WORD
EOR # % I 111 1111

Si assuma che WORD contenga **10101010”. Il valore finale dell’ac-
cumultore sarà *'01010101''. Si può verificare che questo è il comple­
mento del valore originale.

Esercizio 4.5: Qual’è l'effetto di EOR # S 00?

Operazioni di Scorrimento

Il 6502 standard è equipaggiato con uno scorrimento a sinistra, chia­
mato ASL (spostamento aritmetico a sinistra) ed uno scorrimento a

destra, chiamato LSR (spostamento logico a destra). Questi saranno
descritti in seguito.

Comunque il 6502 ha solo un’istruzione di rotazione a sinistra (ROL)
Avvertimento: nessuna versione del 6502 ha un’ulteriore istruzione di

rotazione. Si consultino i dati del costruttore per verificare questo fatto.
(ROR rotazione a destra).

Confronti

I registri X, Y, A possono essere confrontati con la memoria mediante
le istruzioni CPX, CPY, CMP.

Test e Diramazione

Poiché la verifica è quasi esclusivamente eseguita sui registri dei flag, si
esaminino i flag disponibili sul 6502. I contenuti del registro dei flag
appaiono nella seguente Figura 4-2.

Si esamini la funzione dei flag procedendo da sinistra a destra.

7 6 5 4 3 2 1 0
N V - B D 1 z C

SEGNO
NEGATIVO

BFt£AK

1
INTERAUPT

1
CARRY

OVERFLOW DECIMALE

Figura 4.2: Il registro del flag

Segno

II bit a sinistra è il bit segno, o bit negativo.
Ogni volta che N c 1 indica che il valore di un risultato è negativo nella
rappresentazione in complemento a 2. In pratica il flag N è identico al bit
7 di un risultato. Esso è comandato da tutte le istruzioni di trasferimento
ed elaborazione dati.

Il flag N i identico al bit 7 deH'accumulatorc, nella maggior parte dei
casi. Come risultato il bit 7 dell'accumulatore è il solo bit che può essere
verificato convenientemente con una singola istruzione. Per verificare

qualsiasi altro bit dell’accumulatore è necessario fare scorrere i suoi
contenuti. In tutti i casi dove si vuole verificare velocemente i contenuti
di una parola, la posizione di bit preferita sarà perciò il bit 7. Questa è la
ragione per cui i bit di stato ingresso/uscita sono normalmente connessi
alla posizione 7 del bus dati. Dalla lettura dello stato di un dispositivo
I/O si leggerà semplicemente il contenuto del registro di stato esterno
nell'accumulatore c quindi il test del bit N.

Il bit successivo all’interno dell’accumulatore che è più facile da
verificare è il bit Z (zero). Comunque esso richiede uno scorrimento a
destra di 1 nel bit carry cosi da poter essere verificato. Questo indica se
un risultato è zero. Il bit Z non può essere posto al programmatore. Esso
è posizionato automaticamente dalle istruzioni.

Le istruzioni che pongono N sono: ADC, AND, ASL. BIT, CMP,
CPY, CPX, DEC, DEX, DEY, EOR. INC, INY, LDA, LDX, LDY,
LSR, ORA. PLA, PLP, ROL, ROR. TAX, TAY, TXS. TX A, TYA.

Overflow

Il ruolo dcll'overflow è già stato discusso al Capitolo 3 nel paragrafo
sulle operazioni aritmetiche. Esso è utilizzato per indicare che il risultato
dell'addizione o sottrazione di numeri in complemento a 2 può essere
non corretto a causa di un overflow dal bit 6 al bit 7, cioè nel bil del
segno. Una speciale routine di correzione deve essere utilizzata se questo
bit vale “ 1". Se non si utilizza la rappresentazione in complemento a 2,
ma il binario diretto, il bit di overflow è equivalente ad un riporto dal bit
6 al bit 7.

Uno speciale impiego di questo bit £ determinato daU'istmzione BIT.
Un risultato di questa istruzione è di porre il bit “ V" identico al bit 6 dei
dati da verificare.

Il flag V è condizionato da ADC, BIT, CLV, PLP, RTI, SBC.

Break

Questo (lag break £ posto automaticamente dal processore se un
interrupt è causalo dal comando BRK. Esso differenzia tra un break
programmato ed un interrupt hardware. Nessun' altra istruzione dell’u­
tente lo modificherà.

Decimale

L’uso di questo flag è stato già discusso al Capitolo 3 nel paragrafo sui
programmi aritmetici. Ogni volta che D è posto ad “ 1" il processore

opera nel modo BCD ed ogni volta che è posto a “ 0” esso opera in modo
binario. Questo flag è condizionato da quattro istruzioni: CLD, PLP,
RTI, SED.

Interrupt

Questo bit della maschera interrupt può essere posto esplicitamente
dal programmatore durante il reset oppure durante un interrupt.

Il suo effetto è di inibire qualsiasi ulteriore interrupt.
Le istruzioni che condizionano questo bit sono: BRK, CLI, PLP, RTT,

SEI.

Zero

Il (lag Z indica, quando è uguale ad "1", che il risultato di un
trasferimento o di un'operazione è zero. Viene anche influenzato dalle
istruzioni di confronto. Non esiste una specifica istruzione che ponga ad
1 od azzeri il bit 0. Comunque lo stesso risultato può essere ottenuto
facilmente. Per azzerare il bit carry si può, per esempio, eseguire la
seguente istruzione:

LDA # 0

Il bit Z è condizionato da molte istruzioni; ADC. AND, ASL, BIT,
CMP, CPY, CPX, DEC, DEX, DEY, EOR, INC, INX. INY, LDA,
LDX, LDY, LSR. ORA. PLA, PLP, ROL, ROR, RTI, SBC, TAX, TAY,
TX A, TYA.

Carry

Si è già visto che il bit carry viene impiegato per un doppio scopo. Il
suo primo scopo i di indicare un riporto aritmetico oppure un prestito
durante le operazioni aritmetiche. Il suo secondo scopo è di immagazzi­
nare il bit “ caduto fuori" da un registro durante le operazioni di scorri­
mento e rotazione. I due ruoli non devono necessariamente essere con­
fusi e questi non sussistono sui calcolatori più grossi. Comunque questo
approccio risparmia tempo nei microprocessori, in particolare per la
realizzazione di una moltiplicazione o di una divisione. Il bit carry può
essere esplicitamente posto ad 1 od azzerato.

Le istruzioni che condizioneranno il bit carry sono: AD. ASL. CLC,
CMP. CPX, CPY. LSR. PLP, ROL, ROR,RTI, SBC, SEC.

Nel 6502 non è possibile verificare se ogni bil del registro dei flag è 1.
J i sono 6 bit e ci sono perciò 12 diverse istruzioni di diramazione. Queste
sono:

— BMI (dirama se meno), BPL (dirama se più). Naturalmente
queste due istruzioni verificano il bit Z.

— BCC (dirama se carry azzerato) e BCS (dirama se carry posto ad
1): esse provano C.

— BEQ (dirama quando il risultalo è zero) e BNE (dirama se
risultato non zero). Queste provano Z.

— BVS (dirama quando overflow è posto ad 1) e BVC (dirama se
overflow azzerato). Esse provano V.

Queste istruzioni operano la verifica e la diramazione all’interno della
stessa istruzione. Tutte le diramazioni specificano uno spostamento
relativo all'istruzione corrente. Poiché il campo dello spostamento è 8 bit
questo consente uno spostamento da — 128 a + 127 (in complemento a
due). Lo spostamento è aggiunto all'indirizzo della prima istruzione
seguente la diramazione.

Poiché tutte le diramazioni sono lunghe 2 byte questo si risolve in uno
spostamento effettivo da — 128 + 2 = — 126 a + 127 + 2 = 4- 129.

Sono disponibili due ulteriori istruzioni di salto incondizionato: JM P
e JSR. JM P è un salto ad un indirizzo a 16 bit, JSR é una chiamata di
subroutine. Essa fa saltare ad un nuovo indirizzo e preserva automatica-
mente il contatore di programma nello siack. Essendo incondizionate
queste due istruzioni sono normalmente precedute da un'istruzione di
“ test e diramazione” .

Sono disponibili due istruzioni di ritorno: RTI, ritorno da interrupt,
che sarà discusso nel paragrafo degli interrupt, ed RTS, ritorno da
subroutine, che estrae un indirizzo di ritorno dallo stack (e lo incre­
menta).

Sono fornite due istruzioni speciali per la verìfica di bit e per i
confronti.

L’istruzione BIT esegue un AND ira la locazione di memoria e
l'accumulatore. Un aspetto importante è che essa non cambia i contenuti
dell’accumulatore. Il (lag N è posto al valore del bit 7 della locazione di
memoria di prova, mentre il flag V uguale al bit 6. Infine il bit Z indica il
risultato deiroperazione AND. Z è posto ad "1” se il risultato è “0” .
Tipicamente una maschera sarà caricata ncH’accumulatore ed i succes­

sivi valori di memoria saranno verificati impiegando l’istruzione BIT. Se
la maschera contiene un solo "1", per esempio, questo proverà se
qualsiasi assegnata parola della memoria contiene un *‘l” in quella
posizione. In pratica questo significa che una maschera potrebbe essere
utilizzata solo quando si stanno provando i bit di locazioni di memoria
da “0” a “ 5” . Si ricorderà che le locazioni di bit “6” e “7” sono
immagazzinate automaticamente rispettivamente nei flag “V*' ed “N” .
Quindi questi non necessitano di essere mascherati.

L’istruzione CMP confronta i contenuti della locazione di memoria
con l'accumulatore mediante la sua sottrazione dall’accumulatore
stesso. Il risultato del confronto verrà indicato, perciò mediante i bit Ze
C. Si può rivelare l'uguaglianza, il maggiore o minore di. n valore
dell'accumulatore non viene cambiato dal confronto. CPX e CPY con­
fronteranno rispettivamente con X e con Y.

Istruzioni d’Iogresso/Uscita

Nel 6S02 non esistono istruzioni d’ingresso/uscita specializzate.

Istruzioni di Controllo

Le istruzioni di controllo comprendono le istruzioni per porre ad 1 ed
azzerare i flag. Queste sono: CLC, CLD, CLI, CLV che azzerano
rispettivamente i bit C, D. I e V; e SEC, SED, SEI che pongono
rispettivamente i bit C, D e I.

L'istruzione BRK è equivalente ad un interrupt software e sarà
descritta al Capitolo 7 nel paragrafo degli intem ipt.

L'istruzione NOP i un’istruzione che non ha effetti e viene comune­
mente utilizzata per estendere il timing di un ciclo. Infine due pin speciali
del 6S02 faranno scattare un meconismo di interrupt e questo sarà
spiegato al Capitolo 6 sulle tecniche d'ingresso/uscita.
Questa è una caratteristica di controllo hardware (pin IRQ ed NMI).

Si esaminerà ora ciascuna istruzione in dettaglio.
Per capire a fondo i vari modi di indirizzamento si incoraggia il lettore

ad una prima lettura veloce del paragrafo seguente e ad una lettura più
approfondita dopo aver studiato in dettaglio il Capitolo 5 sulle tecniche
di indirizzamento.

IL SET DI ISTRUZIONI
DEL 6502

PARTE n - LE ISTRUZIONI

A Accumulatore
M Indirizzo specificato (memoria)
P Registro di stato
S Puntatore dello Stack
X Registro Indice
Y Registro Indice
DATA Dato specificato
HEX Esadecimale
PC Contatore di Programma
PCH Contatore di Programma alto
PCL Contatore di Programma basso
STACK Contenuti della sommità dello stack
V OR logico
A AND logico
-V OR esclusivo
• Scambio
— Riceve il valore (assegnazione)
() Contenuti di
(M6) Posizione di bit 6 all’indirizzo M

ADC Somma con carry

D I i b e b O l a d o r ^ d a t o

i

* OOR 1

Funzione: A — (A) + DATA + C

Formato:

Descrizione:

Somma i contenuti di un indirizzo di memoria o letterale all’accumu­
latore più il bit carry. Il risultato rimane neH’Accumulatore.

Note:

— ADC può operare sia in modo decimale che binario: i flag devono
essere posti al valore corretto

— Per sommare senza carry il flag C deve essere azzerato (CLC).

Percorso dei dati:

Flag: N v 8 D
• •

a s s o l u t o o n o m i 16 BIT INDIRIZZO

6 » - 0 1 1 HEX - 60 CICLI - *

PAGINA-XEflQ 0110ÙI&I ALUP

Obb = 001 HEX = SS CICLI = J

im m e d ia t o 01 tot CO'1 DATA

b t * ^ o io HEX u 60 CICLI » 7

ASSOLUTO X 0MP1Q1 16 BIT INDIRIZZO

b u » ^ m HE* = 7D o a i - *■

ASSOLUTO V OHUDOi SIT iNOrfìlZZO

bfcb - n o H E X - 7 6 CICLI -

CCMD), X onooooi ALO*

bbO-OOO HEX » 61 C»CU “ 6

(INO). Y O li 10001 a : i [w

bbb - 100 HEX - 71 acu - 5*

PAGINA ZERO X DIMOI 0)

bbb = 101 HEX = 75 C IC L I- 4

PIÙ' ' CICLO se SI SUPERA LA PAGINA

OOtkbbOI AOWt' DATO AOO»

Funzione: A — (A) A DATO

Fonnato:

Descrizione:

Esegue l’AND logico dell'accumulatore e di un dato specifico. Il
risultato rimane nell'accumulatore.

La tabella della verità è:

Percorro dei Dati:

a \ m 0 1

0 0 D

1 0 1

Modi di Indirizzamento:

P IÙ ' 1 C IC L O 6 E S I SU P E R A L A P A G IN A

Flag:

ASSOLUTO OO'Ot'OI 1B BIT iNomizzo

bbb-011 HEX«2D CICU = 4

PAGINA-ZERO ooiooiai ADDP

dm» =001 KEX=24 DCLI = 1

IMMEDIATO 001Q1001 DATO

bbfa = 010 H E X -2 0 CICLI - i

ASSOLUTO X oomic' là BIT INDIRIZZO

HEX = 30 CICLI ̂ V

ASSOLUTO V CC1I100I te bit INOlRlZZO

HEX» 30 ClCU - r

|INCJ>. XI 00*00001 ALtC*

bbb»ooa HEX = 21 CICLI - 6

\tm. v 0011001 ALOf

bbò = 100 HEX-31 CICLI = 5 *

PAGINA ZERO X OOHOlO» a » dk

bbb = un HEX-3S CICU « 4

* PIÙ-1 CICLO s e Si SUPERA LA PA&NA

ASL

Funzione:

Scorrimento Aritmetico a Sinistra

Formalo:

Descrizione:

Muove i contenuti dell’Accumulatore o di una locazione di memoria a
sinistra di una posizione di bit. Da destra entra uno 0. Il bil 7 cade nel
carry. Il risultato è depositato nella sorgente cioè nell'accumulatore
oppure nella memoria.

Percorso dei Dati:

Modi di Indirizzamento:

Flag:

ACCUMULATORE OCOOIO’O

PAGINA ZERO

ASSOLUTO X

PAGINA ZERO X

bbd - DIO HlX = 04 CICLI ^ 3

000 OH io INDIRIZZO
1

fcbb -0 '1 HEX “ « CICLI - t

000 OOI io AOD»

b b b -o o i HEX- 06 C>CLI - A

o o o m <0
1

INDIRIZZO
i

bbb - 111 HEX- IC CICLI - f

000 101 10 ADDR

HgX = 1* CICU = «

Funzione:

Va ad un indirizzo specificalo se C = 0

Formato:
SPOSTAMENTO

SUCCESSIVO

Descrizione:

Opera il test del flag carry, opera la diramazione all'indirizzo attuale
più lo spostamento assegnato (fino a +127 o -128). Se C = 1 non opera.
Lo spostamento è sommato all’indirizzo della prima istruzione succes­
siva la BCC. Questo si risolve in uno spostamento effettivo da + 129 a
- 126.

Percorso dei Dati:

Modi di Indirizzamento:

Soltanto implicato:
HEX = 90, byte = 2, cicli = 2 + 1 se si verifica la dirama­

zione
+ 2 se si passa ad un'altra
pagina

Flag:

Funzione:

Va all'indirizzo specificato se C = I

Formalo: lonoooo
SPOSTAMENTO

SUCCESSIVO

Descrizione:

Opera il test del flag carry. Se C = I opera la diramazione all’indirizzo
attuale più lo spostamento assegnato (fino a + 127 o — 128). Se C = 0
non opera. Lo spostamento è sommato all'indirizzo della prima istru­
zione successiva a BCC. Questo si risolve in uno spostamento effettivo
da + 129 a - 126.

Percorso dei Dati:

Modi di Indirizzamento:

Solunto relativo:
HEX = BO, byte = 2, cicli = 2 + 1 se si verìfica la dirama­

zione
+ 2 se si passa ad un’altra
pagina.

Flag:

Funzione:

Va ad un indirizzo specificato se Z = 1 (risultato = 0)

Formato: unceoo g g

Descrizione:

Opera il test del flag Z. Se Z = I opera la diramazione all'indirizzo
attuale più lo spostamento assegnato (fino a + 127 o - 128). Se Z = 0 non
opera.

Lo spostamento è sommato all'indirizzo della prima istruzione suc­
cessiva la BEQ. Questo si risolve in un effettivo spostamento da + 129 a
- 126.

Percorso dei Dati:

Modi di Indirizzamento:

Soltanto relativo
HEX = FO, byte = 2, cicli = 2 + 1 se si verifica la dirama­

zione
+ 2 se passa ad un’altra
pagina

Flag:

BIT Confronta i bit di memoria con l'accumulatore

Funzione:

Z - (A) A (M), N - (M7), V - (M6)

Formato: ooiobioa ADO» a ce* >
..............................J

Descrizione:

Viene eseguito ma non immagazzinato l'AND di A ed M. Il risultato
del confronto è indicato da Z. Z = 1 se il confronto è soddisfatto,
altrimenti è Z = 0. Inoltre i bit 6 c 7 del dato di memoria sono trasferiti
nei flag V ed N del registro di stato.

Codici di Istruzione:

ASSOLUTO

PAGINA 2ERO

—-------------
mango 16 « Il INDIRIZZO

m - x CICLI- •

031®!® AOOft

H i : N CICLI- 5

Funzione:

Va ad un indirizzo specificato se N = 1 (risultato < 0)

SPOSTAMENTO
SUCCESSIVO

Formato:

Descrizione:

Opera il test del flag N (segno). Se N = I opera la diramazione
all’indirizzo attuale più lo spostameno assegnato (fino a + 127 o —128).
Se N = 0 non opera.

Lo spostamento è sommato all’indirizzo della prima istruzione suc­
cessiva BEQ. Questo si risolve in uno spostamento effettivo da + 129 a
- 126.

Percorso del Dati:

ACOSl

Modi di Indirizzamento:

Soltanto relativo:
HEX = 30. byte = 2, cicli = 2 + 1 se si verifica la dirama­

zione
+ 2 se si passa ad un’altra
pagina

Flag:
N V t 0 I 1 C

Funzione:

Va all'indirizzo specificato se Z = 0 (risultato = 0)

Formato:
s p o s t a m e n t o

Su c c e s s iv o

Descrizione:

Verìfica il risultato (flag Z). Se il risultato non è uguale a zero (Z = 0),
opera la diramazione all’indirizzo attuale più lo spostamento assegnato
(fino a + 127 o — 128). Se N = 0 non opera.

Lo spostamento è sommato all'indirizzo della prima istruzione suc­
cessiva la BEQ. Questo si risolve in uno spostamento effettivo da + 129 a
- 126.

Percorso dei Dati:

Modi di Indirizzamento:

Soltanto relativo:
HEX = DO, byte = 2, cicli = 2 + I se si verifica la dirama­

zione
+ 2 se si passa ad un'altra
pagina

Flag:
N V » 0 I I C

5PO?TAUENTp
00010000 SUCCESSIVO

Funzione:

Va ad un indirizzo specificato se N = 0 (risultato > 0)

Formato:

Descrizione:

Opera il test del (lag N (segno). Se N = 0 (risultato positivo) opera la
diramazione all'indirizzo attuale più lo spostameno assegnalo (fino a +
127 o — 128). Se N = 1 non opera.

Lo spostamento è sommato all'indirizzo della prima istruzione suc­
cessiva BEQ. Questo si risolve in uno spostamento effettivo da + 129 a
- 126.

Percorso dei Dati:

Modi di Indirizzamento:

Soltanto relativo:
HEX = 10. byte = 2. cicli = 2 + 1 se si verifica la dirama­

zione
+ 2 se si passa ad un'altra
pagina

Flag:
N V t D ■ 1_____C

BRK Break

Funzione:

STACK (PC) + 2, STACK (P), PC - (FFFE, FFFF)

Formato:

Descrizione:

Opera come interrupt: il contatore di programma è introdotto nello
stack e quindi il registro di stato P. I contenuti delle locazioni di memoria
FFFE ed FFFF sono quindi depositati rispettivamente in PCL e PCH. Il
valore di P immagazzinato nello stack ha il (lag B posto ad 1 per
differenziare BRK da IRQ.

Importante: diversamente da un interrupt, PC + 2 è conservato.
Questa può non essere l’istruzione successiva e si può rendere necessaria
una correzione. Questo è dovuto all'impiego normale di BRK per aggiu­
stare i programmi esistenti dove BRK sostituisce un’istruzione di 2 byte.

Percorso dei Dati:

Gl

P

V.pqV,
»>

STACK

PATCH
INDIRIZZO

FFFE
FFFF

Modi di Indirizzamento:

Soltanto implicato:
HEX = 00, byte = 2. cicli = 7

Flag:
s v b r> ■ ; <

*

(NOTA: B É POSTO NELLO STACK|

Funzione:

Va all’indirizzo specificato se V = 0

SPOSTAMENTO
0*01000 * SUCCESSIVO

Descrizione:

Verifica il flag overflow (V). Se non c’è overflow (V = 0) opera la
diramazione all'indirizzo attuale più lo spostamento assegnato (fino a +
127 o — 128). Se V = I non opera.

Lo spostamento è sommato all'indirizzo della prima istruzione suc­
cessiva la BEQ. Questo si risolve in uno spostamento effettivo da + 129 a
- 126.

Percorso dei Dall:

Modi di Indirizzamento:

Soltanto relativo:
HEX = 50, byte = 2, cicli = 2 + I se si verìfica la dirama­

zione
+ 2 se si passa ad un'altra
pagina

Flag:

Frazione:

Va all’indirizzo specificato se V = 1.

Formato: omoooo S P O S T A M E N T OsitStetsfro

Descrizione:

Verifica il flag overflow (V). Se si è verificato un overflow (V = 1),
opera un diramazione airindiriz20 attuale più lo spostamento assegnato
(fino a + 127 o — 128). Se V = 0 non opera.

Lo spostamento è sommato all'indirizzo della prima istruzione suc­
cessiva BVS. Questo si risolve in uno spostamento effettivo da 4- 129 a
- 126.

Percorso del Dati:

Modi di Indirizzamento:

Soltanto relativo:
HEX = 70, byte = 2, cicli = 2 + 1 se si verifica la dirama­

zione
+ 2 se si passa ad un’altra
pagina

Flag:
t i V 9 D I 2 C

CLC Azzera carry

Funzione:

C - 0

Formato: ooonwo

Descrizione:

Viene azzerato il bit carry. Questo è spesso necessario prima di una
ADC.

Modi di Indirizzamento;

Soltanto implicato:
HEX = 18, byte = 1, cicli = 2

Flag:
0

Funzione:

D - 0

Fonnato:

Descrizione:

Viene azzerato il flag D preselezionando cosi il modo binario per
ADC ed SBC.

Modi di Indirizzamento:

Soltanto implicato:
HEX = D8, byte = I, cicli = 2

Flag:

0

01011000

Funzione:

I - 0

Formato:

Descrizione:

li bit della maschera intem ipt viene posto a 0. Questo abilita gli
interrupt. Una routine di manipolazione degli interrupt deve sempre
azzerare il bit I, diversamente agli altri interrupt possono andare persi.

Modi di Indirizzamento:

Soltanto implicato:
HEX = 58, byte = 1, cicli = 2

Flag:

0

10111000

Funzione:

V - 0

Formato:

Descrizione:

Viene azzerato il flag di overflow

Modi di Indirizzamento:

Soltanto implicato:
HEX = B8, by

Flag:

1, cicli = 2

N v 6 D 7 C
0

CMP
Finzione:

(A) — DATO - NZC:

Confronta con l'accumulatore

+ <A > OATO) - - [A < DATO]

-01 OH -0 0

HObbbOI AOOB/DATO

i
AOOft |Fonnato:

Descrizione:

I contenuti specificati vengono sottratti da A. Il risultato non è
immagazzinato ma vengono condizionati i (lag NZC in dipendenza se il
risultato è positivo, nullo o negativo. 11 valore dell’accumulatore non
viene cambiato. CMP è normalmente seguito da una diramazione: BCC
rivela A < DATO, BEQ rivela A = DATO e BEQ seguito da BCS rivela
A > DATO.

Percorso del Dati:

<=

Modi di Indirizzamento:

i i ■ '
OATO

Flag:

• •

ASSOLUTO 11001101
... 1--

Ifr& it INDIRIZZO
J

bbb ~ OH Mtx ~ CD CICLI - 4

PAGINA >4 n o o o io i ADD*

bbb - 001 H [x - C3 C IC L I- 3

IMMEOIATO 11001001 DATO

bbb = DIO h € X - CV CICU - 7

ASSOLUTO X n o i n o i
1

10-BiT INDIRIZZO
i

b O b i I I I hCx - DO CICLI = 4-

ASSOLUTO V u a n o o i * 16-IMT INDIRIZZO

h b h - n o K K - W CICLI = 4 '

(INO, XI I1QQQOOI ACCA

bob - 000 H=X - CI CICU - 6

HNOl.V 1>010001 ADÙR

bbb - 100 HEX - 01 CICLI 3*

PAGINA 0 X 11010101 AODB

tb t • IDI K * QS CICLI 7 4

PIÙ' 1 CICLO se SI SUPERA LA PAGINA

CPX
Funzione:

X — DATO - NZC:

Confronta col registro X

.<X >O A T O) - - (X <OATG*

-01 0»! -0 0

> litote# ACCA DATO
. _ _ J

Formato:

Descrizione:

I contenuti specificati sono sottratti da X. Il risultato non viene
immagazzinato ma vengono condizionati i flag NCZ in dipendenza se il
risultato è positivo, negativo o nullo. Il valore dell’accumulatore non
viene cambiato. CPX è normalmente seguito da una diramazione: BCC
rivela (X) < DATO, BEQ rivela (X) < DATO e BEQ seguito da BCS
rivela (X) > DATO. BCS rivela X > DATO.

Percorso dei Dati:

Modi di Indirizzamento:

Flag:
B O ■

• •

ASSOLUTO

PAGINA 2 ERO

IMMEDIATO

11101100 6>r in o ir iz z i

b b - n HtK ■= EC CICLI ^ 4

11100100 AOOR

olJ»Jt n t * “ E4 CICLI = 3

11100000 OATO

bb- 00 ME** CO >CICLI *

CPY Confronta col registro Y

Funzione:

(Y) — DATO - NZC:

***(Y > OATOI - —(Y < DATO)

-01 flit -0 0

Fonnato: HOOObOO ADDI? ' DATO ADDI» 1
.........._ .J

Descrizione:

I contenuti specificati sono sottratti da Y. Il risultato non 2 immagaz­
zinato ma i flag NCZ sono condizionati in dipendenza se il risultato è
positivo, nullo o negativo. Il valore dell’accumulatore non viene cam­
biato. CPY è normalmente seguito da una diramazione: BCC rivela (Y)
< DATO, BEQ rivela (Y) < DATO e BEQ seguito da BCS rivela (Y) >
DATO. BCS rivela X3* DATO.

Percorso del Dati:

Modi di Indirizzamento:

Flag:

• • •

A S S O L U T O

P A 0 IN A -Z E R O

IM M E O U T O

11001100 lò-BH Moimzzo

bb r 11 MEX = CC CICLI - 4

1 t000100 ADOR

b ò - 01 HEX * C4 CICLI - 3

11000000 DATO

bb - 00 h 6 k - CO OC4.i= 2

Funzione:
M - (M)

Formato:

— 1

ADOR a m i ;

Descrizione:
I contenuti dell'indirizzo di memoria specificato sono decrementati di

1. Il risultato è ri-immagazzinato all'indirizzo di memoria specificato.

Percorso dei Dati:

Modi di Indirizzamento:

Flag:

ASSOLUTO 11001 n o

■-

in d ir iz z o

i

U l - o i a CICLI ^ 6

PAGINA ZERO nooono ADSS

bb - OD H fX — C ó CICLI • 5

ASSOLUTO X nonno
1

INDIRIZZO
I

tib ■ 1 ' HEX = OC a c u = r

PAGINA ZERO X 110101 IO ADDtf

b b - ' O H tX - Dò C I C L I ' 6

11001010

Funzione:

X - (X) - I

Formato:

Descrizione:

I contenuti di X vengono decrementati di 1. Consente l*utilÌ2zazione di
X come contatore.

Percorso dei Dati:

Modi di Indirizzamento:

Soltanto implicato:
HEX = CA. byte = 1. cicli = 2

Flag:

Funzione:

Y - (Y) - 1

Formato:

Descrizione:

I contenuti di Y vengono decrementati di I. Consente l'utilizzazione di
Y come contatore. .

10001000

Percorso dei Dati:

Modi di Indirizzamento:

Soltanto implicato:
HEX = 88, byte = 1, cicli = 2

Flag:
• M w P ■

EOR
Funzione:

Or esclusivo con l’accumulatore

A — (A) V DATO

Formato:
ADDA/DATO

Descrizione:

Viene operato l’or esclusivo dei contenuti deU’accumulatore con il
dato specificato. La tabella della verità è:

Note: l'EOR con “— 1” può essere utilizzato per complementare.

Percorso dei Dati:

Modi di Indirizzamento:

Flag:

ASSOLUTO 01001101
i

ic tì '* INDIRIZZO
1

M * « O li H*X = 40 CICLI ^ 4

PAQtNA-0 010M I0I ACOB

t t t -0 0 1 HEX - 45 CICU - J

IMMEOIATO 010)1001 UArA

bbb = 010 HEX - 40 CICLI =■ ì

ASSOLUTO X OIOHIOI i t fiir INDIRIZZO

06D - 111 HEX = SD CICLI = V

ASSOLUTO r OlOMOQi
■ " ■

11 II •
"

INDIRIZZO

M t » HO H E X- 5 0 CICU - '*

INO Ai 01000001 ADDR

Hbto b 000 HEX = 41 CICU = “■

■ INO. * OIOIOOO» ADDt

t o t - 100 HEX Si CICLI =

PAGINA ZERO X 01Q10HH A&DB

tbb = IBI H O - SS CICLI = 4

• PlLT I CICLO SC SI SUPERA LA PAGINA

l l lb b l IO ADDÌI

Funzione:
M - (M) + 1

Formato:
Descrii Ione:

I contenuti della locazione di memoria specificata sono incrementali
di uno e quindi riposizionati nella locazione stessa.

Percorso dei Dati:

DATO — OATO - 1

Modi di Indirizzamento:

Flag:

ASSOLUTO ' '

t b - u

PAGINA-ZERO 11

Li- .0

ASSOLUTO X i l

tu = ' -

PAGINA ZERO K “

BC <0

N

INDIRIZZO
I

Ht* : EC

- E6 CICLI - S

i uno INOiAIZZO

H iw . F{ CICU >

\IO I '0

fò CICLI 6

11101000

Funzione:

X - (X) + 1

Formato:

Descrizione:

I contenuti di X sono incrementati di uno. Questo consente l’impiego
di X come contatore.

Percorso dei Dati:

Modi di Indirizzamento:

Soltanto implicato:
HEX = E8, byte = 1, cicli = 2

Flag:

Funzione:

Y — (Y) + 1

Formalo: 11001000

Descrizione:

I contenuti di Y sono incrementati di uno. Questo consente l’impiego
di Y come contatore.

Percorso dei Dati:

Modi di Indirizzamento:

Soltanto implicato:
HEX = C8. byte = 1. cicli = 2

Flag:
ISi V f i 0 I 2 C

Funzione:
PC - INDIRIZZO

Formato: < IN0IRIZ20
_____I______

Descrizione:
Viene caricato un nuovo indirizzo nel contatore di programma origi­

nando un salto rispetto all'esecuzione sequenziale del programma. L'in­
dirizzo può essere specificato in modo assoluto oppure indiretto.

Percorso dei Dati:

P C _______________ _____________________________

i

r t >

JMP

IN D IR IZ Z O

A S S O L U T O

Modi di In dirizza mento:

Flag:

N V B 0 i l C

Codici di Istruzione:

ASSOLUTO 01001100
1

INDIRIZZO
i

b = 0 « X - 4 C W C L I-3

INOIRETTO 01101100
I

in d ir iz z o
i

b = 1 HEX=6C CICLI = 5

P c

(INDMETTO)

JMP

— (NOlftlZZO —

-(INDIRIZZO FINALE)-----

Funzione:

STACK — (PC) + 2
PC - INDIRIZZO

Formato: 00100000 INDIRIZZO

_____ I______

Descrizione:

I contenuti del contatore di programma + 2 sono conservali nello
stack. (Questo è l'indirizzo dell’istruzione successiva la JSR). L'indirizzo
della subroutine è quindi caricato nel PC. Quest'operazione è anche
delta “chiamata della subrouiine".

Percorso del Dati:

Modi di Indirizzamento:

Soltanto assoluto:
HEX = 20, byte = 3, cicli — 6

Flag:
N- V B D ■ 2 C

LDA Carica l'Accumulatore

Funzione:
A - DATO

lOIbbbOl AODB-DATO ADOfi
i
1
1

Formato:

Descrizione:

L'accumulatore è caricato con un nuovo dato.

Percorso dei Dati:

Modi di Indirizzamento:

U V t D > 7 C

• I I I [•

ASSOLUTO 10101101 16 BIT INDIRIZZO

bbb = 011 HOC = AD CICLI = «

PAGINA ZEflO lOIOOIOt AUUff

Mito *001 H E X -A S CICLI - 3

IMMEDIATO 1010T001 OATO

btlb » 010 H E X - A i ‘ CICU - ?

ASSOLUTO X io n i io ; 11> BFT INDIRIZZO

bbb - n i H E X »B O CICU = 4*

'
ASSOLUTO Y lo m o o i 16 BIT INDIRIZZO

bbb = 110 MEX= B» CICLI » 4*

(W C M toiooooi ADDP

W b - 0 0 0 HEX = A l CICU « 6

(INO). Y 10110001 AODS

bbb = 100 H E X - B 1 CICLI - V

PAGINA ZERO X lO t10101 AOC-B

bbb * 1 0 1 > C X = 0 5 CICLI « 4

PIÙ’ 1 CICLO SE SI SUPERALA PAQINA

Funzione:
X - DATO

ADDOFonnato:

Descrizione:

Il registro indice X viene caricato con un dato proveniente dall'indi­
rizzo specificato.

Percorso del Dati:

w m z m \

m m m m

Modi di Indirizzamento:

N V b Q

ASSOLUTO

PAGINA ZERO

IMMEDIATO

ASSOLUTO V

PAGINA 0 V

tq 1011 rei
I

« B IT

in d ir iz z o

bbb = 011 HEX » AE CICLI * 4

-.01001 IO ADDP

bbn = ooj HEX = A6 CICLI = 3

■01000*0 DATO

bbb-ooo HE* = A2 CICLI = 2

io; h i to io a r r INDIRIZZO

bbb - m HEX =■ BE CICU = 4*

to m o lo audp

bbb - 110 HEX = B6 CICLI = 4

• P II/ 1 CICLO SC SI SUPERA LA PAGINA

Finizione:
Y - DATO

Formalo: lOlfcbbOO ADOR'OATO A C M

Descrizione:
Il registro indice Y viene caricato con un dato proveniente dall'indi­

rizzo specificato.

Modi di Indirizzamento:

■ PIÙ' 1 CICLO se SI SUPERA LA PAGINA

PAGINA-fl

IMMEDIATO

ASSOLUTO X

PAGINA ZÉAO Y

io io iio o lò-BIT

----------------■

INDIRIZZO

bbb - OM HEX= AC CICLI ' *

10100100 ADO»

bbb "001 HEX = A4 CICLI ^ 3

10100000 DATO

bbb - 000 M E X - AO CICLI - 2

■OH 1100 lò-BIT

_
INDIRIZZO

bbb >111 H W -B C CICLI •= 4*

101101C0 A O M

bbb ^ 101 H £ x - B J CICLI -- 4

p i i r i c i c l o se & s u p e ra l a p a g in a

Funzione: $—» 7 0 1 4 3 2 1 . *
ì
c

Formato;

Descrizione:
Fa scorrere a destra di una posizione di bit i contenuti specificati

(accumulatore o memoria). Uno “0" è forzato nel bit 7. Il bit 0 è
trasferito nel cany. Il dato che ha subito lo scorrimento è depositato
nella sorgente cioè nell'accumulatore o nella memoria.

Percorso dei Dati:

Modi di Indirizzamento:

ACCUMULATOLE QlOlOMO

ASSOLUTO

PAGINA-0

ASSOLUTO X

PAQINA ZERO X

bbfc = D»0 HE X=4A CICLI-» 2

o io n i io
i

INDIRIZZO
l

bbxb^OI 1 M€X= C IC L I- ó

01C 0II10 ADD*

b e h -001 HEX = 46 CICLI = 5

om ino
1

INDIRIZZO
i

bw>=ni 5E c ic l i = ?

o n o m o ADDS

b b b = IO I HEX = 56 C»CLI - à

11101010

Funzione:

Nessuna

Formato:

Descrizione:

Non opera per 2 cicli. Può essere utilizzata per temporizzare un ciclo di
ritardo o per riempire un programma.

Modi di Indirizzamento:
\J*

Soltanto implicato
HEX = EA, byte == 1, cicli = 2

Flag:
N V • D 1 C

(NON INTERVENGONO)

ORA OR inclusivo con Paccumiliatore

Frazione:
A — (A) V DATO

Formato: OOObbbOI AOMVOATO

Descrizione:

Esegue l’OR inclusivo logico di A con un dato specificato. Il risultato è
immagazzinato in A. Può essere utilizzato per forzare un "1” in una
locazione di bit selezionata.

Tabella della verità:

Percorso dei Dati:

Modi di Indirizzamento:

Flag:

ASSOLUTO 00001101 INDIRIZZO

b b ii-*O II H£* - 00 CICU «

PAGINA 2 EOO 000001 DI ADOH

bbb - 001 H IX - « CICLI - 3

IMMEDIATO 00001001 OATO

bU i - 010 K X - 09 CICLI 2

ASSOLUTO X 00611I0> m r INDIRIZZO

bbb -111 M l x - I D CICU =

ASSOLUTO V 00051001 »<. ai? INDIRIZZO

bbb - 110 h fX 19 CICLI - **

l is o XI 00000001

bbb ' 000 n [* ()l CICLI 6

(IND) v 00010001 ADDR

bob • 100 ►4* M CICLI 5‘

PAGINA 0 X OOOlOlO) ADD»

bbb - >01 nr« ■ u

PHJ' 1 C i b o SE St SUPERA LA PAGINA

01001000

Funzione:

STACK - (A)
S - (S) - 1

Formato:

Descrizione:

I contenuti dell’accumulatore vengono spinti nello stack. Il puntatore
dello stack viene aggiornato. A è invariate

Percorso dei Dati:

Modi di Indirizzamento:

Soltanto implicato:
HEX — 48, byte = 1, cicli = 3

Flag:
N V » 0 ■ t C

INON INTERVENGONO!

Funzione:

STACK - (P)
S — (S) — 1

Fornaio: I « X » 1» ”

Descrizione:

I contenuti del registro di stato P sono spinti nello stack. Il puntatore
dello stack viene aggiornato. A è invariato.

Percorso dei Dati:

Modi di Indirizzamento:

Soltanto implicato:
HEX = 08, byte = 1, cicli = 3

Flag:
N V b D i r e

INON INTERVENGONO}

PLA Estrai l'Accumulatore

01101000

Funzione:

A - (STACK)
S - (S) + 1

Formato:

Descrizione:

Estrae la parola alla sommità dello stack depositandola nell'accumu-
latorc. Incrementa il puntatore dello stack.

Percorso dei Dati:

Modi di Indirizzamento:

Soltanto implicato:
HEX = 68, byte = 1, cicli = 4

Flag:

00101000

Funzione:

P - (STACK)
S - (S) + 1

Formato:

Descrizione:

La parola alla sommità dello stack viene estratta e trasferita nel
registro di stato P. Il puntatore dello stack è incrementato.

Percorso dei Dati:

Modi di Indirizzamento:

Soltanto implicato:
HEX = 28, byte = 1, cicli = 4

Flag:
N V b p | l C

ROL
Funzione:

7 6 1 t ì 1 I 0 — 1

C

" 1----
Formato: O lIbbb 'O ADDO 1

1
AOOfi

Descrizione:
I contenuti deH’indirizzo specificato (accumulatore o memoria) sono

ruotati a sinistra di una posizione. Il contenuto del carry va nel bit 0. II
bit 7 pone un nuovo valore nel carry. Questa è una rotazione a 9 bit.

Percorso del Dati:

Modi dì Indirizzamento:

Flag:

A C C U M U L A T O R E 00 101010

ASSOLUTO

ASSOLUTO X

PAOINA 0 X

b bb -010 HEX = 7A C H X l-3

ooio i n o
1

16fliKINDlFll220
l

bbb - 011 n e x = » OCLI - 6

00100110 ADD»

bbb =001 M ÉX* 26 CICLI » 5

o o n m o
i

16 BfFn INDIRIZZO

bbb— I l 1 MEX=3E CICLI «= 7

001 (OMO AOUR

bbb =101 HEX= 36 CICLI = 6

ROR Rotaziooe a Destra di un bit

Attenzione: Questa istruzione può non essere disponibile sui 6502 più
vecchi. Inoltre essa può esistere ma non essere elencata.

Funzione:
1 7

0 —I

Formato: O lIbbblO AÙ 0 9 1
. J

Descrizione:
I contenuti dell'indirizzo specificato (accumulatore o memoria) sono

ruotati a sinistra di una posizione di bit.. Il carry va nel bit 7. Il bit 0 pone
un nuovo valore nel carry. Questa è una rotazione a 9 bit.

Percorso dei Dati:

Modi di Indirizzamento:

Flag:
N V B 0 » 2 C

• I ! I I

ACCUMULATORE

ASSOLUTO

PAGINA ZERO

ASSOLUTO X

PAGINA 0 X

emoioio

b b b -0 1 0 H E X -6 A CICLI = 2

01 to t 110
1

t6B»T^tNOiniZIO
1

bbb =011 HEX = d t CICLI -= 6

o n o o ito AQP?

b b b -0 0 1 HEX B dò CiCLi - 5

0 1 I1 H 1 0
1

I6BIT-INOIRIZZO
I

bbb-= 111 HEX - 71 CICLI = 7

01110110 A 0 0 *

bbb=UM M E X - 7ft CICU - 6

Funzione:

P - (STACK)
S - (S) + 1
PCL - (STACK)
S - (S) + 1
PCM - (STACK)
S - (S) + 1

01000000Formato:

Descrizione:

Ri-immagazzina il registro di stato cd il Contatore di Programma (PC)
che erano conservati nello stack. Aggiusta il puntatore dello stack.

Percorso dei Dati:

Modi di Indirizzamento:

Soltanto implicato:
HEX = 40, byte = 1, cicli = 6

Flag:
N V » D | 7 r

Funzione:

PCL - (STACK)
S - (S) + 1
PCH - (STACK)
S - (S) +
PC - (PC + 1)

01100000Formato:

Descrizione:

Ri-immagazzina j| Contatore di Programma dello stack e lo incre­
menta di uno. Regola il puntatore dello stack.

Percorso dei Dati:

Modi di Indirizzamento:

Soltanto implicato:
HEX = 60. byte = 1, cicli = 6

Flag:

N V » P I ì C

(NON INTERVENGONO)

Funzione:
A — (A) — DATO — C (C è il prestito)

Formato: 11 IbfebOl ADWVDATO

Descrizione:
Sottrae dall’accumulatore il dato airindirizzo specificato, con pre­

stito. Il risultato rimane in A. Nota: SEC è utilizzato per una sottrazione
senza prestito.

SBC può essere utilizzato in modo decimale o binario, in funzione del
bit D del registro di stato.

Percorso dei Dati:

Modi di Indirizzamento:

Flag:

• •

ASSOLUTO MIQ1TQ1
T ■' 1

i t o ^ r in o ia iz z o
i

bbb » 011 H E * - EO CICLI - 4

PAGINA-ZERO IIIQ O IOt ADD?

bbb -0 0 1 HEX = & CICLI 3

IMMEDIATO 11101001 DATO

b b b - o io HEX - EB CICLI 2

ASSOLUTO X ì im iQ i I t t i ' 1 INDIRIZZO

bbb - i n HEX = FO CICLI 4-

ASSOLUTO V M IIIO O I ; 6 0IT INDIRIZZO

bbb = n o HÉX =■ P i CICLI - 4 '

{INO, XJ «1100001 ADC»

bbb = 000 HEX = E t CICLI t

MNOl.V >1110001 addo

bbb = 100 HEX - F1 CICLI 5"

PAGINA z e r o X 11tIOIDI *00®

bbb - 101 HEX * fe

v F i ir i c ic l o s e Si s u p e r a l a pag ana

C IC LI- 4

00111000

Funzione:

C - 1

Formato:

Descrizione:

Il bit carry viene posto ad 1. Questa istruzione è utilizzata prima di
SBC per eseguire una sottrazione senza carry.

Modi di Indirizzamento:

Soltanto implicato:
HEX = 38, byte = 1. cicli = 2

Flag:

11111000

Funzione:

D - 1

Formato:

Descrizione:

Il bit decimale del registro di stato è posto ad 1. Quando esso è 0 il
modo è binario. Quando esso i 1 il n o d o è decimale per ADC ed SBC.

Modi di Indirizzamento:

Soltanto implicato:
HEX = F8, byte = I, cicli = 2

Flag:

Finizione:

I - 1

Fonnato: onnooo

Descrizione:

La maschera di interrupt è posta ad 1. Viene utilizzata durante un
interrupt oppure un ripristino del sistema.

Modi di Indirizzamento:

Soltanto implicato:
HEX = 78, byte = I. cicli = 2

Flag:
N V B & I | C

IM M IZ Z O

Funzione:
M — (Aj

Formato:

Descrizione:
I contenuti di A vengono ricopiati alla locazione di memoria specifi­

cata. I contenuti di A non vengono cambiati.

Percorso dei Dati:

Modi di Indirizzamento:

Flag:
k v B □ i ? z

ASSOLUTO

PAGINA ZERO

A B S a U T f.X

ASSOLUTO V

(IND. X)

<IND}Y

10001101 16BI1
1

JNOIRlZZO
1

b b b = OH H£X-* BD a o l i =4

10000:01 ADDR

b b b » OOI K K - f t i CICLI - 3

1001 u d ì ltì-BiT
1 "

WOIRIZZO
»

bbfa " I t i HÉX -90 CICLI - 3

10011001 16-BJT INDIRIZZO

bbb - 110 HÉK s 99 OCLI = S

10000001 ACOR

bbb <000 •*iX ■> Bl C IO J t

10010001 ADD*

bbb 100 HlX -0» CICLI 6

1001 OIDI ADDA

btiL ' 1Q1 MtX ■- 93 C id i 4

Funzione:
M — (X)

lOOtb'IO INDIRIZZOFonnato:

Descrizione:
Copia i contenuti del registro indice X nella locazione di memoria

specificata. 1 contenuti di X rimangono invariati.

/ f / f / i / f / ì / / / / / / / / / ,

A*'IL
C JO J

■ I * «B

1 J 2

*) à

0> « *

Flag:

Codici di Istruzione:

assoluto

PAGINA ZERO

v % p i I __ c

INON INTEBVENOO»

INOIR12ZO

PAGINA ZE R O V i

CICLI = «

OCU =3

CICU = 4

Funzione:
M — (Y)

Fonnato: lOObblOG INDIRIZZO

Descrizione:
Copia i contenuti del registro indice Y nella locazione di memoria

specificata. I contenuti di Y rimangono invariati.

Percorso dei Dati:

Flag: N V B D

<NON INTERVENGO)

Codici di Istruzione:
ASSOLUTO m ira

PAQINA-0

PAGINA Q X

INDIRIZZO

CICU - 4

CICLI - 3

Funzione:
X ~ (A)

Formato: 10101010

Descrizione:

Copia i contenuti dell’accumulatore in X. I contenuti di A rimangono
invariati.

Percorso dei Dati:

Modi di Indirizzamento:

Soltanto implicato:
HEX = AA, byte = 1, cicli = 2

Flag:

10101000

Funzione:
Y - (A)

Formato:

Descrizione:

Trasferisce i contenuti dell'accumulatore nel registro Y. I contenuti di
A rimangono invariati.

Percorso dei Dati:

Modi di Indirizzamento:

Soltanto implicato:
HEX = A8, byte = 1, cicli = 2

Flag:

Funzione:
X - (S)

Fonnato:

ì o m o i o

Descrizione:

I contenuti del puntatore dello stack S sono trasferiti nel registro
indice X. I contenuti di S rimangono invariati.

Percorso dei Dati:

Modi di Indirizzamento:

Soltanto implicato:
HEX = BA, byte = 1, cicli = 2

Flag:
N V » D I Z C

• I I I I I I

TXA Trasferisce X nell'Accumulatore

Funzione:
A — (X)

Formato: 1 10001010

Descrizione:
I contenuti del registro indice X sono trasferiti nell'accumulatore. I

contenuti di X sono invariati.

Percorso dei Dati:

Modi di Indirizzamento:

Soltanto implicato:
HEX = 8A, byte = I, cicli = 2

Flag:

Funzione:
S - (X)

Formato: | 10011010

Descrizione:
I contenuti del registro indice X sono trasferiti nel puntatore dello

stack. I contenuti di X sono invariati.

Percorso dei Dati:

Modi di Indirizzamento:

Soltanto implicato:
HEX = 9A, byte = l. cicli = 2

Flag:

N V B 0 < 1 C

(NON INTÉflVENOOl

Funzione:
A - (Y)

Formato: 10011000

Descrizione:
I contenuti del registro indice Y sono trasferiti ncU'accumulatore. I

contenuti di Y sono invariati.

Modi di Indirizzamento:

Soltanto implicato:
HEX = 98, byte = l, cicli = 2

Flag:

TECNICHE DI INDIRIZZAMENTO

INTRODUZIONE

Questo capitolo presenterà la teoria generale deU'indirizzamento con
le varie tecniche che sono state sviluppate per facilitare il recupero dei
dati. Nel secondo paragrafo saranno analizzati in modi specifici di
indirizzamento chc sono disponibili nel 6502 con i loro vantaggi ed i loro
limiti, dove esistono. Infine per familiarizzare il lettore con le varie
possibilità di compromesso tra le diverse tecniche di indirizzamento si
studieranno programmi specifici di applicazione.

Poiché il 6502 non ha registri a 16 bit. tranne il contatore di pro­
gramma, che può essere impiegato per specificare un indirizzo, è neces­
sàrio che Tutente del 6502 conosca i vari modi di indirizzamento ed, in
particolare, l’impiego dei registri indice. 1 modi di recupero complessi,
come una combinazione dell'indiretto ed indicizzato possono essere
omessi a questo stadio iniziale. Comunque tutti i modi di indirizzamento
sono utili per sviluppare programmi per questo microprocessore. Si
studieranno ora le varie alternative disponibili.

MODI DI INDIRIZZAMENTO

L" indirizzamento fa riferimento alle specifiche aH’interno di una istru­
zione della locazione dell’operando su cui interviene l’istruzione stessa.
Verranno ora esaminati i metodi principali.

Indirizzamento Implicito

Le istruzioni che operano esclusivamente su registri normalmente
utilizzano r indirizzamento implicito. Questo è illustrato in Figura 5-1.
Un’istruzione implicita deriva il suo nome dal fatto che essa non con­
tiene specificamente l’indirizzo dell'operando su cui opera. Invece il suo
codice operativo specifica uno o più registri (normalmente l’accumula­
tore od anche qualsiasi altro registro/i). Poiché i registri interni normal­
mente sono poco numerosi (diciamo un massimo di 8) questo richiederà
un piccolo numero di bit. Per esempio tre bit dentro l’istruzione puntc-

IMPLICITO/IMPLICATO

IMMEDIATO COOICE OPERATIVO

LETTEflAtE

I------------------------------- ,
| LETTERALE |
I----------------------------- J

DtflFTTO/WEVE CODICE OPERATIVO

INDIRIZZO BREVE

ESTÉSO-ASSOLUTO CODICE OPERATIVO

16-BiT PIENO

INDIRIZZO

INDICIZZATO COOICE OPERATIVO X REG

SPOSTAMENTO

!------------------------------ 1
I INDIRIZZO OR |
I______________________________ J

Figura 5.1: Indirizzamento

r

ranno da I ad 8 registri interni. Tali istruzioni possono perciò essere
normalmente codificate all’interna di 8 bit. Questo è un vantaggio
importante poiché un’istruzione ad 8 bit normalmente viene eseguita più
velocemente di qualsiasi istruzione a due o ire byte.

Un esempio di istruzione implicita del 6S02 è TXA che specifica
“ trasferisce i contenuti di A ad X".

Indirizzamento Immediato

L'indirizzamento immediato è illustrato in Figura 5-1. Il codice opera­
tivo è seguito da un letterale ad 8 o 16 bit (una costante). Questo tipo dì
istruzione è necessario per esempio per caricare un valore ad 8 bit. Se il
microprocessore è equipaggiato con registri a 16 bit può essere necessa­
rio caricare letterali a 16 bit. Questo dipende dall'architettura interna del
processore. Un esempio di un’istruzione immediata è: ADC # 0.

La seconda parola di questa istruzione contiene il letterale “ 0" che £
sommato all’accumulatore.

Indirizzamento Assoluto

L’indirizzamento assoluto è il modo in cui i dati sono normalmente
recuperati dalla memoria, dove un codice operativo è seguito da un
indirizzo a 16 bit. L’indirizzamento assoluto perciò richiede istruzioni di
3 bit. Un esempio di indirizzamento assoluto è: STA S 1234.

Questa istruzione specifica che i contenuti dell'accumulatore devono
essere memorizzati alla locazione di memoria “ 1234” esadecimale.

Lo svantaggio deirindirizzamento assoluto è di richiedere un'istru­
zione di 3 byte. Per migliorare l'efficienza del microprocessore può esse­
re reso disponibile un altro modo di indirizzamento nel quale per l’indi­
rizzo viene utilizzata una sola parola: indirizzamento diretto.

Indirizzamento Diretto

In questo modo di indirizzamento il codice operativo è seguito da un
indirizzo ad 8 bit. Questo è illustrato in Figura 5-1. Il vantaggio di questo
approccio è di richiedere solo 2 byte invece dei 3 deirindirizzamento
assoluto. Lo svantaggio è la limitazione di tutti gli indirizzamenti all'in­
terno di questo modo per indirizzare da 0 a 255. Questa è la Pagina 0.
Questo è anche chiamato l’indirizzamento breve od indirizzamento in
Pagina 0. Ogni volta che è disponibile l'indirizzamento breve, l'indi rizza-
mento assoluto è spesso chiamato indirizzamento esteso per contrasto.

Indirizzamento Relativo

Le normali istruzioni di salto o diramazione richiedono 8 bit per il

codice operativo più l'indirizzo a 16 bit al quale deve passare l'esecu­
zione del programma. Come nell’esempio precedente questo ha l'incon­
veniente di richiedere tre parole cioè 3 cicli di memoria. Per fornire una
diramazione più efficiente l'indirizzamemo relativo utilizza un formato
di sole due parole. La prima parola è la specifica della diramazione,
normalmente assieme al test che si sta realizzando. La seconda parola è
uno spostamento. Poiché lo spostamento può essere positivo o negativo
un'istruzione di diramazione relativa consente una diramazione diretta
fino a 128 locazioni (7 bit) oppure una diramazione inversa fino a 128
locazioni (più o meno 1 in dipendenza delle convenzioni). Poiché la
maggior parte dei cicli tendono ad essere brevi la diramazione relativa
può essere utilizzata quasi sempre e si risolve in u:i significativo migliora­
mento di esecuzione di tali routine brevi. Come esempio è già stata
utilizzata l'istruzione BCC che specifica “operazione diramazione se
carry è zero” alla locazione aH'interno di 127 parole dall’istmzione di
diramazione stessa.

Indirizzamento Indicizzato

L'indirizzamento indicizzato è una tecnica specificamente pratica per
accedere successivamente agli elementi di un blocco o di una tabella.
Questo sarà illustrato mediante esempi nel corso di questo capitolo. Il
principio deU’indirizzamento indicizzato è che l'istruzione specifica sia
un registro indice che un indirizzo. Nello schema più generale i contenuti
del registro sono sommati all'indirizzo per fornire l’indirizzo finale. In
questo modo l'indirizzo potrebbe essere poi utilizzato per accedere
successivamente a tutti gli elementi di una tabella in modo efficiente. In
pratica esistono spesso restrizioni e si può limitare la dimensione del
registro indice o la dimensione deirindirizzo o campo di spostamento.

Pre-indicizzazìoiie e Post-indicizzazione

Si possono distinguere due modi di indicizzazione. La pre-
indicizzazione é il modo di indicizzazione usuale dove l’indirizzo finale è
la somma di uno spostamento od indirizzo o dei contenuti del registro
indice.

La post-indicizzazione tratta i contenuti del campo di spostamento
come l’indirizzo dello spostamento effettivo, piuttosto che lo sposta­
mento stesso. Questo è illustrato in Figura 5-2. Nella post-indicizzazione
l’indirizzo finale é la somma dei contenuti del registro indice più i
contenuti della parola di memoria designata dal campo di spostamento.
Questa caratteristica utilizza infatti una combinazione deirindirizza-
mento indiretto e delta pre-indicizzazione. Si noti che non è stato ancora

definito l’indirizzamento indiretto. È quello che si farà immediatamente.

PAGINA M R O Y INUC6

Figura 5.2: Indirizzamento Indicizzato Indiretto

Indirizzamento Indiretto

E già stato visto il caso in cui due subroutine devono scambiarsi una
grande quantità di dati immagazzinati nella memoria. Più in generale
diversi programmi o diverse subroutine, possono richiedere di accedere
a blocchi comuni di informazioni. Per preservare la generalità del pro­
gramma è desiderabile non mantenere tale blocco ad una fissata loca­
zione di memoria. In particolare la dimensione di questo blocco può
crescere o diminuire dinamicamente e può risiedere in varie arce di
memoria, in funzione della sua dimensione. Sarebbe perciò impratica­
bile in generale cercare di avere accesso a questo blocco impiegando
l'indi rizza memo assoluto.

La soluzione a questo problema sta nel depositare l'indirizzo di par­
tenza del blocco ad una fissata locazione di memoria. Questo è analogo
alla situazione in cui diverse persone devono entrare in una casa ed esiste
solo una chiave. Per convenzione la chiave della casa sarà nascosta sotto
il vaso. Ogni utilizzatore conoscerà dove guardare (sotto il vaso) per
trovare la chiave della casa (ovvero per trovare l’indirizzo della lista

richiesta, per analogia). L’indirizzamento indiretto perciò utilizza un
codice operativo di 8 bit seguito da un indirizzo a 16 bit. Questo indirizzo
è utilizzato semplicemente per recuperare una parola dalla memoria.
Normalmente sarà una parola a 16 bit (nel nostro caso due byte)all’in-
terno della memoria. Questo è illustrato dalla figura 5-3). I due byte
aH’indirizzo specificato Ai. Ai sono quindi interpretati come indirizzo
effettivo dei dati ai quali si desidera accedere.

ISTRUZIONE MEMORIA

CODICE OPERATIVO

INDlfìLZ20
(A.)

INOIRIZZO
INDIRETTO A, FINALE fA,|

A , DATO 4 -

Figura 5.3: Indirizzamento indiretto

L'indirizzamento indiretto è particolarmente conveniente tutte le
volte che sono utilizzati i puntatori. Varie aree del programma possono
perciò fare riferimento a questi puntatori per accedere conveniente­
mente ed elegantemente ad una parola o ad un blocco di dati.

Combinazione dei Modi

I precedenti modi di indirizzamento possono essere combinati. In
particolare sarebbe possibile, in uno schema di indirizzamento comple­
tamente generale utilizzare molti livelli di indirizzamento indiretto.
L’indirizzo A: potrebbe essere interpretato come un ulteriore indirizzo
indiretto e cosi via.
, L’indirizzamento indicizzato può essere anche combinato con l'ac­

cesso indiretto. Questo consente l’accesso efficiente alla parola n di un
blocco di dati forniti una volta che si conosce dove £ indirizzato il
puntatore all'indirizzo di partenza.

Si è cosi divenuti familiari con tutti i modi di indirizzamento usuali che
possono essere disponibili in un sistema. La maggior parte dei sistemi a
microprocessore, a causa della limitazione sulla complessità della MPU,
che deve essere realizzata aH'interno di un singolo chip, non forniscono
tutti i modi possibili ma soltanto un piccolo sottinsieme di questi. Il 6S02
fornisce un sottinsieme non comunemente largo di possibilità. Si esami­
neranno ora queste possibilità.

M ODI DI INDIRIZZAMENTO DEL 6502

Indirizzamento Implicato (6502)

L'indiriz2amento implicato è utilizzato da un’istruzione a singolo byte
che opera sui registri interni. Ogni volta che le istruzioni implicite
operano esclusivamente sui registri interni, queste richiedono soltano
due cicli di clock per essere eseguite. Ogni volta che esse accedono alla
memoria richiedono tre cicli.

Le istruzioni che operano esclusivamente sui registri interni sono
CLC, CLD, CLI, CLV, DEX, DEY, INX, INY, NOP, SEC. SED, SEI,
TAX, TAY, TSX, TXA, TXS, TYA.

Le istruzioni che richiedono l’accesso alla memoria sono: BRK, PH A,
PHP, PLA, PLP, RTI, RTS.

Queste istruzioni sono state descritte al capitolo precedente ed il loro
modo di operare dovrebbe essere chiaro.

Indirizzamento Immediato (6502)

Poiché il 6502 ha soltanto registri di lavoro ad 8 bit (il PC non è un
registro di lavoro) l’indirìzzamento immediato nel caso del 6502 è limi­
tato alle costanti ad 8 bit. Tutte le istruzioni nel modo ad indirizzamento
immediato sono perciò lunghe due byte. Il primo byte contiene il codice
operativo ed il secondo byte contiene la costante od il letterale che deve
essere caricato nel registro od utilizzato in congiunzione con uno dei
registri per un’operazione aritmetica o logica.

Le istruzioni che utilizzano questo modo di indirizzamento sono:
ADC, AND, CMP, CPX, CPY. EOR, LDA. LDX, LDY, ORA, SBC.

Indirizzamento Assoluto (6502)

Per definizione l'indirizzamcnto assoluto richiede 3 byte. II primo byte
è il codice operativo ed i due byte successivi sono l’indirizzo a 16 bit
specificante la locazione dell'operando. Eccetto il caso di un salto asso­
luto, questo modo di indirizzo richiede quattro cicli.

Le istruzioni che possono utilizzare l'indirizzamento assoluto sono:
ADC, AND. ASL, BIT, CMP. CPX. CPY, DEC, EOR, INC, JMP, JSR,
LDA, LDX, LDY, LSR, ORA, ROL, ROR, SBC. STA, STX, STY.

Indirizzamento in Pagina Zero (6502)

Per definizione l'indirizzamento in pagina zero richiede due byte: il
primo è per il codice operativo: il secondo è per l'indirizzo breve ad 8 bit.

L'indirizzamento in pagina zero richiede tre cicli. Poiché l'indirizza-
mento in pagina zero offre significativi vantaggi in velocità in virtù del
codice più breve, esso dovrebbe essere utilizzato dovunque possibile.
Questo richiede un'attenta gestione della memoria da parie del program­
matore. Parlando in generale le prime 256 locazioni di memoria possono
essere viste come un set di registri di lavoro per il 6502. Qualsiasi
istruzione sarà essenzialmente eseguita su questi 256 “ registri” in appena
tre cicli. Questo spazio dovrebbe perciò essere attentamente riservato
per i dati essenziali che necessitano di essere recuperati ad alta velocità.

Le istruzioni che possono utilizzare l'indirizzamento in pagina zero
sono quelle che possono utilizzare l'indirizzamento assoluto eccetto
JM P e JSR (che richiedono un indirizzo a 16 bit).

La lista delle istruzioni consentite è quindi: ADC, AND, ASL, BIT,
CMP, CPX, CPY, DEC. EOR. INC, LDA, LDX, LDY, LSR, ORA,
ROL, ROR. SBC, STA, STX, STY.

Indirizzamento Relativo (6502)

Per definizione l'indirizzamento relativo utilizza due byte. Il primo è
un’istruzione di salto mentre il secondo specifica lo spostamento ed il
suo segno. Per differenziare questo modo dall'istruzione di salto esse
sono indicate qui come diramazione. Le diramazioni, nel caso del 6502,
utilizzano sempre il modo relativo. I salti utilizzano sempre il modo
assoluto (più naturalmente gli altri sotto-modi che possono essere com­
binali con queste come Indicizzato ed Indiretto). Da un punto di vista
del timing questa istruzione dovrebbe essere esaminata con cautela.
Ogni volta che un test è soddisfatto, cioè ogni volta che non c'è dirama­
zione. questa istruzione richiede solo due cicli. Questo perché la succes­
siva istruzione da eseguire è puntata dal contatore di programma. Invece
ogni volta che il test è soddisfatto, questa istruzione richiede tre cicli:
deve essere calcolato un nuovo effettivo indirizzo. L'aggiornamento del
contatore di programma richiede un ulteriore ciclo. Comunque se si
verifica una diramazione oltre ai confini di una pagina, un ulteriore

aggiornamento è necessario per il contatore di programma e la lun­
ghezza effettiva dell'istruzione diviene di quattro cicli.

L’utente non deve preoccuparsi da un punto di vista logico dell’attra-
versamento della frontiera di una pagina. Si prende cura di questo
l'hardware. Comunque, poiché un ulteriore riporto o prestito è generato
ogni volta che si attraversa la frontiera di una pagina, il tempo di
esecuzione della diramazione cambierà. Se questa diramazione fa parte
di un esatto ciclo di timing occorre fare attenzione.

Un buon assemblatore dirà normalmente al programmatore, all’i­
stante in cui il programma è assemblato, se una diramazione provoca
l'attraversamento della frontiera di una pagina nel cui caso il timing può
essere crìtico.

Ogni volta che non si è sicuri se si verificherà una diramazione si deve
tener conto che alcune volte la diramazione richiederà due cicli ed altre
volte tre. Spesso viene calcolato un tempo medio.

Le sole istruzioni che realizzano un indirizzamento relativo sono le
situazioni di diramazione. Ci sono B istruzioni di diramazione che
operano il test di ciascun flag airinterno del registro di stato per i valori
“O” ed “ 1", più l'istruzione BIT. La lista è: BCC, BEQ, BMI, BNE, BPL,
BVC, BVS.

Indirizzamento Indicizzato (6502)

116502 non fornisce una capacità completamente generale ma soltanto
una limitata. Esso è equipaggiato con due registri indice. Comunque
questi registri sono limitati ad 8 bit. I contenuti di un registro indice sono
sommati al campo indirizzo dell'istnizione. Normalmente il registro
indice è utilizzato come contatore per accedere agli elementi successivi di
un blocco o di una tabella. Questo perchè sono disponibili istruzioni
specializzate per incrementare o decremcntare ciascuno dei registri
indice separatamente. Inoltre esistono due istruzioni specializzate per
confrontare i contenuti dei registri indice con una locazione di memoria,
un'importante possibilità per l'effettivo impiego dei registri indice per
operare il test rispetto ai limiti consentiti.

In pratica, poiché la maggior parte delle tabelle dell'utente sono
normalmente più corte di 2S6 parole la limitazione dei registri indice ad 8
bit è normalmente una limitazione non significativa.

Il modo di indirizzamento indicizzato può essere utilizzato non solo
con l'indirizzamcnto assoluto regolare, cioè con un campo di indirizzo a
16 bit, ma anche con il modo di indirizzamento in pagina zero, cioè con i
campi indirizzo ad 8 bit.

C’è soltanto una restrizione. Il registro X può essere utilizzato da

entrambi i tipi di indirizzamento. Invece il registro Y consente solo
('indirizzamento assoluto indicizzato e non quello indicizzato in pagina
zero. (Eccetto per le istruzioni LDX ed STX che possono essere modifi­
cate dal registro Y).

L'indirizzamento indicizzato assoluto richiederà quattro cicli, se non
si attraversa la frontiera di una pagina, nel cui caso saranno richiesti
cinque cicli.

Le istruzioni indicizzate assolute possono utilizzare sia il registro X
che Y per fornire il campo di spostamento. La lista delle istruzioni che
possono utilizzare questo modo sono:

- c o n X: ADC, AND, ASL, CMP, DEC. EOR, INC, LDA. LDY,
LSR. ORA. ROL. ROR, SBC, STA (non STY).

-c o n Y: ADC AND, CMP, EOR, LDA, LDX, ORA, SBC.
STA (non ASL, DEC, LSR, ROL, ROR).

Nel caso di indirizzamento indicizzato in pagina zero il registro X è il
solo registro di spostamento consentito. Le istruzioni consentite sono:
ADC, AND, ASL, CMP,DEC, EOR, INC, LDA, LDY. LSR, ORA,
ROL. ROR, SBC, STA, STY.

Indirizzamento Indiretto (6502)

Il 6502 non ha la capacità di indirizzamento indiretto completamente
generale. Esso limita il campo indirizzo ad 8 bit. In altre parole tutti gli
indirizzamenti indiretti utilizzano il sotto-modo di indirizzamento indi­
retto in pagina zero. L'indirizzo effettivo su cui opera il codice operativo
sono quindi i 16 bit specificati dall'indirizzo in pagina zero dell'istru­
zione. Inoltre non si può utilizzare un indiretto di ordine superiore.
Questo significa che un indirizzo recuperato dalla pagina zero deve
essere usato come tale e non può essere utilizzato come ulteriore indire­
zione.

Infine tutti gli accessi indiretti devono essere indicizzati, eccetto JMP.
Per imparzialità si potrebbe notare che pochissimi microprocessori

forniscono qualsiasi indirizzamento completamente indiretto. Inoltre è
possibile realizzare un indirizzamento indiretto più generale utilizzando
una definizione macro.

Sono possibili due modi di indirizzamento indiretto: indirizzamento
indiretto indicizzato ed indirizzamento indicizzato indiretto (eccetto
JM P che utilizza l’indiretto puro).

Indirizzamento Indiretto Indicizzato

Questo modo somma i contenuti del registro indice X all'indirizzo in
pagina zero per calcolare l'indirizzo finale a 16 bit. Questo è un modo
efficiente per recuperare uno dei diversi dati possibili per dati puntati
mediante puntatori il cui numero £ contenuto nel registro indice X.
Questo è illustrato in Figura 5-4.

In questa illustrazione la pagina zero contiene una tabella di punta­
tori. Il primo puntatore è all’indirizzo A che fa parte dell'istruzione. Se i
contenuti di X sono 2N allora questa istruzione accederà al numero N di
puntatori di questa tabella e recupererà i dati puntati.

L'indirizzamento indiretto indicizzato richiede 6 cicli. Esso è natural­
mente meno efficiente come impiego di tempo di qualsiasi modo di
indirizzamento diretto. Il suo vantaggio è la flessibilità che può risultare
nell?, codifica ovvero il miglioramento globale di velocità.

Figura 5.4: Indirizzamento indicizzato

Le istruzioni consentite sono: ADC. AND. CMP, EOR, LDA, ORA,
SBC. STA.

Indirizzamento Indicizzato Indiretto

Questo corrisponde al meccanismo della post-indicizzazione che è
stato descritto al paragrafo precedente. In quella sede l'indicizzazione

era eseguita dopo l'indirezione, piuttosto che prima. In alte parole
l'indirizzo corto che è parte delle istruzioni è utilizzato per accedere ad
un puntatore a 16 bit in pagina zero. I contenuti del registro indice Y
sono quindi sommati come uno spostamento a questo puntatore. Il dato
finale è quindi recuperato.

In questo caso il puntatore contenuto in pagina zero indica la base di
una tabella nella memoria. Il registro Y fornisce uno spostamento.
Questo è un vero indice all’interno di una tabella. Questa istruzione è
particolarmente potente per far riferimento all'ennesimo elemento di
una tabella, premesso che l’indirizzo di partenza della tabella è conser­
vato in pagina zero. Si può fare questo in soli due byte.

Le istruzioni consentite sono: ADC, CMP, EOR, LDA, ORA, SBC.
STA.

Eccezione: Istruzione di Salto

L'istruzione salto può usare l’assoluto indiretto. È la sola istruzione
che può usare questo modo.

UTILIZZAZIONE DEI MODI DI INDIRIZZAMENTO DEL 6502

Indirizzamento Lungo c Breve

Sono già state utilizzate le istruzioni di diramazione in vari programmi
tra quelli sviluppati. Essi sono auto esplicativi. Una domanda interes­
sante è la seguente: cosa si può fare se il range consentito per la dirama­
zione non è sufficiente per richieste particolari? Una semplice soluzione è
di utilizzare la cosiddetta diramazione lunga. Questa è semplicemente
una diramazione alla locazione che contiene una specifica di salto:

BCC + J OPERA LA DIRAMAZIONE ALL’INDIRIZZO
EFFETTIVO
+ 3 SE C É ZERO

JMP FAR ALTRIMENTI SALTA A FAR
(ISTRUZIONE SUCCESSIVA)

Il precedente programma di due istruzioni si risolverà nella dirama­
zione alla locazione FAR ogni volta che il carry è zero. Questo risolve il
problema della diramazione lunga. Si considerino perciò ora i modi di
indirizzamento più complessi cioè l'indicizzazione e l’indirezione.

Utilizzazione dell'indicizzazione per l’accesso di blocchi sequenziali

L'indicizzazione è innanzitutto utilizzata per indirizzare locazioni

successive all'interno di una tabella. La restrizione consiste nel fatto
che il massimo spostamento deve essere minore di 256 cosicché esso
possa risiedere in un registro indice ad 8 bit.

Si è imparato a controllare il carattere Ora si cercherà in una
tabella di 100 elementi il carattere L’indirizzo di partenza di questa
tabella è chiamata BASE. La tabella ha soltanto 100 elementi. Questi
sono minori di 256 e si può quindi utilizzare un registro indice. Il
programma appare come segue:

SEARCH
NEXT

NOTFOUND
STARFOUND

Il diagramma di flusso di questo programma appare in Figura 5-5. Si
potrebbe facilmente verificare l'equivalenza tra il diagramma di flusso
cd il programma. La logica del programma è abbastanza semplice. Il
registro X è utilizzato per puntare aU’elemento all’interno della tabella.
La seconda istruzione del programma:

NEXT LDA BASE, X

utilizza l'indirizzamento indicizzato assoluto. Esso specifica che l'accu­
mulatore deve essere caricalo all’indiriz20 BASE (indirizzo assoluto a 16
bit) più i contenuti di X. All’inizio i contenuti di X sono "O’V II primo
elemento da accedere sarà quello aU’indirizzo BASE. Si può vedere che
dopo l'interazione successiva, X avrà il valore “ 1” e si accederà all'ele­
mento sequenzialmente successivo della tabella, all'indirizzo BASE + 1.

La terza istruzione del programma CMP confronta il valore del
carattere che è stato letto nell’accumulatore con il codice di La
successiva istruzione opera il test dei risultati del confronto. Se è stato
trovato un accordo si verifica una diramazione alla label STAR-
FOUND:

BEQ STARFOUND

Altrimenti viene eseguita l’istruzione sequenzialmente successiva:

INX

L D X # 0
LDA BASE, X
CMP
BEQ STARFOUND
INX
CPX * J00
BNE NEXT

Il contatore indice i incrementato di 1. Con riferimento al diagramma di
flusso della Fig. 5-5, si trova esaminando la parte bassa di quest’ultimo
che il valore del registro indice a questo punto deve essere controllato per
assicurarsi di non oltrepassare i confini della tabella (in questo caso 100
elementi). Questo £ realizzato dall'istruzione seguente:

CPX # 100

NOTfOUND

Figura S.S: Ricerca di un carattere in una tabella

Questa istruzione confronta il valore del registro X col valore S 100. Se il
test non è soddisfatto si deve prelevare ancora il carattere successivo.
Questo è quanto succede con:

BNE NEXT

Questa istruzione specifica una diramazione alla label NEXT se il test
non è stato soddisfatto (la seconda istruzione del programma). Questo
ciclo sarà eseguito finché non è stato trovato un oppure finché non è
stato raggiunto il valore dell’indice "100’’. Quindi sarà eseguita l'istru­
zione sequenzialmente successiva “NOT FOUND” . Questo corrisponde
al caso in cui non è stato trovato un

Le azioni intraprese nei casi di trovato o non trovato qui sono
irrilevanti c dovrebbero essere specificate dal programmatore.

Si è cosi imparato ad utilizzare il modo di indirizzamento indicizzato

per accedere agli elementi successivi di una tabella. Si utilizzerà ora
questa nuova abilità e si assumerà leggermente la difficoltà. Si svilupperà
un programma di utilità notevole capace di copiare un blocco da un'area
della memoria ad un’altra. Si assumerà inizialmente che il numero di
elementi all'interno del blocco sia minore di 256 cosicché sia possibile
utilizzare il registro indice X. Quindi si considererà il caso generale in cui
il numero di elementi del blocco sia maggiore di 256.

Una Routine di Trasferimenti di Blocco per meno di 256 elementi

Si chiamerà "NUMBER’’ il numero di elementi del blocco da trasfe­
rire. Il numero è assunto essere minore di 256. BASE è l’indirizzo base
del blocco. DESTINATION è la base dell'area di memoria dove si
muoverà il blocco. L'algoritmo è abbastanza semplice: si muoverà una
parola alla volta, mantenendo la traccia della parola che si sta muo­
vendo, immagazzinando la sua posizione nel registro indice X. Il pro­
gramma è il seguente:

LDX
NEXT LDA

STA
DEX
BNE

Si esamini questo programma:

LDX # NUMBER

Questa riga del programma carica il numero N di parole da trasferire nel
registro indice. L’istruzione successiva carica la parola # N del blocco
all'interno dell’accumulatorc e la terza istruzione la deposita nell’area di
destinazione. Si veda la figura 5-6.

ATTENZIONE: questo programma lavorerà correttamente solo se il
registro di base è assunto puntare proprio sotto il blocco come il registro
di destinazione. Diversamente è richiesto un piccolo aggiustamento a
questo programma.

Dopo che una parola è slata trasferita dall'origine all’area di destina­
zione il registro indice deve essere aggiornato. Questo è eseguito dall'i­
struzione DEX che lo decrementa. Quindi il programma opera semplice­
mente il test se X è stato decrementato a 0. Se si il programma termina.
Diversamente esso cicla ancora ritornando alla locazione NEXT.

NUMBER
BASE. X
DEST. X

NFXT

SORGENTE BLOCCO

DCST-

DESTINAZIONE
BLOCCO

TRASFERIMENTO

Figura 5.6: Organizzazione di memoria per II trasferimento di blocco generale

PAOINA o

¥ / / / / / '''///sy /s /S - /./s s ///.
&AREA 01 PARTENZA',
? /////S ////////£ V /////s> /A

Y‘> y //'-Y ///Y /7 ////' A
' -AREA PI ARRIVO-'

/ //> / -//.W S M A /S /s

Figura 5.7: Mappa di memoria per un trasferìmenlo di blocco generale

Si noterà chc quando X = 0 il programma non ciclo. Perciò esso non
trasferirà la parola alla locazione BASE. L'ultima parola trasferita sarà
quella a BASE + I. Questo perché è stato assunto che la base puntasse
proprio sotto il blocco.

Esercizio 5.1: Si modifichi il programma precedente assumendo che BASE
è DEST puntino proprio al primo ingresso del blocco.

Questo programma illustra anche l'uso dei contatori del ciclo. Si
noterà che X è stato caricato con il valore finale quindi decrementato e
verificato. A prima vista potrebbe sembrare più semplice iniziare col
valore “0" in X e quindi incrementarlo fino a che esso raggiunge il
massimo valore. Comunque per operare il test se X ha raggiunto il suo
massimo valore sarebbe necessaria un’ulteriore istruzione (l'istruzione
di confronto). Questo ciclo richiederebbe quindi 5 istruzioni invece di 4.
Poiché questo programma di trasferimento sarà utilizzato normalmente
per numeri elevati di parole, è significativamente importante ridurre il
numero di istruzioni del ciclo. Questa è la ragione per cui, almeno per
cicli brevi, il registro indice è normalmente decrementato piuttosto che
incrmentato.

Una Routine di Trasferimento di Blocco (più di 256 elementi)

Si consideri ora il caso generale di movimento di un blocco che può
contenere più di 256 clementi. Non è possibile utilizzare un singolo
registro indice ad 8 bit perché insufficiente per immagazzinare un
numero maggiore di 256. L’organizzazione della memoria per questo
programma è illustrata in Figura 5-7. La lunghezza del blocco di memo­
ria da trasferire richiede 16 bit e perciò è immagazzinato in memoria. La
parte di ordine elevato rappresenta il numero di blocchi di 256 parole:
“ BLOCKS” . Il resto è chiamato “ REMAIN*' ed è in numero di parole
da trasferire dopo che tutti i blocchi sono stati trasferiti. L’indirizzo della
sorgente a destinazione sarà alle locazioni di memoria FROM e TO
rispettivamente. Si assumerà innanzi tutto che REMAIN sia zero cioè
che si stiano trasferendo blocchi di 256 parole. Il programma è il
seguente:

LDA * SOURCELO
STA FROM
LDA # SOURCEHI
STA FROM + I IMMAGAZZINA L'INDIRIZZO SORGENTE

NEXT

NEXBLK

LDA # DESTLO
STA TO
LDA # DESTHI
STA TO + 1
LDX # BLOCKS
LDY * 0
LDA (FROM). Y
STA (TO), Y
DEY
BNE NEXT
INC FROM + 1
INC TO + 1
DEX
BMI DONE
BNE NEXT
LDY # REMAIN
BNE NEXT

IMMAGAZZINA L'INDIRIZZO DEST
QUANTI BLOCCHI
DIMENSIONE BLOCCO
LEGGE ELEMENTO
LO TRASFERISCE
AGGIORNA IL PUNTATORE DELLA PAROLA
FINITO?
INCREMENTA IL PUNTATORE DEL BLOCO
LO STESSO
CONTATORE BLOCCO

L’indirizzo sorgente a 16 bit è immagazzinato dalle prime quattro
istruzioni all’indirizzo di memoria “ FROM”. Le successive quattro
istruzioni fanno la stessa cosa per la destinazione che è immagazzinata
all’indirizzo "TO’’. Poiché si deve trasferire un numero di parole mag­
giore di 256 si utilizzeranno semplicemente due registri indice ad 8 bit.

L'istruzione successiva carica il registro X con il numero di blocchi che
devono essere trasferiti. Questa è l’istruzione 9 del programma. L’istru­
zione successiva carica il valore 0 nel registro indice Y, per inizializzarlo
al trasferimeno di 256 parole.

Si utilizzerà ora l'indirizzamento indiretto indicizzato. Si dovrebbe ri­
cordare che l'indiretto indicizzato si risolverà prima in una indirezione
all'interno della pagina zero quindi in un accesso indicizzato all'indiriz­
zo a 16 bit specificato dal registro indice. Si osservi il programma:

NEXT LDA (FROM), Y

Questa istruzione carica l'accumulatore con i contenuti della loca­
zione di memoria il cui indirizzo è la sorgente più i contenuti del registro
indice Y.

Si osservi la Figura 5-7 per la mappa di memoria. Qui il contenuto del
registro Y è inizialmente 0. “ A” sarà perciò caricato dall’indirizzo di
memoria "SOURCE". Si noti che qui, diversamente dall'esempio prece­
dente, si assume che “ SOURCE” è l’indirizzo della prima parola all’in­
terno del blocco.

Utilizzando la stessa tecnica l'istruzione successiva depositerà i conte­
nuti dell’accumulatore (la prima parola del blocco che si vuole trasferire)
all’appropriata locazione di destinazione:

STA (TO), Y

Proprio come nel caso precedente si decrementa semplicemente il
registro indice quindi si cida 256 volte. Questo è realizzato dalle due
istruzioni successive:

DEY

BNE NEXT

Attenzione: un artificio di programmazione viene qui utilizzato per una
programmazione compatta. Il lettore attento noterà che il registro indice
Y è decrementato. La prima parola ad essere trasferita sarà perciò la
parola in posizione 0. Quella successiva sarà la parola 25S. Questo
perchè decrementando 0 si ottengono tutti uni nel registro (oppure 2S5).
Il lettore dovrebbe anche accertare che qui non ci sono errori. Ogni volta
che il registro Y decrementa a 0 non si verificherà un trasferimento.
L’istruzione successiva da eseguire sarà: NEX BLK. Perciò saranno state
trasferite esattamente 256 parole. Chiaramente questo stesso artificio
potrebbe essere utilizzato nei vari programmi precedenti per scrìvere un
programma più breve.

Una volta trasferito un blocco completo si tratta semplicemente di
puntare la pagina successiva aU’interno del blocco originale e del blocco
di destinazione. Questo si ottiene aggiungendo "1" alla parte di ordine
più elevato dell’indirizzo della sorgente e destinazione. Questo è eseguito
da due istruzioni successive del programma:

NEXBLK INC FROM + 1
INC TO + 1

Dopo avere incrementato il puntatore della pagina si controlla
semplicemente se è stato trasferito il numero sufficiente di blocchi
decrementando il blocco contatore contenuto in X. Questo è eseguito
da:

DEX

Se tutti i blocchi sono stati trasferiti si esce dal programma mediante la
diramazione alla locazione DONE:

BM1DONE

A questo punto si hanno due possibilità: X non decremcntato a 0
oppure esattamente dccrementato a zero. Se non è stato decrementato a
0 si ha la diramazione alla locazione NEXT:

BNE NEXT

Se è staio decrementato esattamente a 0 si ha il trasferimento delle
parole specificate da REMAIN. Questa è l’ultima parte del trasferi­
mento. Questo è seguito da:

LDY # REMAIN

che carica l'indice Y con il conteggio del trasferimento.
Quindi si ha la diramazione alla locazione NEXT:

BNE NEXT

Il lettore dovrebbe accertare che durante quest’ultimo ciclo dove è
eseguita l’istruzione di diramazione a NEXT, la volta successiva si
rientra a NEXBLK e quindi si uscirà da questo programma. Questo
perchè l'indice X ha il valore 0 prima di entrare in NEXBLK. La terza
istruzione di NEXBLK lo cambierà a — 1 e si uscirà a DONE.

Somma di due Blocchi

Questo esempio fornirà una semplice illustrazione deH'utilizzazione di
un registro indice per l’addizione di due blocchi di meno di 256 elementi.
Successivamente il programma che seguirà farà uso della caratteristica
di indicizzazione indiretta per indirizzare i blocchi i cui indirizzi sono
noti risiedere ad una data locazione, ma i cui indirizzi effettivi assoluti
non sono noti. Il programma è il seguente:

BLKADD LDY tf NBR — I ---------CARICA IL CONTATORE
NEXT CLC

L'indice Y è utilizzato come contatore indice ed è caricato col numero
di elementi meno uno. Si assumerà che il puntatore PTR1 punti al primo
elemento del Blocco 1, PTR2 al primo elemento del Blocco 2 e PTR3

LDA PTRI, Y
ADC PTR2, Y
STA PTR3, Y
DEY

LEGGE L’ELEMENTO SUCCESSIVO
LI SOMMA
IMMAGAZZINA IL RISULTATO
DIìCREMENTA IL CONTATORE
FINITO?BPL NEXT

punti all’area di destinazione dove dovrebbe essere immagazzinato il
risultato.

Il programma è autoesplicativo. L’ultimo elemento He| Blocco 1 è
letto nell’accumulalore e quindi sommato a" ’i!kimo elemento del
Blocco 2. Esso è immagazzinato alla locazione appropriata del Blocco 3.
L'elemento sequenzialmente successivo viene sommato e così via.

Alcuni esercizi utilizzanti l’indirizzamento Indiretto Indicizzato

Qui si assuma che gli indirizzi PTR1, PTR2. PTR3 non siano inizial­
mente noti. Comunque si conosce che essi sono immagazzinati in pagina
0 agli indirizzi LOC 1, LOC 2, LOC 3.
Questo è un meccanismo comune per il passaggio delle informazioni tra
subroutine. Il programma corrispondente appare di seguilo:

BLKADD LDY # NBR —
NEXT CLC

LDA (LOCI), Y
ADC (LOC2). Y
STA t
DEY

(LOCJ). Y

BPL NEXT

La corrispondenza tra questo nuovo programma ed il precedente
potrebbe non essere ovvia. Esso illustra chiaramente l’uso del
meccanismo indiretto indicizzato ogni volta che l'indirizzo assoluto
non ò noto all’istante in cui viene scritto il programma, ma è nota la
locazione dell’informazione. Si può notare che i due programmi
hanno esattamente lo stesso numero di istruzioni. Un interessante
esercizio è ora la determinazione di quale sarà eseguito più
velocemente.

Esercizio 5.2: Si calcoli il numero di byte ed il numero di cicli per ciascuno
di questi due programmi, utilizzando le tabelle riportate nella sezione delle
appendici.

SOMMARIO

È stata presentata una descrizione completa dei modi di indirizza­
mento. È stato mostrato che il 6502 offre la maggior parte dei mecca­
nismi possibili e sono state analizzate le sue caratteristiche. Infine sono
stati presentati alcuni programmi di applicazione per dimostrare il
valore dei meccanismi di indirizzamento. La programmazione del 6502
richiede la comprensione di questi meccanismi.

ESERCIZI

Esercizio S.3:

Esercizio 5.4:

Esercizio 5.5:

Esercizio 5.6:

Esercizio 5.7:

Si scriva un programma per sommare i primi IO byte di una
tabella immagazzinata alla locazione “BASE". Il risultato
avrà 16 bit. (Questo è un calcolo di tipo checksum).

Si può risolvere lo stesso problema senza utilizzare il modo
di indicizzazione.

Si inverta l'ordine dei 10 byte di questa tabella. S i imma­
gazzini il risultato all’indirizzo "REVER".

Si cerchi l’elemento più grande della stessa tabella. Lo si
immagazzini all'indirizzo di memoria "LARGE”.

Si sommino insieme gli elementi corrispondenti di tre
tabelle le cui basi sono BASE], BASE2, BASE3. La lun­
ghezza di queste tabelle è immagazzinata in pagina zero
all’indirizzo "LENGTH".

TECNICHE D’INGRESSO/USCITA

INTRODUZIONE

Si è imparato come scambiare l'informazione tra la memoria ed i vari
registri del processore. Si è imparato a dirigere i registri e ad utilizzare
una quantità di istruzioni per manipolare i dati. Si deve imparare ora a
comunicare i dati col mondo esterno. Questo è chiamato ingresso/u­
scita.

L'ingresso fa riferimento alla cattura di dati dalle periferiche esterne
(tastiera, disk oppure sensore fisico).
L’uscita fa riferimento al trasferimento di dati dal microprocessore o
dalla memoria ai dispositivi esterni come una stampante, un CRT, un
disk oppure relè o sensori effettivi.

Si procederà in due fasi. Prima si imparerà ad eseguire le operazioni
d'ingresso/uscita richieste dai dispositivi comuni. In seguito si imparerà
a dirigere diversi dispositivi d’ingrcsso/uscita contemporaneamente o
scheduling. Questa seconda parte coprirà in particolare la scelta in
funzione degli interrup.

INGRESSO/USCITA

In questo paragrafo si imparerà a rivelare od a generare segnali
semplici come impulsi. Quindi si studieranno le tecniche per imporre o
misurare un timing corretto. Si sarà quindi pronti per tipi più complessi
di ingresso/uscita come i trasferimenti seriale o parallelo ad alta velo­
cità.

Generazione di un Segnale

Nel caso più semplice un dispositivo d'uscita sarà spento (o acceso) dal
calcolatore. Per cambiare lo stato del dispositivo d'uscita, il programma­
tore cambierà semplicemente un livello da uno “0" logico ad un ” 1”
logico oppure da “ l” a ‘*0". Si assumerà che un relè esterno sia connesso
al bit “ 0” di un registro chiamato “OUT 1". Per eccitarlo si scriverà
semplicemente un “ I" nella posizione di bit appropriata del registro. Qui

si assumerà che 0UT1 rappresenti l’indirizzo di questo registro d ’uscita
all'interno del sistema. Il programma che eccita il relè è:

TURNON LDA # % 00000001
STA OUTI

È stato assunto che lo stato degli altri sette bit del registro OUTI siano
trascurabili. Comunque spesso non è cosi. Questi bit devono essere
connessi ad altri relè. Si migliorerà perciò quesLo programma semplice.
Si vuole commutare l'eccitazione del relè senza cambiare lo stato di
qualsiasi altro bit all’interno di questo registro. Si assumerà che sia
possibile leggere 6 scrivere i contenuti di questo registro. Il programma
migliorato diviene:

TURNON LDA OUTI LEGGE I CONTENUTI DI OUTI
ORA # % 00000001 FORZA AD "1" IL BIT 0

STA OUTI

Questo programma legge prima i contenuti della locazione OUTI
quindi esegue un OR inclusivo dei suoi contenuti. Questo cambia solo ad
“ I” la posizione di bit 0 e lascia intatto il resto del registro. (Per ulteriori
dettagli sull'operazione ORA si faccia riferimento al Capitolo 4). Questo
è illustrato dalla Figura 6-1.

PRIMA Ù Q P Q

CO! 1

Figura 6.1: Eccitazione di un relè

Impulsi

La generazione di un impulso è eseguita esattamente come nel caso del
livello precedente. Un bit di uscita è prima commutato on e successiva­
mente commutato off. Questo origina un impulso. Questo è illustrato in
Figura 6-2. Per quanto riguarda questo tempo occorre risolvere un
problema aggiuntivo: si deve generare l’impulso per la lunghezza di
tempo corretta. Sì studierà perciò la generazione di un ritardo calcolato.

PORTA D'USCITA
REGISTRO

SEGNALE

-____N«SEG ----------

I l PROGRAMMA SELEZIONA LA PORTA 0\JSC(TA.CAMCA CON LA STRUTTURA IL
REGISTRO DELLA PORTA D'USCITA. ATTENDE (ANCHE PER N j/SECi. CAAICA LA PORTA
OUSCITA CON ZERO. RITORNA

Figura 6.2: Un Impulso programmato

Generazione e Misura di Rilardo

Un ritardo può essere generato mediante metodi software oppure
hardware. Si studierà qui il modo per eseguirlo mediante un programma
e successivamente si mostrerà come esso possa essere realizzato con un
contatore hardware, detto temporizzatore ad intervallo programmabile
(PIT).

I ritardi programmati sono ottenuti mediante conteggio. Un registro
coniatore è caricato con un certo valore e quindi decrementato. Il
programma cicla su sé stesso e si decrementa finché il contatore rag­
giunge il valore “0” . La lunghezza totale di tempo utilizzata da questo
processo realizzerà il ritardo richiesto. Come esempio si genererà un
ritardo di 37 microsecondi.

I3ELAY LDY # 0 7 Y È IL CONTATORE
NEXT DEY DECREMENTA

BNE NEXT TEST

Questo programma carica il registro indice Y col valore 7. L'istruzione
successiva decrementa Y e l’ulteriore istruzione successiva causa una
diramazione a NEXT finché Y non è decrementato a “0” . Quando infine
Y è decrementato a "0” il programma uscirà da questo ciclo ed eseguirà
qualunque istruzione successiva. La logica del programma è semplice ed
appare nel diagramma di (lusso della Figura 6-3.

Si calcolerà ora il ritardo effettivo realizzato dal programma. Osser­
vando il paragrafo di appendice del libro si troverà il numero di cicli
richiesto da ciascuna di queste istruzioni.

Figura 6.3: Diagramma di (lusso di un ritardo

LDY, nel modo immediato, richiede 2 cicli. DEY utilizzerà 2 cicli.
Osservando il numero di cicli nella tabella per BNE si verifica la dirama­
zione BNE richiederà solo 2 cicli. Se si verìfica la diramazione, che sarà il
caso normale durante il ciclo, è richiesto un ulteriore ciclo. Infine se si
deve attraversare il confine della pagina allora è richiesto un ciclo
ulteriore. Qui si assume che non si debba attraversare la frontiera della
pagina.

Il timing è perciò 2 cicli per la prima istruzione, più 5 cicli per le 2
successive moltiplicazioni per il numero di volte di esecuzione del ciclo;
Ritardo = 2 + 5 x 7 = 37

Assumendo un tempo dì ciclo di 1 microsecondo questo ritardo
programmato sarà di 37 microsecondi.

Si può vedere da questo esempio semplice che la massima definizione
con cui si può regolare la lunghezza del ritardo è 2 microsecondi. Il
ritardo minimo è 2 microsecondi.

Esercizio 6-1: Qual'è il massimo ritarda che può essere realizzato con
queste tre istruzioni?

Esercizio 6-2: Si modifichi il programma per ottenere un ritardo di circa
100 microsecondi.

Se si desidera realizzare un ritardo più lungo, una soluzione semplice è
di aggiungere ulteriori istruzioni nel programma, tra DEY e BNE. Il
modo più semplice per fare questo è di aggiungere istruzioni NOP
(l’istruzione NOP non opera per 2 cicli).

Ritardi più lunghi

La generazione di ritardi più lunghi mediante software può essere
ottenuta utilizzando un contatore più largo. Due registri intemi, o
meglio due parole della memoria, possono essere utilizzati per conser­
vare un conteggio a 16 bit. Per semplicità si assuma che il conteggio più
basso sia “0". Il byte più basso sarà caricato con “2551', il conteggio
massimo e quindi si entra nel ciclo che lo decrementa. Ogni volta che esso
è decrementato a “0" il byte supcriore del conteggio sarà decrementato
al valore “0” il programma termina. Se è richiesta più precisione nella
generazione del ritardo, il conteggio più basso può avere un valore non
zero. In questo caso si scriverebbe il programma come spiegato e si
aggiungerebbe alla fine il programma di tre righe di generazione del
ritardo che è stato appena descrìtto.

Naturalmente ritardati ancora più lunghi possono essere generati
utilizzando più di due parole. Questo è analogo al modo in cui opera un
contachilometri su una automobile.
Quando la ruota all’estrema destra va da “9’’ a “0” la ruota che la
precede a sinistra viene incrementata di I. Questo è il principio generale
del conteggio con unità discrete multiple

Comunque l'obiezione principale è che conteggiando ritardi il micro-
processore non farà nient'altro per centinaia di millisecondi od anche
secondi. Se il computer non ha nient’altro da fare è perfettamente
accettabile. Comunque, nel caso generale, il microprocessore dovrebbe
essere disponibile per altri compiti cosicché i ritardi più lunghi non sono
normalmente realizzati mediante software. Infatti anche i ritardi più
corti possono essere accettabili in un sistema se questo deve fornire
risposte in tempo garantito in assegnate situazioni. Occorre utilizzare i
ritardi hardware. Inoltre se si utilizzano gli interrupt, la precisione del
timing può andare perduta se il ciclo di conteggio è interrotto.

Esercizio 6-3: Si scriva un programma per realizzare un ritardo di 100 ms
(per una telescrivente).

I ritardi hardware sono realizzati utilizzando un temporizzatore di
ritardo automatico o brevemente “ temporizzatore". Un registro del
temporizzatore viene caricato con un valore. La differenza è che questa
volta il temporizzatore decrementerà automaticamente c periodica­
mente questo contatore. Il perìodo è normalmente regolabile o selezio­
nabile dal programmatore. Ogni volta che il temporizzatore sarà decre-
mentato a “0" esso invierà normalmente un interrupt al microproces­
sore. Esso porrà anche un bit di stato che può essere rivelato
periodicamente dal contatore. L'impiego degli interrupt sarà spiegato
successivamente in questo capitolo.

Altri modi di funzionamento del temporizzatore possono compren­
dere la partenza da “O" ed il conteggio della durata del numero di
impulsi ricevuti. Quando sta funzionando come un temporizzatore ad
un intervallo si dice che funziona in un modo one-shot. Quando sta
contando impulsi si dice che funziona in un modo a conteggio d'impuho.
Alcuni dispositivi temporizzatori possono anche comprendere registri
multipli ed un certo numero di possibilità a scelta che sono preselezio-
nate dal programma. Questo è il caso, per esempio, dei temporizzatori
contenuti nel componente 6S22, un chip I/O che sarà descritto al capi­
tolo successivo.

Rivelazione di Impulsi

La rivelazione di impulsi è il problema inverso della generazione di
impulsi con in più un’ulteriore difficoltà: mentre un impulso di uscita è
generato sotto il controllo del programma, l’impulso d'ingresso si veri­
fica in modo asincrono col programma. Per rivelare un impulso si
possono utilizzare due metodi: registrazione ed interrupt. Gli interrupt
saranno descritti in seguito in questo capitolo. Si consideri ora la tecnica
di registrazione. Utilizzando questa tecnica il programma legge il valore
di un dato registro d'ingresso in modo continuo, verificando una posi­
zione di bit, forse il bit 0. Si assumerà che il bit 0 sia originariamente “0” .
Ogni volta che viene ricevuto un impulso questo bit assumerà il valore
“ I” . Il programma osserva continuamente il bit 0 finché esso assume il
valore * T ’. Quando si trova un “ 1” , l’impulso è stato rivelato. Il pro­
gramma è il seguente:

POLI. LDA * SOI
AOAIN BIT INPUT

BPL AGAIN
ON

Inversamente si assuma che la linea d’ingresso sia normalmente “ 1" e
che si voglia rivelare uno " 0 ” . Questo è il caso normale di rivelazione del
bit START, quando si sta osservando una linea connessa ad una telescri­
vente. Il programma è il seguente:

POLL LDA # SOI
NEXT BIT INPUT

BMI NEXT
START

Controllo della Durata

Il controllo della durata dell'impulso può essere realizzata allo stesso
modo del calcolo della durata di un impulso di uscita. Si può utilizzare
una tecnica hardware oppure software. Quando si sta controllando un
impulso mediante software un contatore è regolarmente incrementato di
I quando è verificata la presenza dell’impulso. Se l'impulso è ancora
presente il programma cida ancora su sè sesso. Ogni volta che l’impulso
scompare, il conteggio contenuto nel registro contatore è utilizzato per
calcolare là durata effettiva deH’impulso. Il programma è il seguente:

DURTN LDX # 0 AZZERA IL CONTATORE
LDA # SOI CONTROLLO BIT 0

AOA1N BIT INPUT
BPL AGAIN

LONGER INX
BIT INPUT
BMI LONGER

Naturalmente si assumerà che la massima durata deH'impulso non
origini l’overflow del registro X. Se succedesse questo il programma
dovrebbe essere più lungo per tener conto di questo (oppure questo
potrebbe essere un errore programmato!).

Poiché ora si conosce come rivelare e generare gli impulsi si consideri il
trasferimento di grandi quantità di dati. Si distingueranno due casi: dati
seriali e dati paralleli. Quindi si applicherà questo ai dispositivi d ’ingres-
so/uscita effettivi.

TRASFERIMENTO PARALLELO DI PAROLA

Qui si assume che gli otto bit dei dati del trasferimento siano disponi­
bili in parallelo all’indirizzo “ INPUT". Il microprocessore deve leggere
la parola dei dati in questa locazione ogni volta che una parola di stato
indica che essa i valida. L’informazione di stato sarà assunta contenuta

STATO

w g r s s s o

Figura 6.4: Trasferimento parallelo di parola: la memoria

nel bit 7 dell’indirizzo “STATUS". Qui si scriverà un programma che
leggerà e conserverà automaticamente ogni parola dei dati entranti. Per
semplicità si assumerà che il numero di parole da leggere sia inizialmente
noto e sia contenuto nella locazione “COUNT” . Se quest'informazione
non fosse disponibile si dovrebbe verificare il cosidetto carattere di
rottura, come una cancellazione, oppure il carattere Si è già impa­
rato a fare questo.

Il diagramma di flusso appare in Figura 6-5. È abbastanza diretto. Si
verìfica l’informazione di stato finché essa diviene “ I” indicando che
una parola è pronta. Quando la parola è pronta viene letta e conservata
in un’appropriata locazione di memoria. Si decrementa quindi il conta­
tore e si verifica se esso è stato decrementato a “0” . In questo caso si è
terminato; altrimenti si legge la parola successiva. Il programma che
realizza questo algoritmo è il seguente:

/ STACK
■ 'S /sS s/////.

PAGINA

• VALIDO

- a e tT

PARAL
WATCH

LDX
LDA
BPL
LDA
PHA
DEX
BNE

COUNT
STATUS
WATCH
INPUT

WATCH

CONTATORE
IL BIT 7 È I SE IL DATO È VALIDO
DATO VALIDO?
LO LEGGE
LO CONSERVA NELLO STACK

Le prime due istruzioni del programma leggono l'informazione di
stato e causano l'instaurarsi di un ciclo non appena il bit 7 del registro di
stato è “0” . (Esso è il bit segno cioè il bit N).

WATCH LDA STATUS
BPL WATCH

REGISTRAZIONE 0 RICHIESTA 01 SERVIZIO

Figura 6.5: Trasferimento parallelo di parola: diagramma di (lusso

Quando BPL non è soddisfatta il dato è valido e si può leggerlo:

LDA INPUT

La parola che è stata letta dall'indirizzo INPUT dove si trova, deve
essere conservata. Assumendo che il numero di parole da trasmettere sia
abbastanza piccolo si utilizza:

PHA

Se lo stack fosse pieno ovvero fosse grande il numero di parole da
trasferire non si potrebbe spingerlo nello stack e si dovrebbe trasferirlo
ad un’assegnata area di memoria utilizzando, per esempio, un'istruzione
indicizzata. Comunque questo richiederebbe un’ulteriore istruzione per
incrementare o decrementare il registro indice. PHA è più veloce.

La parola del dato è quindi stata letta e conservata. Si decrementcrà
semplicemente il contatore di parole e si verificherà se si è finito:

DEX
BNE WATCH

Si rimarrà nel ciclo finché il contatore eventualmente decrementa a
“0". Questo programma di 6 istruzioni può essere chiamato un banco di
prova. Un programma banco di prova è un programma attentamente
ottimizzato progettato per verificare le possibilità di un dato processore
in una situazione specifica. I trasferimenti paralleli sono una di tali
situazioni tipiche. Questo programma è stato progettato per una mas­
sima velocità ed efficienza. Si calcolerà ora la massima velocità di
trasferimento di questo programma. Si assumerà che COUNT sia conte­
nuto in pagina 0. La durata di ogni istruzione è determinata dall’ispe­
zione della tabella alla fine del libro e si trova essere la seguente:

WATCH
LDX COUNT

CICLI
3

LDA STATUS 4
BPL WATCH 2/3 (INSODDISFATTO/

LDA INPUT A
SODDISFATTO)

PHA
DEX
BNF. WATCH

3
2

2/3 (INSODDISFATTO/
SODDISFATTO)

Il tempo minimo di esecuzione è ottenuto assumendo che il dato sia
disponibile ogni volta che si campiona STATUS. In altre parole la prima

BPL non sarà soddisfatta tutte le volte. Il timing è quindi: 3 + (4 + 2 + 4
+ 3 + 2 + 3) x COUNT.

Trascurando i primi 3 microsecondi necessari per inizializzare il regi­
stro contatore, il tempo impiegato per trasferire una parola è 18 microse­
condi.

La massima velocità di trasferimento è perciò:

----- —tt- = 55 K byte al secondo.
18 (10)

Esercìzio 6-4: Si assuma che il numero di parole da trasferire sia maggiore
di 256. Si modifichi il programma di conseguenza e si determini l'influenza
sulla massima velocità di trasferimento.

Si è vista l'esecu2ione di trasferimenti paralleli ad alta velocità. Di
seguito si considera un caso più complesso.

TRASFERIMENTO SERIALE DI BIT

Un ingresso è seriale se i bit ddl'informazione (zeri ed uni) entrano
successivamente su una linea. Questi bit possono entrare ad intervalli
regolari. Questa è chiamata normalmente trasmissione sincrona. Oppure
essi possono entrare come raffica di dati ad intervalli casuali. Questa è
chiamata trasmissione asincrona. Si svilupperà un programma che possa
lavorare in entrambi i casi. Il principio della cattura sequenziale di dati c
semplice: si osserverà una linea d’ingresso che sarà assunta essere la lìnea
0. Quando un bit dei dati sarà rivelato su questa linea si leggerà il bit di
ingresso e lo si sposterà in un registro per conservarlo. Ogni volta che si
sono accumulati 8 bit si preserverà il byte di dati nella memoria e si
costruisce quello successivo. Per semplicità si assumerà che il numero di
byte da ricevere sia inizialmente noto. Diversamente occorre, per esem­
pio, osservare uno speciale carattere di interruzione ed arrestare il trasfe­
rimento seriale di bit a questo punto. Si è già imparato a fare questo. Il
diagramma di flusso è riportato in Figura 6-7. Il programma è il
seguente:

s e r ia l e LDA # soo
STA WORD

LOOP LDA INPUT IL BIT 7 È LO STATO, “0” F. IL DATO
BPL LOOP RICEVUTO IL BIT?
LSR A LO SPOSTA IN C
ROL WORD CONSERVA IL BIT IN MEMORIA
BCC LOOP CONTINUA SE CARRY = "0"
LDA WORD
P1IA CONSERVA IL BYTE ASSEMBLATO

LDA * SOI RIPRISTINA IL CONTATORE DI BIT
STA WORD
DEC COUNT DECREMENTA IL CONTEGGIO D I PAROLA
BNE LOOP ASSEMBLA LA PAROLA SUCCESSIVA

Questo programma è stato progettato per un'alta efficienza e si uti­
lizza una nuova tecnica che si spiegherà. (Vedere Figura 6-6).

Le convenzioni sono le seguenti: si assume che la locazione di memo­
ria COUNT contenga un conteggio del numero di parole da trasferire.
La locazione WORD sarà utilizzata per assemblare 8 bit entranti conse­
cutivi. L'indirizzo INPUT fa riferimeno ad un registro d'ingresso. Si

Figura 6.6: Conversione da seriale a parallelo

assuma che la posizione di bit 7 dì questo registro sia un flag di stato
oppure un bit di clock. Quando esso è “0” il dato non £ valido. Quando
esso è “ 1" il dato £ valido. Il dato stesso sarà assunto apparire nella
posizione di bit 0 di questo stesso indirizzo. In molti casi l'informazione
di stato apparirà su un registro diverso dal registro dati.

Sarebbe quindi abbastanza semplice modificare conseguentemente
questo programma. Inoltre si assumerà che il primo bit dei dati che
questo programma riceve sia garantito essere un " 1". Questo indica che

segue il dato effettivo. Se non fosse così si considererà successivamente
una ovvia modifica. Il programma corrisponde esattamente al dia­
gramma di flusso della Figura 6-7. Le primissime righe del programma
realizzano un ciclo di attesa che verifica se un bit è pronto. Per determi­
nare se un bit è pronto si legge il registro d’ingresso che verifica il bit
segno (N). Finché questo bit è "0” l’istruzione BPL é soddisfatta e si avrà
la diramazione di ritorno del ciclo. Ogni volta che il bit di stato (oppure il
clock) diverrà vero (“ I”) BPL sarà insoddisfatta e sarà eseguita l’istru­
zione sequenzialmente successiva.

Si ricordi che BPL significa “opera la diramazione se Positivo", cioè
quando il bit 7 (il bit segno) è “0". La sequenza iniziale di istruzioni
corrisponde alla freccia I in Figura 6-6.

R E G IS T R A T O N E O R IC H IE S T A D I 5£ flV lZ>0

FA T T O

A questo punto l'accumulatore contiene un “ I" nella posizione di bit 7
ed il dato effettivo nella posizione di bit 0. Il primo bit dati che arriva
deve essere un “ I". Comunque quelli successivi possono essere sia "0"
che “ 1". Si desidera ora preservare il bit dato collocato in posizione 0.
L’istruzione:

LSR A

fa scorrere i contenuti dell'accu mutato re a destra di una posizione.
Questo fa cadere il bit più a destra di A, che & il bit dato, nel bit carry. Si
preserverà ora questo bit dato nella locazione di memoria WORD;
(questo è illustrato dalle frecce 2 e 3 nella Figura 6-6).

ROL WORD

L'effetto di questa istruzione è la lettura del bit carry nella posizione di
bit più a destra dell'indirizzo WORD. Nello stesso tempo il bit più a
sinistra di WORD cade nel bit carry. (Se si ha qualche dubbio sull’opera-
zione di rotazione.si faccia riferimento al Capitolo 4).

È importante ricordare che un'operazione di rotazione salverà il bit
carry, qui nella posizione estrema destra, ed anche il ripristino del bit
carry col valore del bit 7.

Qui uno “0” cadrà nel carry. L'istruzione successiva:

BCC LOOP

verifica il carry ed opera la diramazione indietro all’indirizzo LOOP
finché il carry i “0". Questo è il contatore di bit automatico. Si può
immediatamente vedere che, come risultato della prima ROL, WORD
conterrà “00000001". Otto scorrimenti dopo l’“ l ” cadrà finalmente nel
bit carry e si arresterà la diramazione. Questo è un modo ingegnoso per
realizzare un contatore di ciclo automatico senza dover sprecare un'i­
struzione per decremcntare i contenuti di un registro indice. Questa
tecnica è utilizzata per abbreviare il programma e migliorare le sue
caratteristiche.

Ogni volta che BCC infine non è soddisfatta, 8 bit sono stati assem­
blati nella locazione WORD. Questo valore dovrebbe essere preservato
nella memoria. Questo e realizzato dalle istruzioni successive:

LDA WORD
PHA

Qui si stanno conservando i dati di WORD (8 bit) nello stack. La
conservazione nello stack è possibile solo se è disponibile lo spazio
sufficiente. Supponendo che questa condizione sia soddisfatta questo è il

modo più veloce per preservare una parola nella memoria. Il puntatore
dello stack viene aggiornato automaticamente. Se non si ponesse una
parola nello stack si dovrebbe utilizzare un’ulteriore istruzione per
aggiornare un puntatore della memoria. Si potrebbe equivalentemente
eseguire un indirizzamento indicizzato ma questo comprenderebbe l’in­
cremento ed il decremento dell'indice, utilizzando un tempo ulteriore.

Dopo che la prima WORD di dati è stata conservata non si ha nessuna
garanzia che il primo bit dei dati che entreranno sarà un “ 1". Potrebbe
essere qualsiasi. Si deve perciò ripristinare i contenuti di WORD a
“00000001" così da poterla utilizzare come un bit contatore. Questo è
eseguito dalle due istruzioni successive:

LDA # SOI
STA WORD

Infine si decrementerà il contatore di parola poiché una parola è stata
assemblata e si verificherà se si è raggiunta la fine del trasferimento.
Questo è eseguito dalle due istruzioni successive:

DEC COUNT
BNE LOOP

Il programma precedente é stato progettato per alta velocità cosicché
esso possa catturare una corrente d’ingresso veloce di bit dati. Una volta
che il programma termina occorre naturalmente leggere immediata­
mente dallo stack le parole ivi conservate e trasferirle dovunque nella
memoria. Si è già imparato ad eseguire un tale trasferimento di blocco
nel Capitolo 2.

Esercizio 6-5: Si calcoli la velocità massima con cui questo programma
sarà in grado di leggere i bit seriali. Per calcolare questa velocità si assuma
che gli indirizzi WORD e COUNT siano mantenuti in Pagina 0. Si assuma
inoltre che il progamma completo risieda alT Interno della stessa pagina. Si
consulti il numero di cicli richiesto da ciascuna istruzione nella tabella alla
fine di questo libro e quindi si calcoli il tempo che trascorrerà durante
l'esecuzione di questo programma. Per calcolare la lunghezza del tempo
utilizzato da un ciclo, espressa in microsecondi, per il numero di volte che
esso sarà eseguito. Inoltre ne! calcolo della massima velocità si assuma che
un dato sia pronto ogni volta che viene rivelala la locazione dingresso.

Questo programma è molto più difficile da capire rispetto ai prece­
denti. Lo si osservi ancora (riferimento alla Figura 6-6) in dettagli
ulteriori esaminando alcuni compromessi.

Un bit dei dati entra nella posizione di bit Odi " IN P U T ’ di volta in

volta. Potrebbero esserci per esempio tre “ 1” in successione. Si deve
perciò differenziare tra i bit entranti successivi. Questa è la funzione del
segnale di clock.

Il segnale di clock (dello STATUS) dice che il bit d’ingresso è ora
valido. Se lo stato è “0” si deve attendere. Se esso è “ 1" allora il bit dati i
valido.

Si assumerà qui che il segnale di stato sia connesso al bit 7 del registro
INPUT.

Esercizio 6-6: S i saprebbe spiegare perchè il bit 7 è utilizzato per lo stato ed
il bit 0 per i dati?

Una volta che si è catturato un bit dati si deve preservarlo in una
locazione sicura e quindi farlo scorrere a sinistra cosicché si possa
prendere il bit successivo.

Sfortunatamente l’accumulatore è utilizzato per leggere e verificare i
dati e lo stato in questo programma. Se si vuole accumulare i dati
nell’accumulatore, la posizione di bit 7 dovrebbe essere liberala dal bit di
stato.

Esercizio 6-7: Si saprebbe suggerire un modo per verificare lo stato senza
liberare i contenuti dell’accumulatore (un'istruzione speciale)? Se questo
può essere fatto, si potrebbe utilizzare l'accumulatore per accumulare i bit
entranti successivi?

Esercizio 6-8: Si riscriva il programma utilizzando l ’accumulatore per
memorizzare i bit entranti. Lo si confronti col precedente in termini di
velocità e numero di istruzioni.

Si considerino due possibili variazioni:
È stato assunto che, neH'csempio particolare considerato, il primis­

simo bit entrante dovrebbe essere un carattere speciale, garantito essere
un “ 1” . Comunque nel caso generale esso può essere qualsisi.

Esercizio 6-9: Si modifichi il programma precedente assumendo che it
primissimo bit entrante sia un dato valido (da non scartare) e possa essere
"0” ed " !". Suggerimento: il "contatore di bit’’ lavorerebbe correttamente
se lo si inizializza col valore corretto.

Infine è stata consevata la parola assemblata nello stack per guada­
gnare tempo. Si potrebbe naturalmente conservarla in una specificata
area di memoria.

Esercizio 6-10: Si modifichi il programma precedente e sì conservi la parola
WORD assemblata nell'area di memoria iniziando a BASE.

Esercizio 6-11: Si modifichi il programma precedente cosicché il trasferi­
mento si arresti quando il carattere '‘S"è rivelato nel flusso d’ingresso.

L'Alternativa Hardware

Come avviene di solito per molti algoritmi convenzionali d'ingrcs-
so/uscita, £ possibile realizzare questa procedura mediante hardware. Il
chip si chiama UART. Esso accumulerà automaticamente i bit. Comun­
que quando si desidera ridurre il conteggio di componenti questo pro­
gramma, od una sua variazione, sarà conveniente utilizzarlo.

Esercizio 6-12: Si modifichi il programma assumendo che i dati siano
disponibili nella posizione di bit 0 della locazione INPUT mentre f informa­
zione di stato è disponibile nella posizione di bit 0 dell'indirizzo INPUT + 1.

SOMMARIO I /O DI BASE

Si è ora imparato ad eseguire operazioni d’ingresso/uscita elementari
ed a dirigere un flusso di dati paralleli o di bit seriali. Si è ora pronti per
comunicare con i dispositivi d’ingresso/uscita effettivi.

COMUNICAZIONE CON I DISPOSITIVI I/O
Per scambiare dati con i dispositivi d'ingresso/uscita si dovrà innanzi

tutto accertare se sono disponibili i dati, se si vuole leggerli oppure se il
dispositivo è pronto ad accettare dati, se si vuole inviarglieli. Si possono
usare due procedure: handshaking ed interrupt. Si studierà prima
l’handshaking.

Handshaking

L’handshaking è generalmente utilizzato nella comunicazione tra due
dispositivi asincroni, cioè tra due dispositivi che non sono sincronizzati.

l*JIJ
PHONTO1 r i'LEGGE"
STATO»

REGISTRO
01 s t a t o

Sl-ND 1__ 1 DISPOSITIVO
ctu scita

è REGISTRO
0 USC ITA = 5

CHIP l/Q

Per esempio se si vuole inviare una parola ad una stampante parallela ci
si deve prima assicurare che sia disponibile il buffer d’ingresso di questa
stampante. Si chiederà perciò alla stampante: Sei Pronta? la stampante
dirà “Si” oppure “ No” . Se essa non è pronta si attenderà. Se essa è
pronta si invieranno i dati (Vedere Fig. 6-8).

Inversamente, prima della lettura di dati da un dispositivo d'ingresso
si verificherà se i dati sono validi. Si chiederà: “ Il dato è valido?". Ed il
dispositivo dirà “Si" oppure “ No". Il “Si" oppure “ No" può essere
indicato dai bit di stato, oppure da altri mezzi. (Vedere Figura 6-9).

MPU

r e g is t r o !

INGRESSO I 1 C =
DISPOSITIVO
D1NGRESS0

CAAAT
REGISTRO
01

I STATO
PRONTO*

Sl.'NO

Figura 6.9; Hanrtshaking (ingresso)

In breve ogni volta che si desidera scambiare informazioni con qual­
cuno che è indipendente e deve fare qualcos'altro si deve accertare che
esso sia pronto alla comunicazione. La regola di cortesia usuale è di
stringergli la mano e di qui segue il nome handshaking. Può quindi
avvenire lo scambio di dati. Questa è la procedura normalmente utiliz­
zata nella comunicazione con i dispositivi d'ingresso/uscita.

Si illustrerà ora questa procedura con un semplice esempio.

Invio di un Carattere ad una Stampante

Si assumerà che il carattere sia contenuto nella locazione di memoria
CHAR. Il programma per stamparlo è il seguente:

CIIARPR I.DX CHAR LEGGE II. CARATTERE
WAIT LDA STATUS IL BIT 7 Ù “ PRONTO"

BPL WAIT
TXA
STA PRINT D

Il registro X viene prima caricato dalla memoria con il carattere da
stampare. Quindi si verifica il bit di stato della stampante per determi­
nare che essa sia pronta ad accettare il carattere. Comunque fino a che

essa non è pronla per stampare, si ha la diramazione all’indietro all'indi­
r i z z o WAIT e si cicla. Ogni volta che la stampante indica che essa è
p r o n t a a stampare ponendo ad “ I" il suo bit pronto (qui convenzional­
mente si è assunto il bit 7 dcH’indirizzo STATUS) si può inviare il
carattere. Si trasferisce il carattere dal registro X al registro A:

TXA

e lo si invia all'indirizzo del registro di uscita della stampante, qui
indicato PRINTD.

STA PRINTD

Esercizio 6-13: Si modifichi il programma precedente per stampare una
stringa di n caratteri, dove n sarà assunto essere minore di 255.

Esercizio 6-14: S i modifichi il programma precedente per stampare una
stringa di caratteri finché non si inconrra un codice di "ritorno carrello

Si complicherà ora la procedura di uscita richiedendo una conversione
di codice e mediante alimentazione contemporanea di alcuni dispositivi:

A / A /

Figura 6.10: LED a sette segmenti

Uscita su un LED a 7-Segmentf

Un tradizionale diodo-cmettitore-di-luce (LED) a 7-scgmenti può
mostrare le cifre da “ 0" a "9” od anche i digit esadecimalida “0” ad “ F”
illuminando le combinazioni dei suoi 7 segmenti. Un LED a 7 segmenti è
mostrato neU’illustrazione 6-10. I caratteri che possono essere generati

/ // 1r /_/ / / / /j
/ ro ~ii nu ni nLìn 11 iLI ri_ iu rc rr

Figura 8.11: Caratteri generali con un LEO a 7-segmentl

con questo LED appaiono in Figura 6-11.
I segmenti di un LED sono contrassegnali da “A”a “G " nella Figura

6-10. Per esempio “0” sarà mostrato illuminando i segmenti “ABC-
D EF” . Si assuma ora che il bit “0*' di una porta d’uscita sia connesso al
segmento “ A", che “ 1" sia connesso al segmento “B" eccetera. Il bit 7
non viene utilizzato. II codice binario richiesto per illuminare
“ FEDCBA” (per mostrare “0”) è perciò “0111111". Questo in esadeci-
male è “ 3F” . Si esegua l’esercizio seguente:

Esercizio 6-15: Si calcoli l'equivalente a 7 segmenti dei digit esadecinsali da
"0" ad "F". Si riempia la tabella seguente:

Esa- Codice Esa- Codice Esa* Codice Esa- Codice
dec. LED dcc. LED dee. LED dec. LED

0 3F 4 8 C
1 5 9 D
2 6 A E
3 7 B F

Si mostreranno ora i valori esadecimali su LED diversi.

Pilotaggio di LED multipli

Un LED non ha memoria. Esso mostrerà il dato solo finché le sue linee
segmento sono attive. Per mantenere basso il costo di un display LED il
microprocessore mostrerà l’informazione a turno in ciascuno dei LED. La

rotazione tra i LED deve essere veloce sufficientemente da non provo­
care lampeggiamento apparente. Questo implica che il tempo consu­
malo nel passagio da un LED al successivo sia minore di 100 millise­
condi.
Si progetterà un programma che realizzi questo. Il registro Y sarà
utilizzalo per puntare il LED su cui si vuole mostrare un digit. Si assuma
che l’accumulatore contenga il valore esadecimale da mostrare sul LED.
Inizialmente occorre convertire il valore esadecimale nella sua rappre­
sentazione a 7-segmenii. Al paragrafo precedente è stata costruita la
tabella di equivalenza. Poiché si sta accedendo ad una tabella si utilizzerà
il modo di indirizzamento indicizzato dove l’indice di spostamento sarà
fornito dal valore esadecimale. Questo significa che il codice a 7 segmenti
per il digit esadcciale # 3 è ottenuto osservando il terzo elemento della
tabella a partire dalla base. L’indirizzo della base sarà chiamato SEG-
BAS. Il programma è il seguente:

l.EDS TAX UTILIZZA IL VALORE ESADECIMALE CO
ME INDICE

LDA SECBAS. X LEGGE IL CODICE IN A
LDX # soo
STX SEGDAT SPEGNE 1 DRIVER DEI SEGMENTI
STA SEGDAT MOSTRA IL D IG IT
LDX *S70 QUALSIASI NUMERO GRANDE
STY SEGADR

n n .A Y DEX
BNE DF.I.AY
DEY PUNTA AL LED SUCCESSIVO
BNF: OUT
I DY LEDNBR

OUT RTS

Il programma assume che il registro Y contenga il numero del LED
che sarà successivamente illuminato e che il registro X contenga il digit
da mostrare.

Il programma prima osserva il codice a 7 segmenti corrispondente al
valore esadecimale contenuto nell'accumulatore con le sue prime due
istruzioni. Le due istruzioni successive caricano “00" come il valore dei
segmenti da mostrare, cioè li spegne. L’istruzione successiva seleziona
quindi gli appropriati segmenti LED da mostrare : STY SEGADR.

Viene quindi realizzato un ciclo di ritardo di tre istruzioni prima della
commutazione del LED successivo. Infine il puntatore LED viene decrc-
nientato. (Esso potrebbe anche essere incrementato).

Se il puntatore LED decrementa a “0" esso deve essere ricaricato con
*1 numero LED più alto. Questo c eseguito dalle due istruzioni succes­
sive. Qui $i è assunto che questa è una subroutine c quindi l'ultima
istruzione è un RST: “ ritorno da subroutine".

Esercizio 6-16: Assumendo che U programma precedente sia una subrou­
tine, si noterà che esso utilizza internamente i registri X ed Y e modifica i
loro contenuti. Assumendo che la subroutine possa utilizzre liberamente
l'area di memoria indicata dagli indirizzi Tl, T2, TS, T4, T5. si aggiungano
istruzioni all'inizio ed alla fine del programma in modo da garantire che,
quando si ha il ritorno dalla subroutine, i contenuti dei registri XedYsiano
ancora gli stessi che si avevano all’inizio della subroutine.

Esercizio 6-17: Esercizio analogo al precedente ma si assuma che rarea di
' memoria Tl, ecc. non sia disponibile per la subroutine. (Suggerimento: si

ricordi che esiste un meccanismo incorporato in ogni calcolatore per
preservare l'informazione in ordine cronologico).

Sono stati così risolti alcuni problemi d'ingresso/uscita.
Si consideri il caso di una periferica effettiva: la telescrivente.

Ingresso-Uscita di Telescrivente

La telescrivente è un dispositivo seriale. Essa invia e riceve parole di
informazione in un formato seriale. Ogni carattere è codificalo in for­
mato ASCII ad 8 bit (la tabella ASCII appare alla fine di questo libro).
Inoltre ogni carattere è preceduto da un bit di “ inizio" e termina con due
bit di “stop". Nella cosiddetta interfaccia 20 mA current loop utilizzata
molto frequentemente, lo stato della linea è normalmente ad “ I*'. Que­
sto è utilizzato per indicare al processore che la linea non è stata tagliata.
L'inizio è una transizione da “0’' ad “ 1'. Questo indica al dispositivo
ricevente che seguono i bit dei dati. La telescrivente convenzionale è un
dispositivo a 10 caratteri al secondo. Si è già stabilito che ogni carattere
richiede 11 bit. Questo significa che la telescrivente trasmetterà 110 bit al
secondo. Si può anche dire che è un dispositivo a 110 baud. Si progetterà
un programma per fare uscire bit seriali della telescrivente alla velocità
corretta.

Centodieci bit al secondo implica che i bit siano separati da 9,09
millisecondi. Questo dovrà essere la durata del ciclo di ritardo che sarà
realizzato tra bit successivi. Il formato della parola di una telescrivente

su ri snj>2

Figura 6.12: Formato di una parola dì telescrivente

TTYN LDA STATUS
BPL TTY1N REGISTRO USUALE DI STATO
JSR DELAY ATTENDE 9,09 MS
LDA TTYBIT BIT D 'IN IZIO
STA TTYBIT RITORNO ECO
JSR DELAY
LDX # $08 BIT CONTATORE

NEXT LDA TTYBIT SALVA L'INGRESSO
STA TTYBIT RITORNO ECO
LSR A CONSERVA IL BIT IN CARRY
ROL CHAR CONSERVA IL BIT IN CHAR
ISR DELAY
DEX BIT SUCCESSIVO
BNF. NEXT
LDA TTYBIT STOP BIT
STA TTYBIT
JSR DELAY
RTS

Figura 6.14: Ingresso da telescrivente

Si noti che questo programma differisce dal diagramma di (lusso
di Fig. 6-13.

Il programma dovrebbe essere esaminato con attenzione. La logica è
abbastanza semplice. Il fatto nuovo è che se un bit è letto dalla telescri­
vente (all'indirizzo TTYBIT) esso rimanda l’eco alla telescrivente. Que­
sta è una caratteristica convenzionale della telescrivente. Ogni volta che
un utente preme un tasto l’informazione è trasmessa al processore e
quindi ritorna al meccanismo stampante della telescrivente. Questo
verifica che le lince di trasmissione sono operative e che il processore sta
funzionando quando un carattere viene stampato correttamente su
carta.

Le prime due istruzioni costituiscono il ciclo di attesa. Il programma
attende che il bit di stato divenga vero ed inizia la lettura dei bit in
ingresso. Come al solito il bit di stato è assunto entrare nella posizione di
bit 7 poiché questa posizione può essere verificata in una sola istruzione
da BPL (opera diramazione se positivo e questo è il bit segno).

JSR è il salto alla subroutine. Si utilizza una subroutine DELA Y, per
realizzare un ritardo di 9,09 ms. Si noti che DELA Y può essere un ciclo
di ritardo oppure può utilizzare un temporizzatore hardware se il
sistema ne è dotato.

Figura 6 15: Ingresso telescrivente

Il primo bit ad entrare è il bit d'inizio. Deve arrivare l’eco alla
telescrivente altrimenti viene ignorato. Questo viene fatto dalle istru­
zioni 4 c 5.

Ancora, si attende il bit successivo, ma questa volta è un bit dati vero e
si deve conservarlo. Poiché tutte le istruzioni di scorrimento fanno
cadere un bit nel flag carry, occorrono due istruzioni per preservare il bit
dati. (L’X nella Figura 6-15): uno cade in C (“ LSR A"), ed un altro per
preservarlo nella locazione di memoria “CHAR” (ROL).

Attenzione ad un problema: l’istruzione “ ROL” distruggerà i conte­
nuti di C. Se si vuole che l'eco del bit dati ritorni occorre prendere la
precauzione di preservarlo prima che esso scompaia in CHAR.

Infine si ha l’eco del bit dati: (STA TTY BIT) e si attende per quello
successivo: (JSR DELAY) finché si accumulano tutti gli otto bit dati:
(DEX).

Ogni volta che si decrementa a zero, tutti gli 8 bit sono in CHAR.
Rimane da ottenere l’eco dei bit STOP ed è finito.

Esercizio 6-18: Si scriva la routine di ritardo che origina un ritardo di 9.09
millisecondi. (Subroutine DELA Y).

Esercizio 6-19: Utilizzando l'esempio del programma precedente svilup­
pato si scriva un programma PRINTC che stampi su una telescrivente i
contenuti della locazione di memoria CHAR.

Esercizio 6-20: Si modifichi il programma in modo che esso attenda un bit
START invece di un bit STA TUS.

Stampa di una Stringa di Caratteri

Si assumerà che la routine PRINTC (Vedere Esercizio 6-19) si occupi
della stampa di un carattere su stampante, oppure display o qualsiasi
dispositivo d’uscita. Qui si stamperanno i contenuti delle locazioni di
memoria da (START + N) a (START).

Si utilizzerà naturalmente il modo di indirizzamento indicizzato ed il

MEMORIA

OOMTATOM

REGISTRO m jSC fTA
ALLA STAMPANTI

PSTRING LDX # N NUMERI D I PAROLE
NEXT LDA START + N

JSR PRINTC
DEX
BPL NEXT

SOMMARIO SULLE PERIFERICHE

Sono state descritte le tecniche di programmazione di base utilizzate
per comunicare con dispositivi d'ingresso/uscita tipici. Inoltre per il

B 0 U .I M 5

Figura 6.1fl: Tre metodi di controllo I/O

trasferimento di dati sarà necessario condizionare uno o più registri di
controllo all'interno di ogni dispositivo I/O per condizionare corretta-
mente le velocità di trasferimento, il meccanismo di interrupt e varie
3ltrc scelte. Si dovrebbe consultare il manuale di ciascun dispositivo.
(Per maggiori dettagli sugli algoritmi specifici per scambiare ('informa­
to n e con tutte le periferiche più comuni si faccia riferimento al libro:
“Tecniche di Interfacciamento per Microprocessori".

Si £ ora imparato a dirigere dispositivi singoli. Comunque in un
sistema reale tutte le periferiche sono connesse ai bus e possono richie­
dere contemporaneamente il servizio. Come si può eseguire lo schedu-
ling del tempo del processore?

SCHEDULING D’INGRESSO/USCITA

Poiché le richieste d’ingresso/uscita possono verificarsi contempora­
neamente occorre realizzare in ogni sistema uno schcduling per determi­
nare in quale ordine sarà concesso il servizio. Vengono utilizzate tre
tecniche di base di ingresso/uscita che possono essere combinate con
qualunque altra.
Essi sono: polling (registrazione), interrupt, DMA. Il polling c l’inter-
rupt saranno descritte di seguito. Il DMA è una tecnica puramente
hardware e come tale non sarà descritta qui.

Registrazione (polling)

Concettualmente la registrazione è il metodo più semplice per la
direzione di periferiche multiple. Con questa strategia il processore
interroga i dispositivi connessi ai bus a turno. Se un dispositivo richiede

Figura 6.20: Lettura da un lettore di nastro di carta

Figura 6.21: Stampa su una perforatrice o stampante

servizio questo viene concesso. Se non richiede servizio viene esaminata
la periferica successiva. La registrazione non viene utilizzata peri dispo­
sitivi bensì per qualsiasi routine di servizio del dispositivo.

Per esempio, se un sistema è equipaggiato con una telescrivente, un
registratore ed un display CRT, la routine di registrazione dovrebbe

interrogare la telescrivente: “hai un carattere da trasmettere?". Essa
interrogherebbe la routine di uscita della telescrivente chiedendo “hai un
carattere da inviare? Quindi, assumendo che la risposta sia negativa essa
dovrebbe interrogare la routine del registratore nastro ed infine il display
CRT.

Nel caso di un solo dispositivo connesso al sistema, la registrazione
sarebbe utilizzata per determinare se è necessario il servizio. Come
esempio nelle figure 6-20 e 6-21 appaiono i diagrammi di flusso per la
lettura da un lettore di nastro di carta e la stampa su una stampante.

Esempio: un ciclo di registrazione per i dispositivi 1 ,2,3,4, (vedere flg.
6-18):

POLL4 LDa STATUS 1 LA RICHIESTA DI SERVIZIO
È IL BIT 7

BMI ONE
LDA STATUS 2 DISPOSITIVO 2?
BMI TWO
LDA STATUS 3 DISPOSITIVO 3?
BMI THREE
LDA STATUS 4 DISPOSITIVO 4?
BMI FOUR
JMP POLL 4 ALTRA VERIFICA

11 bit del registro di stato di ciascun dispositivo è “ 1" quando si
richiede servizio. Quando è rivelata una richiesta questo programma
opera una diramazione al dispositivo operatore, alPindirizzoONE perii
dispositivo 1, TWO per il dispositivo 2, ecc.

I vantaggi della registrazione sono ovvi: essa è semplice, non richiede
nessuna assistenza hardware e mantiene lutti gli ingressi e le uscite
sincroni con il Funzionamento del programma. Il suo svantaggio è
altrettanto ovvio: la maggior parte del tempo del microprocessore è
sciupato osservando dispositivi che non richiedono servizio. Inoltre il
microprocessore può fornire il servizio ad un dispositivo troppo tardi,
sciupando così molto tempo.

È perciò desiderabile un altro meccanismo che garantisca l'utilizza­
zione del tempo del processore per eseguire calcoli pratici piuttosto che
la registrazione di dispositivi non richiesti tutte le volte. Comunque si
sottolinea che la registrazione viene usata estensivamente quando un
processore non ha nient’altro di meglio da fare e che essa mantiene
semplice l'organizzazione globale. Si esaminerà ora l’alternativa princi­
pale alla registrazione: gli interrupt.

Intemipi

I l concetto di interrupt è illustrato in figura 6-18. È disponibile una
s p e c ia le linea hardware, la linea interrupt, c h e è connessa ad un pin
specializzato del microprocessore.

IR Q

91

51
IGNORA

INTERRUPT

I dispositivi d'ingresso/uscita multipli possono essere connessi a questa
linea di interrupt. Quando uno qualsiasi di questi richiede servizio esso
invia un livello oppure un impulso su questa linea. Un segnale di inter-
rupt è la richiesta di servizio da un dispositivo d’ingresso/uscita al
processore. Si esaminerà ora la risposta del processore a questo inter­
rupt.

In ogni caso il processore completa l’istruzione che stava eseguendo
od anche che potrebbe creare confusione all’interno del microproces­
sore. Successivamente il microprocessore opera la diramazione ad una
routine di manipolazione di interrupt che elaborerà l’interrupt stesso. La
diramazione a tale subroutine implica che i contenuti del contatore di
programma devono essere conservati nello stack. Un interrupt deve
perciò causare F immagazzinamento automatico del contatore di pro­
gramma nello stack. Inoltre il registro di stato (P) dovrebbe essere
automaticamene preservato poiché i suoi contenuti saranno alterati da
qualsiasi istruzione successiva. Infine se la routine di manipolazione
interrupt modificasse qualsiasi registro interno, questo dovrebbe essere
automaticamente preservato nello stack.

Dopo che questi registri sono stati preservati si può operare la dirama­
zione all’appropriato indirizzo di manipolazione interrupt. Alla fine di
questa routine tutti i registri saranno ri-immagazzinati ed uno speciale
ritorno da interrupt verrà eseguilo cosicché il programma principale
riassuma l’esecuzione. Si esamineranno in maggior dettaglio le due linee
di interrupt del 6502.

Intemipt del 6502

Il 6502 é equipaggiato con due linee di intem ipt IRQ ed NMI. IRQ è la
linea di interrupt regolare mentre NMI é un interrupt non m ascherarle a
priorità più elevata. Si esaminerà questo funzionamento.

IRQ è l’interrupl a livello attivato. Lo stato della linea IRQ sarà
rivelato oppure ignorato dal microprocessore dipendentemente dal
valore del suo flag interno 1 (flag della maschera interrupt). Si assumerà
inizialmente che gli interrupt siano abilitati. Ogni volta che IRQ sarà
attivato l’intem ipt sarà rivelato dal microprocessore. Non appena l’in-
terrupt é accettato (dopo il completamento dell’istruzione in corso di
esecuzione), il llag interno I é posto ad “ 1" automaticamente.Questo
preverrà un'ulteriore interruzione del microprocessore quando si sta
manipolando i registri interni. II 6502 quindi preserva automaticamente
i contenuti di PC (il contatore di programma) e P (il registro di stato)
nello stack.

s

Figura 6.23: Stack del 6502 dopo interrupt

L'aspetto dello stack dopo chc è elaborato un interrupt è illustrato in
Figura 6-23.

Successivamente il 6502 preleverà automaticamente il contenuto delle
locazioni di memoria "FF F E ” ed "FF F F". Questa locazione di memo­
ria a 16 bit conterrà il veitore-interrupi. II 6502 preleverà i contenuti di
questo indirizzo e quindi opererà la diramazione all'indirizzo specificato
dal vettore a 16 bit. L'utente è responsabile della deposizione di questo
indirizzo di vettore ad “FFFE" - "F F F F ". Comunque diversi dispositivi

possono essere connessi alla linea IRQ. In questo caso si avrà la dirama­
zione ad una singola routine di manipolazione di interrupt. Comesi può
differenziare tra i vari dispositivi?

Questo sarà studiato al paragrafo successivo.
L'interrupi NMI è essenzialmente identico ad IRQ eccetto che esso

non può essere mascherato dal bit I. E un interrupt a priorità più elevata
usato tipicamente per i guasti di alimentazione. Il suo funzionamento è
altrimenti identico eccetto che il processore opera automaticamente la
diramazione ai contenuti di FFFA ” - “ FFFB". Questo è illustrato in
Figura 6-24.

11 ritomo da interrupt è eseguito dall'istruzione RTI. Questa istru­
zione ritrasferisce nel microprocessore le tre parole di sommità dello
stack che contengono P e PC (il contatore di programa a 16 bit). Il
programma che era stato interrotto può quindi essere riassunto. Lo stato
interno della macchina è esattamente identico a quello che si ha all'i­
stante in cui si è verificato l’intemipt. L’effetto è stato quindi di intro­
durre un ritardo nell’esecuzione di un programma.

Prima del ritorno da interrupt il programmatore è responsabile di
chiarire che l’interrupt è stato asservito e del ri-immagazzinamento del
(lag di disabilitazione interrupt. Inoltre se la routine di manipolazione
interrupt modificasse i contenuti di qualsiasi registro come X od Y, il
programmatore è specificamente responsabile per preservare questi regi­
stri nello stack prima dell'esecuzione della routine di manipolazione
interrupt. Diversamente i contenuti di questi registri saranno modificati
e quando il programma interrotto riassumerà l’esecuzione essi non
saranno corretti.

Assumendo che la routine di manipolazione utilizzi i registri A, X ed
Y, saranno necessarie cinque istruzioni all'interno del manipolatore di
interrupt per preservare questi registri. Esse sono:

SAVAXY PHA INTRODUCE A NELLO STACK
TXA TRASFERISCI; X AD A
PHA LO INTRODUCE
TYA TRASFERISCE Y AD A
PHA LO INTRODUCE

Sfortunatamente il 6502 può soltanto introdurre direttamente i conte­
nuti di A o P nello stack. Ne risulta che preservare X ed Y vuol dire
impiegare tempo: questo richiede 4 istruzioni.
Questo è illustrato in Figura 6-2S.

Dopo il completamento della routine di manipolazione interrupt
questi registri devono essere ri-immagazzinati ed il manipolatore di

PLA ESTRAE Y DALLO STACK
TAY RMMMAGAZZINA Y
PLA ESTRAE X
TAX RI-IMMAGAZZINA X
PLA RI-IMMAGAZZINA A
R II USCITA

Y

A

P

PCL

PCH

STACK

Figura 8.25: Conservazione di tutti I registri

Esercizio 6-21: Utilizzando la tabella che indica il numero di cicli per
istruzione, riportata in appendice, si calcoli quanto tempo si impiegherà per
salvare e quindi ri-immagazzinare i registri A. X ed Y.

Per un confronto grafico del processo di registrazione in funzione di
quello di interrupt si faccia riferimento alla Figura 6-18 dove il processo
di registrazione è illustrato in alto ed il processo di inlem ipt in basso. Si
può vedere che, nella tecnica di registrazione, il programma impiega
molto tempo in attesa. Utilizzando gli interrupt il programma viene
interrotto, l'inlerrupl viene asservito e quindi ripristinato il programma.
Comunque lo svantaggio ovvio di un interrupt è di introdurre alcune
istruzioni addizionali all'inizio ed alla fine risolvendosi in un ritardo
prima che possa esere eseguita la prima istruzione del dispositivo mani­
polatore. Questo è un altro svantaggio meno evidente.

Avendo chiarito il funzionamento delle due linee di interrupt si consi­
derino ora due problemi importanti:

1. Come si risolve il problema di dispositivi multipli che fanno scattare
un interrupt allo stesso istante?

2. Come si risolve il problema di un interrupt che si verifica mentre si
sta asservendo ad un altro interrupt?

Dispositivi Multipli Connessi ad una Singola Linea di Interrupt

Ogni volta che si verifica un interrupt il processore opera automatica-
mente la diramazione ad un indirizzo contenuto in “ FFFE -FFFF” (per
un IRQ) o ad “ FFFA -FFFB" (per un NMI). Prima che esso possa fare
qualsiasi elaborazione effettiva la routine di manipolazione interrupt
deve determinare qual’è il dispositivo che fa scattare l'interrupt. Sono
disponibili due metodi per identificare il dispositivo nei casi più comuni:
un metodo software ed un metodo hardware.

IHTERBiPT VETTOne

L ! ROUTINE DI
; StflVl2>Q P

Figura 6.29: Interrupt registrato In (unzione «Jell'interrupt mediante vettore

Nel metodo software viene utilizzato il metodo di registrazione: il
microprocessore interroga a turno ciascun dispositivo e chiede: “Hai
fatto scattare rinterrupt?". Se no, esso interroga quello successivo.
Questo processo è illustralo in figura 6-26. Un programma campione è:

I.DA STATUS 1
BM1 ONE
LDA STATUS 2
BMI TWO

1 r e g is t r a z io n e

r

J r h_±___, «OUTINEOI }

d is p o s it iv o ?— r « « b t w o m e

ROUTINE o i
SERVIZIO

- n

ROUTINE 0*
S£PVI2*0 N

Il metodo hardware utilizza componenti addizionali ma fornisce
immediatamente l’indirizzo del dispositivo che richiede l’interrupt,
assume alla stessa richiesta di intemipi. Il dispositivo ora universal­
mente utilizzato per fornire questa possibilità è chiamato “ PIC” ovvero
contro llo re della priorità di interrupt. T ale PIC posizionerà automatica­
m e n te sul bus dati il richiesto indirizzo effettivo di diramazione per la
periferica che richiede interrupt. Quando il 6502 andrà ad “ FFFE-
FFFF” preleverà questo vettore indirizzo. Questo concetto è illustrato
in Figura 6-26.

Nella maggior parte dei casi la velocità di reazione ad un interrupt non
è cruciale e viene utilizzato un approccio a registrazione. Se invece il
tempo di risposta è una considerazione primaria occorre utilizzare un
approccio hardware.

MPU
INT

INTN

Figura 6.27: Diversi dispositivi possono utilizzare la stessa linea di Interrupt

Interrupt Simultanei

L'altro problema che può verificarsi è che un nuovo interrupt possa
essere fatto scattare durante l'esecuzione di una routine di manipola­
zione interrupt. Si esaminerà cosa accade e come viene utilizzato lo stack
per risolvere il problema. È stato indicato al Capitolo 2 che questo è un
altro ruolo essenziale dello stack ed è giunto il momento di dimostrare il
suo impiego. Ci si riferirà alla Figura 6-28 per illustrare gli interrupt
multipli. Nell’illustrazione il tempo trascorre andando da sinistra a
destra. I contenuti dello stack sono mostrati in fondo all'illustrazione.
Guardando a sinistra, all’istante TO, è in esecuzione il programma P.
Spostandosi a destra, all'istante T l, si verifica l’interrupt II. Si assumerà
che la maschera di interrupt sia abilitata, autorizzando cosi T l. Il
programma P sarà sospeso. Questo i mostrato in fondo all'illustrazione.
Lo stack conterrà il contatore di programma ed il registro di stato del
programma P, almeno, più qualsiasi registro a scelta che deve essere
conservato dal manipolatore di interrupt o da 11 stesso.

All’istante T l inizia l’esecuzione dell’interrupt II fino all’istante T2.
All’istante T2 si verifica l’interrupt 12. Si assumerà che l’interrupt 12
abbia una priorità più elevata dell’interrupt II. Se esso avesse una

priorità più bassa sarebbe ignorato Tino a che 11 non è stato completato.
Airistante T2 i registri per 11 sono depositati nello stack e questo appare
in fondo all'illustrazione.
Anche i conteggi del contatore di programma e di Psono introdotti nello
stack. Inoltre la routine di 12 deve decidere se immagazzinare alcuni
registri addizionali. 12 sarà eseguito fino al completamento fino all’i­
stante T3.

Quando 12 termina i contenuti alla sommità dello stack sono estratti
automaticamente nel 6S02 e questo è illustrato in fondo alla Figura 6-28.

TEMPO r.

PROGRAMMA P »

INTEHBUPT I

IWTERRUPT 1 :

IM T tB R U P T i ,

STACK

Figura 6.28: Stack durante gli inlerrupt

Cosi automaticamente, l’interrupt 11 riassume l’esecuzione. Sfortunata­
mente, all’istante T4 si verìfica ancora un altro interrupt a priorità più
alta. Si può vedere in fondo all'illustrazione che i registri p e r ii vengono
nuovamente introdotti nello stak. L’interrupt 13 è eseguito da T 4 a T5 e
termina a T5. In questo istante i contenuti dello stack sono estratti dal
6502 e l’intcrrupt 11 riassume l'esecuzione. Questa volta si ha il comple­
tamento ed esso termina a T6. A T6 i registri rimanenti che sono stati
conservati nello stack sono estratti dal 6502 ed il programma P può
riassumere l’esecuzione. Il lettore verificherà che lo stack è vuoto a
questo punto. Infatti il numero di linee tratteggiate, indicanti la sospen­
sione del programma, mostra allo stesso tempo quanti livelli si trovano
nello stack.

Esercizio 6-22: Se si assume che ogni volta che si verifica un interrupt siano
conservati il contatore di programma PC. il registro P e Taccumulatore
questi impiegheranno almeno quattro locazioni. (In pratica X ed Ynecessi­
tano spesso di essere conservati e si utilizzano sei locazioni). Assumendo

p e rc iò che nello stack siano conservati soltanto tre registri quanti livelli di
in te rru p t consente il 6502? (Si ricordi che lo stack è limitato a 256 locazioni
a ll 'in te rn o della Pagina 1).

Esercizio 6-23: Assumendo questa volta che nello stack possono essere
p re s e rv a t i 5 registri, qua!'è il massimo numero di interrupt simultanei che
po sso n o essere manipolali? Quale altro fattore contribuirà a ridurre ulte­
r io rm e n te il numero di interrupt contemporanei?

Si deve sottolineare comunque che in pratica i sistemi a microcalcola­
tore sono normalmente connessi ad un piccolo numero di dispositivi
utilizzanti gli interrupt. Quindi è improbabile che in tale sistema si
verifichi un numero elevato di interrupt contemporanei.

Sono stati ora risolti tutti i problemi normalmente associati con gli
interrupt. Il loro impiego è, infatti, semplice e dovrebbero essere utiliz­
zati vantaggiosamente anche dai nuovi programmatori. Si completerà
l'analisi delle risorse del 6502 introducendo un ulteriore istruzione i cui
effetti sono identici ad un interrupt sincrono.

Break

Il comando BRK nel 6S02 è l'equivalente di un interrupt software.
Esso può essere inserito nel corso di un programma e si risolve, proprio
come nel caso IRQ, nel salvataggio automatico di PC e P ed in una
diramazione indiretta ad “ FFFE -FFFF". Questa istruzione può essere
vantaggiosamente utilizzata per generare interrupt programmali
durante il collaudo di un programma. Questo originerà la creazione di
punti di diramazione, arrestando il programma ad una determinata
locazione ed operando la diramazione ad una routine che consentirà
tipicamente all'utente di analizzare il programma. Poiché l'effetto netto
di un break e di un intemipt è identico dopo la loro esecuzione occorre
fornire un significato al program m alo» per determinare se è slato
utilizzato un interrupt oppure un break. Il 6502 porrà il flag B del
registro P (conservato nello stack) ad “ 1" se era un break ed a “0” se era
un interrupt. La verifica dello stato di questo bit può essere eseguita dal
semplice programma seguente:

«TEST PLA LEGGE IN A LA SOMMITÀ' DELLO STACK
PHA RISCRIVE
AND# SIO MASCHERA DEL BIT B
BNE BRKPRG VA AL PROGRAMMA BREAK

Questo programma di verifica viene normalmente inserito alla fine
della sequenza di registrazione che determina la natura del dispositivo
che fa scattare l’interrupt.

Attenzione: una caratteristica del break è di preservare automatica-
mente i contenuti del contatore di programma più 2. Poiché il break è
una istruzione di un solo byte il programmatore deve talvolta aggiustare
i contenuti del contatore di programma nello stack utilizzando un'istru­
zione dì incremento o decremento per riassumere l'esecuzione dell’indi­
rizzo corretto. In particolare il break è utilizzato estensivamente durante
il collaudo scrivendolo su un’altra istruzione del programma. Se il
programma è riassemblato prima dell’esecuzione, i contenuti del conta­
tore di programma che sono stati salvati dovranno essere normalmente
incrementati di I.

HPTOflNO

SOMMARIO

È stato presentato in questo capitolo l’insieme delle tecniche utilizzate
per comunicare col mondo esterno. Dalle routine elementari d’ingres-
5o/uscita ai programmi più complessi per comunicare con periferiche
effettive, si c imparato a sviluppare tutti i programmi usuali e si è anche
esaminata l’efficienza di programmi tipici nel caso di un trasferimento
parallelo e di una conversione da parallelo a seriale. Infine si è imparato
Li classificare il funzionamento di periferiche multiple utilizzando regi­
strazione e d’interrupt. Naturalmente molti altri dispositivi d’ingres-
so/uscita devono essere connessi al sistema. Con l’insieme delle tecniche
che sono state presentate e con la comprensione delle periferiche coin­
volte è possibile risolvere la maggior parte dei problemi comuni.

Al capitolo successivo si esamineranno le caratteristiche effettive dei
chip di interfaccia ingresso/uscita normalmente connessi al 6502.
Quindi si considereranno le strutture dati di base di cui il programma­
tore deve conoscere l'utilizzazione.

ESERCIZI

Esercizio 6-24: Vn display LED a 7 segmenti può mostrare anche digit
diversi da quelli dell'alfabeto esadecimale. Si calcolino i codici di: H, I. J, L.
0. P. S. Ù. Y. g, h. i. j, l. n. o, p, r, t. u, y.

Esercizio 6-25: Il diagramma di flusso per la direzione di interrupt appare
nella Figura 6-29. S i risponda alle seguenti domande:
a- Che cosa è fa tto dall'hardware e tosa dal software?
b- Qual’è I‘impiego della maschera?
c- Quanti registri dovrebbero essere preservati?
d- Come viene identificato il dispositivo che origina f interrupt?
e- Cosa fa l ’istruzione RTI? In cosa differisce da un ritorno da subroutine?
f~ Si suggerisca un modo per manipolare una situazione di overflow dello

stack.
S- Qual'è lo svantaggio ("tempo perso") introdotto dal meccanismo di

interrupt?

DISPOSITIVI D’INGRESSO/USCITA

i n t r o d u z i o n e

Si è imparato come programmare il microproccssorc 6502 nella maggior
parte delle situazioni più comuni. Comunque è necessaria una tratta­
zione particolare dei chip d'ingresso/uscita normalmente connessi al
microprocessore. A causa del progresso dell'integrazione LSI sono stati
introdotti nuovi chip prima inesistenti. Ne risulta che la programma­
zione di un sistema richiede, naturalmente, prima di programmare, il
microprocessore stesso e poi anche di programmare i chip d ingresso/u-
scita. Infatti è spesso molto più difficoltoso ricordare come program­
mare le varie scelte di controllo di un chip d'ingresso/uscita che pro­
grammare il microprocessore stesso! Questo non perchè la programma­
zione in sè è più difficoltosa ma perchè ciascuno di questi dispositivi ha le
s u e eccentricità.
Si esaminerà di seguito prima il dispositivo d ’ingrcsso/uscita più gene­
rale, il chip d’ingrcsso/uscita programmabile (in breve un "PIO ") c poi i
"miglioramenti" di questo PIO convenzionale ora utilizzato frequente­
mente con il 6502: il 6520, 6530, 6522 e 6532.

Il PIO CONVENZIONALE (6520)

Non esiste il “ PIO Convenzionale” . Comunque il dispositivo 6520 è
essenzialmente analogo nella funzione a lutti i PIO similari prodotti
dagli altri costruttori per lo stesso scopo. Lo scopo di un PIO è di fornire
una connessione multiporta per i dispositivi d’ingrcsso/uscita. (Una
"porta” è semplicemente un set di 8 lince d’ingrcsso/uscita). Ogni PIO
fornisce almeno due set di linee ad 8 bit per dispositivo I/O . Ciascun
dispositivo I/O richiede unóu/jfcrdatiperstabilizzareicontenutidelbus
dati almeno in uscita. Perciò il PIO sarà equipaggiato almeno di un
buffer per ogni porta.

Inoltre è stato stabilito che il microcalcolatore utilizzerà una proce­
dura handshaking od anche interrupt per comunicare con il dispositivo
I/O. Il PIO utilizzerà anche una procedura simile per comunicare con la

periferica. Ogni PIO deve, perciò, essere equipaggiato con almeno due
lìnee dì controllo per porta per realizzare la funzione handshaking.

Il microprocessore richiederà anche la capacità di leggere lo stato di
ciascuna porta. Ogni porta deve essere equipaggiata con uno o più bit di
stato. Infine aU'interao di ogni PIO esisterà un ceno numero di scelte per
configurare le sue risorse. Il programmatore deve essere in grado di
accedere al registro speciale all’interno del PIO per specificare le scelte di
programmazione. Questo è il registro di controllo. Nel caso del 6502
l’informazione di stato è parte del registro di controllo.

Figura 7.1: PIO tipico

Una caratteristica essenziale del PIO è il fatto che ogni linea deve
essere configurata come linea d’ingresso oppure d’uscita. Lo schema di
un PIO appare in Figura 7-1. Il programmatore deve specificare per
qualsiasi linea se sarà d’ingresso o d'uscita. Per programmare la dire­
zione di una linea viene fornito un registro di direzione dati per ciascuna
porta. Uno “0” in una posizione di bit del registro di direzione dati
specifica un ingresso. Un “ 1" specifica un'uscita.

Può essere sorprendente osservare che uno “0" è utilizzato per un
ingresso ed un “ 1" per un'uscita quando in realtà “0" dovrebbe corri­
spondere all'Uscita ed “ 1'' all’Ingresso. Questo è abbastanza deliberato:
ogni volta che viene applicata l’alimentazione al sistema è di grande
importanza che tutte le linee I/O siano configurate come ingresso.

D iversam ente se il microcalcolatore è connesso ad alcune periferiche
guaste esso potrebbe attivarle accidentalmente, Quando viene applicato
u n reset tutti i registri sono normalmente azzerati e questo risulterà nella
configurazione come ingressi di tutte le linee del P IO . La connessione al
microprocessore appare sulla sinistra dell’illustrazione. Il P IO connette
n atu ra lm en te al bus dati ad 8 bit, al bus indirizzi del microprocessore ed
al bus di controllo del microprocessore. Il programmatore specificherà
semplicemente l'indirizzo di qualsiasi registro cui si desidera accedere
all’in te rno del PIO . Il 6522, chc è compatibile col Motorola 6820. ha

7 4 5 è ì 2 1 G

IBQAI IVQA7 CA2 CONTROLLO ODftA
ACCESSO

CAI CON*
TFIOLLO

SOI.O LETTUflA1 LÉTTUPA SC fltTTuB i M '-L A

Figura 7.2: Formato della parola di controllo PIA

b s i *50 CRA ; Cflft ? R E SISTO SCLE2'ONATO

0 0 1 - MtGlSTRO d c u a
^EfiFCO’CA A

0 D 0 -
REG<5T*0

d i r e z i o n i d a t i a

0 I * -
R E G IS T R O DI

C O N T R O L L O A

■ 0 - 1 R E G IS T R O D t L lA
P E R IF E R IC A B

i 0 - {] REGISTRO
DIREZIONE D A T I b

■ - -
REGISTRO

Di CONTROLLO R

Figura 7.3: Registri PIA di indirizzamento

ereditato una peculiarità: esso è equipaggiato con 6 registri interni.
Comunque si può specificare solo un registro su quattro! Questo pro­
blema viene risolto commutando la posizione di bit 2 del registro di
controllo. Quando questo bit è uno “0” si può selezionare il corrispon­
dente registro di direzione dati. Quando è un “ I” può essere selezionato
>• registro dati. Perciò ogni volta che il programmatore desidera scrivere
dati nel registro di direzione dati dovrà prima assicurarsi che il bit 2
dell’appropriato registro di controllo sia zero, prima di poter selezionare
questa registro. Questo è talvolta inadatto per il programma ma è
‘mporiantc da ricordare per evitare grosse difficoltà.

Per chiarire l’effetto della selezione di indirizzo sul 6520 viene ripor-
taia la tabella di selezione indirizzo.

RSO cd RSI sono due segnali di selezione registro che sono stati derivati
dal bus dati. In altre parole essi rappresentano due bit dell’indirizzo
specificato dal programmatore. CRA è il registro di controllo della porta
A. CRA (2) è il bit 2 di questo registro. CRB è il registro di controllo della
porta B.

Il Registro di Controllo Interno

Il registro di controllo del 6520 specifica, come si è visto nella posi­
zione di bit 2, un modo di selezione per i registri interni della porta.
Inoltre esso fornisce un certo numero di opzioni per la generazione o
rivelazione di interrupt c per la realizzazione di funzioni handshake
automatiche.
La descrizione completa delle caratteristiche disponibili non è necessaria
in questa sede. L'utente di qualsiasi sistema pratico utilizzante il 6520
farà semplicemente riferimento al data-sheet che mostra l'efTetto del
posizionamento dei vari bit del registro di controllo. Ogni volta che il
sistema è inizializzato il programma dovrà caricare il registro di con­
trollo del 6520 con i contenuti corretti per la specifica applicazione.

Il 6530
Il 6530 realizza una com binazione di quattro funzioni: RAM, ROM,

PIO c TIMER, La RAM è una memoria 64 x 8. La ROM è una memoria
I k x 8. iltimerfornisce al programmatore le possibilità di temporizza-

7ionc ad intervallo multiplo. La parte PIO è essenzialmente analoga al
<i520. precedentemente descritto: ci sono due porte; ogni porta ha un
registro dati ed un registro di direzione dati più un registro di comando,
lino “0" in una data posizione di bit del registro di direzione specifica un
ingresso, mentre un “ 1" specifica un'uscita.

II timer ad intervallo programmabile può essere programmato per
contare fino a 256 intervalli (esso internamente ha 8 bit). Il programma­
tore può specificare che il periodo di tempo sia 1,8,64 oppure 1024 volte
il clock del sistema. Ogni volta che viene raggiunto il conteggio il flag
interrupt del chip sarà posto al valore logico “ 1". I contenuti del timer
sono posizionati per mezzo del bus dati. I quattro possibili intervalli di
tem po devono essere specificati sulle linee A0 ed Al del bus indirizzi.

Tre pin della porta B hanno un ruolo duale: PB5. PB6 e PB7 possono
essere utilizzati per funzioni di controllo. Il pin PB7, per esempio, può
essere programmato come un ingresso interrupt.

Questo chip è particolarmente utilizzato nella scheda KIM (si noti che
sulla KIM, PB6 non è disponibile).

Programmazione di un PIO
Come esempio si riporta un programma che impiega un 6520 oppure

un 6522 (si assume che il registro di controllo sia già stato posizionato).

LDA * FF PONE DIREZIONE DATI
■STA DDRB CONFIGURA B COME USCITA
l.DA » 00
STA IORB GENERA L'USCITA ZERO

DDRB è l’indirizzo del Registro di Direzione Dati della porta B di
questo PIO. IORB è l’Ingresso-Usciia o Registro Dati della porta B,
“ FF” esadecimalc ò “ 11111111" binario = tutte uscite.

Il 6522

H 6522, detto anche “adattatore di interfaccia versatile” (VIA), i una
Arsione migliorata del 6520. Oltre alle possibilità del 6520, esso fornisce
due timer ad intervallo programmabile ed un convertitore serie-parallelo
P'ù parallelo-serie oltre al latch dei dati d’ingresso. La descrizione
hardware dettagliata di questo componente e oltre Io scopo di questo
libro.

Figura 7.6 impiego del PIA: caricamento direzione dati

Figura 7 7: Impiego del PIA: lettura stato

cw«
Cài ■
iIÌ3 ■

«5' ■
9. * ■

;N .
trnrf

n f r
IN G R E S S O B ljS

CONr nOLLO

5 E L E .-M 0 N LCMif»

*ElE.Z'ONE
REC .IST& 0

ico as

CONTROLLO

:
' iC s * .

CA l
-C*2

-au-pa:

P90 *è7

Semplicemente con la descrizione fornita per i precedenti componenti
dovrebbe essere semplice per il programmatore familiarizzarsi con l’in-
dirizzamento dei registri intemi di questo componente e della sua pro­
grammazione. Questa informazione viene fornita nei data-sheet del
costruttore.

Il 6532

Il 6S32 è un chip combinazione che comprende una RAM 128 x 8, un
PIO con due porte bidirezionali ed un timer ad intervallo programma-
bile. Esso viene utilizzato nella scheda SYM, costruita dalla Synertek
Systems, analoga alla scheda KIM costruita dalla MOS Technology e
dalla Rockwell. Anche qui l'utente dovrebbe esaminare attentamente i
data-sheet di questo componente per imparare come indirizzare ed
utilizzare i vari registri interni.

SOMMARIO

Sfortunatamente, per rendere effettivo l'impiego di tali componenti,
sarà necessrio capire in dettaglio la funzione di ogni bit, o gruppo di bit,
aH'interno dei vari registri di controllo. Questi nuovi chip complessi
rendono automatiche molte procedure che precedentemente venivano
eseguite mediante software oppure mediante logica speciale. In partico­
lare molte delle procedure di handshaking sono automatizzate all’in­
terno dei componenti come il 6522.
Inoltre alcune manipolazioni e rivelazioni di interrupt possono essere
interne. Con le informazioni presentate al capitolo precedente il lettore
dovrebbe essere in grado di esaminare i data shect corrispondenti e
capire quali sono le funzioni dei vari segnali e registri. Naturalmente
stanno per essere introdotti nuovi componenti che offriranno una realiz­
zazione hardware di algoritmi ancora più complessi. Anche qui il lettore
dovrebbe essere in grado di capire studiando attentamente i data-sheet
del costruttore.

ESEMPI DI APPLICAZIONE

in t r o d u z io n e

Questo capitolo ha lo scopo di verificare l'abilità alla programmazione
poiché presenta una certa quantità di programmi di utilità pratica.
Questi programmi o “ routine” si incontrano frequentemente nelle appli­
cazioni e sono generalmente chiamati “ utility routines” .
Essi richiederanno una sintesi delle conoscenze e delle tecniche presen­
tate (Ino ad ora.
Si procederà al prelievo di caratteri da un dispositivo I/O e ad elaborarli
in vario modo. Prima però è necessario azzerare un'area della memoria
(questo potrebbe non essere necessario ma ciascuno di questi programmi
è presentato soltanto come esempio di programmazione).

AZZERAMENTO DI UNA PARTE DELLA MEMORIA

Si vuole azzerare i contenuti della memoria dall’indirizzo BASE + I
all'indirizzo BASE + LENGHT. dove LENGHT è minore'di 256.

Il programma è:

ZFROM LDX # LF.NGTH
LDA # 0

CLOAR s ta BASE. X
DEX
BNF CLEAR
RTS

Si noti che il registro X e utilizzato come indice per puntare alla loca­
zione corrente della parte di memoria da azzerare.
L’accumulatore A è caricato solo una volta con il valore 0 (tutti zeri) e
quindi trascritto alle locazioni di memoria successive:
RASE + LENGTH, BASE + LENGTH — l, ecc. finché X è decremen­
t o a 0. Quando X = 0 si ha il ritorno dal programma.

Per esempio, in una verifica delle funzioni di una memoria, questo
programma potrebbe essere utilizzato per azzerare un blocco e quindi
per verificare i suoi contenuti.

Esercizio 8-1: Si scriva un programma di verifica di memoria che azzeri un
blocco di 256 parole e quindi verifichi che ogni locazione è 0. Quindi esso
scriverà tutti uni e verificherà il contenuto del blocco. Quindi esso scriverà
01010101 e verificherà i contenuti.

Si registreranno ora i dispositivi I/O per vedere se uno di essi richiede
servizio.

POLLING DEI DISPOSITIVI DI I/O

Si assumerà che al sistema in esame siano connessi 3 dispositivi I/O . I
loro registri di stato siano localizzati agli indirizzi 10STATUS1, IOSTA-
TUS2, 10STATUS3.
Se il loro bit di stato è nella posizione di bit 7 si leggerà il registro di stato
e si verificherà il bit segno. Se il bit di stato è dovunque si trarrà
vantaggio daU'isiruzione BIT del 6502:

LDA MASK
BIT IO STA TU S I
BNE F O U N D 1
BIT IOSTATUS2
BNE FO U N D 2
BIT IO STA TU S3
BNE F O lfN D J
(uscita in caso di e rrore)

Se si verifica la posizione di bit 7 la MASK conterrà per esempio
“00100000". Come risultato dell'istruzione BIT il bit 2 del flag di stato
sarà posto ad 1 se “ MASK AND IOSTATUS" non è zero, cioè se il bit
corrispondente ad IOSTATUS è uguale a quello corrispondente di
MASK. L’istruzione BNE (opera diramazione se non uguale zero)
quindi si risolverà in una diramazione nll'appropriata routine FOUND.

ACCETTAZIONE DEI CARATTERI ALL'INGRESSO

Si assuma di aver trovato che un carattere è disponibile sulla tastiera.
Si accumulino i caratteri in un'area di memoria chiamata buffer finché

n0n si incontra un carattere speciale chiamato SPC, il cui codice è stato
precedentemente definito.

La subroutine GETCHAR preleverà un carattere dalla tastiera
(vedere il capitolo 6 per ulteriori dettagli) e lo posizionerà nell'accumula­
tore. Si assume che al massimo saranno prelevati 2S6 caratteri prima di
trovare un carattere SPC.

STBING LD X » 0 IN IZ IA LIZZ A L’IN D IC E A ZERO
N IX T JSR G E T C H A R

C M P * SPC È IL C A R A TT E R E BRK?
BEQ O U T SE SI TER M IN A
STA B U F F E R , X NO: CON SERVA CA R A TT E R E
INX IN CR EM EN TA TL PU N TA TO R E
JM P N E X T A C C ETTA IL C A R A TT E R E

SU CCESSIVO
o r i RTS

Esercizio 8-2: Si migliori questa routine di base:
a- Operi l'eco di un carattere di ritorno al dispositivo (per una telescrivente

per esempio)
b- V erifichi che la stringa d ’ingresso non sia più lunga di 256 caratteri

Ora si ha una stringa di caratteri in un buffer della memoria. Si processe­
ranno in vari modi.

VERIFICA DI UN CARATTERE

Si determini se il carattere posizionato alla locazione di memoria LOC
è uguale a 0,1 oppure 2:

LDA LOC
CM P * $00
BEQ ZERO
C M P # $01
BEQ O N E
CM P P $02
BEQ TW O
JM P N O T FN D

legge semplicemente il carattere quindi si impiega l'istruzione CMP
controllare il suo valore.

Si esamina ora una verifica diversa.

VERIFICA DI PARENTESI

Si determini se il carattere ASCII posizionato alla locazione di memo­
ria LOC è una cifra tra 0 e 9:

BRACK LDA # S 4 0
A D C * S40 FO RZA L’O V ER FLO W
LDA LOC
O RA # S80 PO N E BIT 7 = 1
C M P # SBO 0 A SCII
BCC TO O LO W
C M P # SB9 9 A SCII
BEQ O U T 9 ESA TTA M EN TE
BCS T O O H IG H

O U T C LC
CLV
RTS

TO O LO W SEC PONE C A D UNO
CLV
RTS

T O O H IG H RTS (C 'È U N O)

0 ASCII è rappresentato in esadecimale da “ BO"
9 ASCII è rappresentato in esadecimale da “ B9"

Si ricordi che utilizzando un’istruzione CMP il bit carry sarà posto ad I
se il valore letterale che segue ì minore o uguale al valore dell'accumula*
torc. Esso sarà posizionalo a 0 se maggiore.

Se BO è maggiore del carattere, il carattere è troppo basso e si verifica una
diramazione.

Quindi si confronta con il registro B9. Se esso è minore od uguale a 9 sì
esce. Diversamente si va TOOHIGH.

Quando si esce da questo programma si vuole conoscere se il numero è
TOOLOW, TOOHIGH oppure tra 0 e 9.

Questo sarà indicato dai flag C e V. V non viene alterato da CMP. Invece
CMP cambia Z, N e C.

Quando si ritorna da questa subroutine uno ‘'0” in V indica “ troppo
alto", un “ 1” in C indica “ troppo basso" ed uno “0” in C indica una cifra
corretta tra 0 e 9.

Naturalmente le altre conversioni, come il caricamento di un digit
nc| l'accumulatore, potrebbero essere utilizzate per indicare il risultato
delle verifiche.

Esercizio 8-3: Si semplifichi il programma precedente verificando rispetto
al carattere A SC II che segue " 9 ' invece di 9 esatto.

Esercizio 8-4: Si determini se un carattere A SCU contenuto nell’accumula­
tore è una lettera dell'alfabeto.

Quando si utilizza una tabella ASCII si noterà che viene quasi sempre
impiegata la parità. Per esempio l’ASCII di “0” è “0110000*’ cioè un
codice a 7 bit. Comunque se si usa la parità dispari, per esempio, (si
garantisce che il numero totale di uni in una parola sia dispari) allora il
codice diviene “ 10110000". Un ulteriore “ 1” viene aggiunto a sinistra.
Questo è “B0" in esadecimale. Si svilupperà ora un programma per
generare la parità.

GENERAZIONE DI PARITA*

Questo programma genererà una parità pari nella posizione di bit 7:

PARITY LDX * 107
LDA # soo
STA O N E C N T
LDA C H A R
ROL A

NEXT ROL A

ONL
BCC ZERO
INC O N E C N T

ZERO D EX

BNE N EX T
ROL A
ROL A
LSR O N EC N T
LSR
RTS

A

C O N T E G G IO D I BIT

C O N T E G G IO DI UNI
LETTU R A D EL C A R A TTER E
SC A R IC A IL B IT 7
BIT SUCCESSIVO
È UN I?

D EC R E M E N T A IL C O N T E G G IO
D I BIT
U L TIM O BIT?
R l-IM M A G A ZZ IN A IL B IT 0
SCA R IC A IL BIT*
IL BIT PIÙ* A D ESTRA È LA PA R ITA '
LO M ETTE IN A

1} registro X è utilizzato per coniare i bit mentre essi sono spostati a
sinistra dell’accumulatore. Ogni volta che un “ l” viene portato via dalla
sinistra dcll’accumulatore (mediante la verifica di BCC) il contatore di

viene incrementato. Quando sono stati spostati 8 bit (il programma
'Enora il bit 7 che sarà il bit di parità) A viene fatto scorrere a sinistra

altre due volte cosicché il bit 6 è a sinistra di A.
Il bit di parità corretto è il bit più a destra di ONECNT: esso viene
posizionato nel bit carry da LSR e diviene il bit 7 di A. Un’altra
istruzione LSR A ricopia questo bit nella posizione di bit 7 di A ed il
problema proposto è risolto.

Esercizio 8-5: Utilizzando il programma precedente come esempio si verifi­
chi la parità di una parola. Si deve calcolare la parità corretta e quindi
confrontarla con quella prevista dal programma.

CONVERSIONE DI CODICE: da ASCII a BCD

La conversione da ASCII a BCD è molto semplice. Si osserverà che la
rappresentazione esadecimale dei caratteri ASCII da 0 a 9 vada BOa B9.
La rappresentazione BCD si ottiene perciò semplicemente eliminando la
“B” cioè mascherando il nibble di sinistra (4 bit):

LDA CHAR
A N D * 5 0 F M A SC H ER A IL N IBBLE DI SIN ISTR A
STA B C D C H A R

Esercizio 8-6: Si scriva un programma per convertire il BCD in ASCII.

Esercizio 8-7: (Più difficoltoso) Si scriva un programma per convenire il
BCD in binario.

Suggerimento: Nj N: Ni N0in BCD è(((NjX 10) + N2) x IO + Ni) x 10 +
No in binario.
Per moltiplicare per 10 si impieghi lo spostamento a sinistra (=x2), un
altro scorrimento a sinistra (=x4), un ADC (=x5) ed un altro scorri­
mento a sinsitra (=xl0).
Nella notazione BCD intera la prima parola può contenere il conteggio
dei digit BCD, il nibble successivo contiene il segno ed ogni nibble
successivo contiene un digit BCD (non si considera il punto decimale).
L'ultimo nibble del blocco può essere inutilizzato.

RICERCA DELL’ELEMENTO MAGGIORE DI UNA TABELLA

L'indirizzo di partenza della tabella sia contenuto all’indirizzo di
memoria BASE in pagina zero. Il primo ingresso della tabella è il
numero di byte che essa contiene. Questo programma ricercherà l’ele­
mento maggiore della tabella. 11 suo valore sarà depositalo in A e la sua
posizione sarà immagazzinala alla locazione di memoria INDEX.

Q uesto programma utilizza i registri A ed Y ed impiegherà l’indirizza-
men to indiretto, cosicché esso può ricercare qualsiasi tabella posizionata
genericamente nella memoria.

MAX LDY # 0 Q U E STO È L’IN D IC E ALLA T A B EL­
LA

LDA (BASE). Y INGRESSO ACCESSO 0 = LU N G H EZ­
ZA

TAY LO CO N SERV A IN Y
LDA # 0 VA LO RE M A SSIM O

IN IZ IA LIZZ A TO A ZERO
STA INDEX IN IZIA L1ZZA L’IN D IC E A ZERO

LOOP CM P (BASE), Y L 'EL EM EN T O A TTU A LE È
IL M ASSIM O?

BCS N O SW ITC H SI?
LDA (BASE). Y CA R IC A IL N U O V O M A SSIM O
STY IN D EX LO C A Z IO N E D EL M A SSIM O

n o s w i t c h DEY PU N TA AL N U O V O ELEM EN TO
BNE LOOP CO N TIN U A LA V ER IFIC A ?
RTS F IN IT O SE Y = 0

Questo programma verifica prima l‘n-esimo ingresso. Se questo è mag­
giore di 0 esso va in A e la sua locazione è memorizzata in INDEX.
Quindi viene verificato 1' (n-l)-esimo elemento, ecc. Questo programma
lavora con interi positivi.

Esercizio 8-8: Si modifichi il programma cosicché esso lavori anche per
numeri negativi in complemento a 2.

Esercizio 8-9: Questo programma lavorerà anche con caratteri ASCII?

Esercizio 8-10: Si scriva un programma che selezioni n numeri in ordine
decrescente,

Esercizio 8-11: Si scriva un programma che scelga n nomi (di 3 caratteri
ciascuno) in ordine alfabetico.

SOMMA DI N ELEMENTI

Questo programma calcolerà la somma a 16 bit degli n ingressi di una
tabella. L'indirizzo di partenza della tabella é contenuto all'indirizzo di
memoria BASE in pagina zero. Il primo ingresso della tabella contiene il
numero N di clementi. La somma a 16 bit sarà depositata alle locazioni

di memoria SUMLOc SUMHI. Se la somma dovesse richiedere più di 16
bit, sarebbero conservati solo i 16 bit più bassi (si dice che i bit di ordine
elevato sono stati troncati).
Questo programma modificherà i registri A ed Y. Esso considera al
massimo 2S6 elementi.

A D L O O P

N O C A RRY

LDA # 0 IN IZ IA I.IZ Z A SUM
STA SU M LO IN IZ IA LIZZ A SUM
STA SU M H I IN IZ IA LIZZ A SUM
TAY IN IZ IA LIZZ A Y A ZERO
LDA (BA SE). Y P O S E N
TAY IN Y
C LC A ZZERA CA R RY PER A D C
LDA (BASE). Y A C C ETTA L’ELEM EN TO

SUCCESSIVO
A D C SU M LO LO SOM M A A SU M LO
STA SU M LO CO N SERV A IL R ISU LTA TO
BCC N OCARRY RIPO RTO ?
INC SU M H I LO SOM M A A SU M H I
CLC ELE M EN TO SU CC ESSIV O PER
DEY LA SOM M A SUCCESSIVA
BNE A D L O O P A N C O RA SE Y N O N È Z ER O
RTS

Questo programma è diretto ed autoesplicativo.

Esercizio 8-12: Si modifichi questo programma per calcolare:
a- una somma a 24 bit
b- una somma a 32 bit
c- per rivelare qualsiasi overflow.

UN CALCOLO CHECKSUM

Un checksum £ un digit od un insieme di digit calcolati da un blocco di
caratteri successivi. La checksum viene calcolata airistante in cui i dati
sono immagazzinati e posizionata alla fine. Per verificare l'integrità dei
dati la checksum viene ricalcolata e confrontata col valore immagazzi­
nato. Una diversità indica un errore oppure un guasto.

Vengono utilizzali diversi algoritmi. In questo caso si opererà POR
esclusivo di lutti i byte di una tabella di N elementi ed il risultato sarà
depositato neH'accumulatore. come al solito la base della tabella è
immagazzinata all’indirizzo BASE in pagina zero. Il primo ingresso
della tabella è il numero di elementi N. Il programma modifica A ed Y. N
deve essere minore di 2S6.

CHECKSITM

CHLOOP

LDY # 0 PU N TA AL PR IM O IN G R ESSO
LDA (BASE), Y A C C ETTA N
TAY LO IM M A G A ZZ IN A IN Y
LDA # 0 IN IZ IA LIZZ A C H EC K SU M
EOR (A D D R). Y EOR IN G R ESSO SU CCESSIVO
DEY PU N TA AL SU CCESSIVO
BNE C H L O O P PR O SEG U E
RTS

CONTEGGIO DI ZERI

Questo programma conterà il numero di zeri di una tabella e lo
depositerà nel registro X.
Esso modifica A, X, Y:

ZFR O ES LDY * 0 PU N TA AL PR IM O IN G RESSO
LDA (A D D R), Y A C C ETTA N
TAY LO IM M A G A ZZ IN A IN Y
LDX # 0 IN IZ IA L IZ Z A IL N U M ER O DI

ZERI

ZLOOP LDA (A D D R). Y A C C ETTA L’IN G RESSO
SU CC ESSIV O

BNE NOTZ Q U ESTO È ZERO ?
1NX SI. LO CON TA

NOTZ D EY PU N TA AL SUCCESSIVO
BNE ZLO O P PRO SEG U E
RTS

Esercizio 8-13: Si modifichi questo programma per contare:
a- il numero dì start (il carattere "*")
b- il numero di lettere dell'alfabeto
c- il numero di cifre tra 0 e 9

RICERCA DI UNA STRINGA

Si supponga che una stringa di caratteri, come indicato in Fig. 8-1, sia
memorizzata in memoria. All’accorrenza si ricercherà la stringa per
ricavarne una più breve detta tempiale (TMPLT), di lunghezza
TPTLEN. La lunghezza della stringa originale è STRLEN ed alla fine del
Programma >1 registro X conterrà la locazione in cui è stata trovata
TEMPLT oppure FF esadecimale. La Fig. 8-2 mostra il diagramma di
flusso per il programma. La stringa viene prima esplorata alla ricerca del
primo carattere di TEMPLT. Se non viene trovato il primo carattere, si

uscirà dal programma. Se invece viene trovalo il primo carattere, si
confronta il secondo carattere con quello successivo della stringa. Se non
sono uguali si riparte alla ricerca del primo carattere, poiché il primo
carattere potrebbe essere ripetuto nella stringa originale. Se il primo ed il
secondo sono uguali la ricerca procede con i caratteri successivi di
TEMPLT in modo esattamente analogo. La Fig. S-3 mostra il pro­
gramma corrispondente. Si noti che il registro X viene utilizzato come
puntatore corrente per puntare la ricerca airelemento corrente della
stringa. Per la ricerca dell’elemento corrente della stringa viene natural­
mente utilizzato l'indirizzamento indicizzato.

0
no

TgMPT*

LUNGHEZZA STRINGA

TonsRcrr
t e m o l a te

TEMPRATE

K REGISTRO X

(PUNTATORE INIZIO RICERCA}

Figura 6.1: Ricerca di siringa: la memoria

Figura 8.2: Diagramma di flusso del programma: ricerca di stringa

l i n e a »l o c c o d i c e l i n e a

0>32
0»3
MCM
oa>s
ows
0307

ftxia
« 09
00in
0011

□000
□000
0000
0000
0000
0000
□000
□000
0000
0000

HICERCA DI STRINGA.
RICERCA LA LOCAZION E NELLA STRINGA DI LU N G H EZZA
’STRLEN'
PARTEN ZA A 'STRING' DI UNA TEM PLATE DI
LUN G H EZZA 'TPTLEN' INIZIANTE A T E M P L T E
RITORNO C O N X = LOCAZIO N E DI TEM PLATE
NELLA STRINGA SE TROVATA, OPPURE X = $ FF SE NON
TROVATA.

STRINO =$20
TEM PLT =$50

•=$10
; PRIMA LOCAZIONE D ELLA STRINGA
: PRIMA LOCAZION E DI TEM PLATE

Figura B-3. Programma per la Ricerca di Stringa (continua)

0012 0010 CHKPTR •=‘ +1
0013 0011 TEM PTR ‘ = ‘ 4-1
0014 0012 STRLEN •=■+1 ; LU N GH EZZA DELLA STRINGA.
001S 0013 TPTLEN •=•+1 ; LUN G H EZZA DI TEM PLATE.
0016 0014 ■=■$200
0017 0200 A2 00 LDX #0 R ESET PUNTATOR E INIZIO

RICERCA
0018 0202 A5 so NXTPOS LDA TEM PLT IL PRIMO ELEM EN TO DI

TEM PLATE É ...
0019 0204 D5 20 CM P STA ING. X - A LL ’ELEM ENTO

CORRENTE DELLA STRINGA?
0020 0206 F0 06 BEO C H EC K SE SI C O N TR O LLA IL RESTO
0021 0208 EB NXTSTR INX INCREMENTA C O N TA TO R E

INIZIO RICERCA
0022 01209 E4 12 CPX STRLEN É U G U ALE A LU N G H EZZA

STRINGA7
0023 020B DO F5 BNE NEXPO S NO. CO N TR O LLA

SUCCESSIVA POSIZIONE
STRINGA

0024 020D A2 FF LDX #$FF SI.PONI AD 1 L'INDICATORE
"NON TROVATO".

0025 020F 60 RTS RITOPNO: CONTROLLATI
TUTTI I CARATT

0026 0210 86 11 CH ECK STX TEMPTR PONI PUNTATOR E
TE M P O R A N E O -.

0027 0212 PUN TA TO R E CORRENTE
DELLA STRINGA.

0026 0212 A9 00 LDA J»0
0029 0214 85 10 STA CH KPTR RESET PU NTATO R E

TEM PLATE.
0030 0216 SI 11 CHKLP INC TEM PTR INCREMENTA PUNTATORE

TEM PO RANEO
0031 0218 E6 10 INC CH KPTR INCREMENTA PUNTATOR E

TEM PLATE.
0032 0214 A4 10 LDY CH KPTR
0033 0(2lC C4 13 C PY TPTLEN É PUNTATORE TEM PLATE =

LU N G H EZZA TEM PLATE?
0034 021E F0 OC BEO FOUND SE SI TEM PLATE È TROVATA
0035 0220 09 50 00 LDA TEM PLT. Y CARICA ELEM ENTO

TEM PLATE
0036 0223 A4 11 LDY TEM PTR
0037 0225 09 20 00 CM P STRING. Y CO N FR O N TA CO L

C AR A TTER E STRINGA
0036 0226 00 DE BNE NXTSTR S E NON TROVATO

C O N TR O LLA SUCCESSIVO
C A R A TTER E STRINGA.

0039 022A F0 EA BEO CH KLP SE TROVATO CO N TR O LLA
CAR. S U C C E S S

0040 022C 80 FOUND RTS FATTO
0041 0020 END

Figura 8-3. Programma per la Ricerca di Stringa

SOMMARIO

In questo capitolo sono stale presentate routine utilizzate comune­
mente che impiegano le combinazione di tecniche descrìtte nei capitoli
precedenti. Queste dovrebbero consentire il progetto autonomo di pro­
grammi. Molte di queste routine impiegano una struttura dati speciale:
la tabella. Esistono altre possibilità di strutturazione dei dati che ver­
ranno ora analizzate.

CAPITOLO 9

STRUTTURE DEI DATI

PARTE I - CONCETTI DI PROGETTO

INTRODUZIONE

Il progetto di un programma comprende due compiti: progetto dell"al­
goritmo e progetto delle strutture dati. Nei programmi più semplici non
vengono considerate strutture dati significative cosicché il problema
principale da superare per imparare la programmazione é l'apprendi­
mento del progetto degli algoritmi e la loro codifica efficiente in un dato
linguaggio di macchina. Questo é quanto è stato fatto fin'ora. Comun­
que il progetto di programmi più complessi richiede anche una compren­
sione delle strutture dati. Due strutture dati sono già state utilizzate nel
corso del libro: la tabella e lo stack. I.o scopo di questo capitolo è di
presentare altre strutture dati, più generali, che si può voler utilizzare.
Questo capitolo è completamente indipendente dal microprocessore, od
anche il calcolatore considerato. Questo è teorico e comprende l'orga­
nizzazione logica dei dati nel sistema. Esistono libri specializzati sull'ar­
gomento delle strutture dati come pure esistono libri specializzati sulla
moltiplicazione efficiente, divisione ed altri algoritmi consueti. Questo
capitolo è stato perciò introdotto per completezza ma sarà limitato
all’essenziale. Esso non pretende di essere completo. Verranno ora
analizzate le strutture dati più comuni,

PUNTATORI

Un puntatore è un numero utilizzato per designare la locazione cor­
rente del dato. Ciascun puntatore è un indirizzo. Comunque ciascun
indirizzo non è necessariamente chiamato un puntatore. Un indirizzo è
un puntatore solo se esso punta ad alcuni tipi di dati ovvero ad informa­
zioni strutturate. È già stato incontrato un puntatore tipico: il puntatore
dello stack che punta alla sommità dello stack (od anche immediata­
mente sopra la sommità dello stack). Si vedrà che lo stack ha una
struttura dati comune chiamata una struttura LIFO.

Come altro esempio, quando si utilizza l'indirizzamento indiretto,
l’indirizzamento indiretto è sempre un puntatore ai dati che si desidera
recuperare.

Esercizio 9-1: AH'indirizzo 15 della memoria c'è un puntatore alla tabella
T. La tabella T inizia a li indirizzo 500. Quali sono i contenuti effettivi del
puntatore a T?

— PUNTATOM a t —

TABELLA T

Figura 9.1: Un puntatore di Indirizzamento

LISTE

Quasi tutte le strutture dati sono organizzate come liste di vario tipo.

Liste Sequenziali

Una lista sequenziale, o tabella, o blocco, è probabilmente la struttura
dati più semplice ed una di quelle già utilizzate. Le tabelle sono normal­
mente ordinate in funzione di un criterio specifico, come per esempio,
l'ordine alfabetico oppure quello numerico. E quindi facile recuperare
un elemento in una tabella utilizzando, per esempio, l'indirizzamento
indicizzato, come si è già fatto. Normalmente un blocco fa riferimento
ad un gruppo di dati che hanno limiti definiti ma i cui contenuti non sono
ordinati. Esso può contenere, per esempio, una stringa di caratteri.
Oppure può essere un settore di un disco. In questi casi può non essere
facile accedere ad elementi casuali del blocco.

Per facilitare la ricerca di blocchi di informazione sono utilizzati i
direttori.

D ire tto ri

Li n direttorio è una lista di tabelle o blocchi. Per esempio il sistema file
utilizzerà normalmente una struttura a direttorio. Come semplice esem­
pio il direttorio principale del sistema può comprendere una lista di nomi
di utenti. Questo è illustrato in Figura 9-2. L'ingresso per l'utente
‘'Giovanni" punta al direttorio del file di Giovanni. Il direttorio del file è
una tabella che contiene i nomi di tutti i file di Giovanni e la loro
locazione. Questa i , a sua volta, una tabella di puntatori. In questo caso
si è quindi considerato un direttorio a due livelli. Un sistema a direttorio
flessibile consentirà di comprendere direttori intermedi, a seconda della
ennvenienza dell’utente.

DI3ETTOPIO DELL'UTENTE

Figura 9.2: Una struttura a direttorio

Lisi» Collegata

In un sistema ci sono spesso blocchi di informazioni che rappresen­
tano dati, oppure eventi, oppure altre strutture, che non possono essere
facilmente manipolate. Se questi potessero essere facilmente manipolati
'C rebbero probabilmente assemblati in una tabella per avere la possibi-
Htà di scelta o strutturazione. Il problema consiste nel fatto che si

desidera lasciarli dove sono pur stabilendo un ordinamento tra di essi
come primo, secondo, terzo, quarto blocco. Per risolvere questo pro­
blema verrà impiegata una lista collegata. Il concetto di una lista colle­
gata è illustrato dalla Figura 9-3. Nell'illustrazione si vede che un punta­
tore della lista, chiamato PRIMOBLOCCO punta all'inizio del primo
blocco. Una locazione del Blocco I, per esempio la prima o l'ultima
parola di questo, contiene il puntatore al Blocco 2, chiamato PTR1. Il
processo è quindi ripetuto per il Blocco 2 e per il Blocco 3. Poiché il
blocco 3 é l'ultimo ingresso della lista, PTR3, per convenzione contiene
uno speciale valore “ nil” che punta a se stesso e che può essere rivelato
alla fine della lista. Questa struttura é economica poiché essa richiede
solo pochi puntatori (uno per blocco) e consente all’utente di non avere il
movimento fisico dei blocchi nella memoria.

Figura 9.3: Una lista collegata

Figura 9.4: Inserzione di un nuovo blocco

Si esamini, per esempio, come può essere inserito un nuovo blocco.
Questo è illustrato dalla Figura 9-4. Si assuma che il nuovo blocco sia
alTindirizzo NUOVOBLOCCO e debba essere inserito tra il Blocco 1 ed
il Blocco 2. Il puntatore PTR1 viene semplicemente cambiato al valore
NUOVOBLOCCO cosicché esso punta al Blocco X. PTRX conterrà il
valore precedente di PTRI, cioè esso punterà al Blocco 2. Gli altri
contatori della struttura rimangono invariati. Si può vedere che l'inser­
zione di un nuovo blocco ha richiesto semplicemente l'aggiornamento di
due puntatori della struttura. Questo è chiaramente efficiente.

Esercizio 9-2: Si tracci un diagramma che mostri come il Blocco 2potrebbe
essere rimosso da questa struttura.

Una coda i formalmente chiamata una lista FIFO ovvero first-in-
fjrst-out. Una coda è illustrata in Figura 9-5. Per chiarire il diagramma si
può assumere per esempio che il blocco di sinistra sia una routine di
servizio per un dispositivo d'uscita, come una stampante. I blocchi che
compaiono sulla destra sono quelli richiesti dai vari programmi o rou­
tine per stampare caratteri. L’ordine in cui essi saranno asserviti è
l'ordine stabilito dalla coda di servizio. Si può vedere che l'evento
successivo che ottiene servizio è il Blocco 1 poi il Blocco 2 e quindi il
Blocco 3. In una coda si conviene che qualunque elemento arrivato
successivamente sarà inserito alla fine di essa in questo caso sarà inserito
dopo PTR3. Questo garantisce che il primo blocco inserito nella coda

Figura 9.5: Una coda

sarà il primo ad essere asservito. E abbastanza comune in un sistema a
calcolatore avere code di attesa per un certo numero di eventi ogni volta
che si deve attendere una risona scarsa come il processore o qualche
dispositivo d'ingresso/uscita.

Sono state sviluppate diversi tipi di liste per facilitare tipi specifici di
accesso oppure inserzione o cancellazione alla lista stessa. Si esamine­
ranno alcuni dei tipi di liste collegate utilizzati più frequentemente.

Stack

La struttura stack i già stata studiata in dettaglio nel corso del libro.
Essa è una struttura last-in-first-out (L1FO). L'ultimo elemento deposi­
tato alla sua sommità è il primo ad essere rimosso. Uno stack può essere
realizzato mediante un blocco a scelta ovvero anche mediante una lista.
Poiché la maggior parte degli stack dei microprocessori sono utilizzati
per eventi ad alta velocità, come subroutine od interrupt, per lo stack
viene normalmente utilizzato un blocco continuo piuttosto che una lista
collegata.

Confronto tra lista collegata e Blocco

Analogamente la coda potrebbe essere realizzata con un blocco di
locazioni riservate. Il vantaggio di utilizzare un blocco continuo è il
recupero veloce e l'eliminazione dei puntatori. Lo svantaggio consiste
nel fatto che é normalmente necessario dedicare un blocco abbastanza
largo per comprendere la dimensione del caso peggiore della struttura.
Inoltre è difficoltoso od addirittura impraticabile inserire o rimuovere
elementi dall'interno del blocco. Poiché la memoria è tradizionalmente
una risorsa scarsa i blocchi vengono tradizionalmente riservati alle
strutture di dimensione fissa ovvero alle strutture che richiedono la
massima velocità di recupero, come lo stack.

Lista Circolare

La lista circolare viene comunemente chiamata “ round robin". Una
lista circolare è una lista collegata dove l'ultimo punto rientra al primo.
Questo è illustrato in Figura 9-6. Nel caso di una lista circolare viene

E V E N T O A T T U A L E

Figura 9.6: Il Round Robin è una lista circolare

spesso impiegato un puntatore al blocco attuale. Nel caso di eventi o
programmi, attesa di servizio, il puntatore all'evento attuale sarà mosso
di una posizione a sinistra oppure a destra, ad ogni volta.
Un round-robin corrisponde normalmente alla struttura dove tutti i
blocchi sono assunti avere la stessa priorità. Comunque una lista circo­

lare può essere anche utilizzata come un sottocaso di altre strutture
semplicemente per facilitare il recupero del primo blocco dopo l'ultimo,
quando si sta eseguendo una ricerca.

Come esempio di lista circolare un programma di registrazione nor
realmente opera in modo round-robin interrogando tutte le periferiche e
ritornando indietro alla prima.

Alberi
Ogni volta che esiste una relazione logica tra tutti gli elementi di una

struttura (questa è chiamata normalmente una sintassi), può essere
utilizzata una struttura ad albero. Un esempio semplice di una struttura
ad albero i un albero discendente oppure un albero genealogico. Questo
è illustrato in Figura 9-7. Si può vedere che Smith ha due bambini: un
figlio Robert ed una figlia Jane. Jane, a sua volta, ha tre bambini: Liz,
Tom e Phil, Tom a sua volta ha due bambini: Max c Chris. Invece
Robert, riportato a sinistra dell'illustrazione non ha discendenti.

Figura 9.7: Albero genealogico

Questo è un albero strutturato. Si è già incontrato un esempio di un
albero semplice in Figura 9-2. La struttura a direttorio è un albero a due
livelli. Gli alberi sono utilizzati vantaggiosamente ogni volta che gli
clementi possono essere classificati secondo una struttura prefissata.
Questo facilita l’inserzione ed il recupero. Inoltre essi possono stabilire
Sruppi di informazione in un modo strutturato. Questo può essere
richiesto per un'elaborazione ulteriore, come nel progetto di un compila­
tore od interprete.

Collegamenti addizionali possono essere stabiliti tra gli elementi di
una lista. L'esempio più semplice è la lista doppiamente collegata.
Questo i illustrato in Figura 9-8. Si può vedere che sussiste la sequenza
usuale di collegamenti da sinistra a destra, più un'altra sequenza di
collegamenti da destra a sinistra. Lo scopo è di consentire un facile
recupero dell’elemento immediatamente precedente quello che sta per
essere processato come pure di quello immediatamente dopo. Questo
costituisce un ulteriore puntatore per il blocco.

Figura 9.8: Lista doppiamente collegata

RICERCA E CLASSIFICAZIONE

La ricerca e la classificazione degli elementi di una lista dipende
direttamente dal tipo della struttura che è stata utilizzata per la lista.
Molti algoritmi di ricerca sono stati sviluppati per le strutture dati
utilizzate più frequentemente. Si è già utilizzalo l’indirizzamento indiciz­
zato. Questo è possibile ogni volta che gli elementi di una tabella sono
ordinati in funzione di un criterio noto. Tali elementi possono poi essere
recuperati mediante i loro numeri.

La ricerca sequenziale fa riferimento alla scansione lineare di un intero
blooco. Questo è chiaramente inefficiente ma può essere utilizzato
quando non è disponibile una tecnica migliore per mancanza di ordina­
mento degli elementi. La ricerca binaria o logarìtmica serve a trovare un
elemento in una lista classificata dividendo a metà l'intervallo di ricerca
a ogni fase. Assumendo, per esempio, che si stia cercando una lista
alfabetica si può iniziare, per esempio, a metà della tabella e determinare
se il nome che si sta cercando è prima o dopo di questo punto. Se è dopo
questo punto si eliminerà la prima metà della tabella e si osserverà la
seconda metà. Si confronterà ancora questo ingresso con quello che si
sta osservando e si restringerà la ricerca ad una delle ulteriori metà,
eccetera. La lunghezza massima della ricerca è garantita essere logjn
dove n è il numero di elementi della tabella.

Esistono molte altre tecniche di ricerca.

SOMMARIO

Questo capitolo si è proposto solo una breve presentanone delle
strutture dati usuali che possono essere utilizzate da un programmatore.
Sebbene le strutture dati più comuni sono state razionalizzate in tipi cui è
stato assegnato un nome, l'organizzazione globale dei dati in un sistema
complesso può utilizzare qualsiasi combinazione di questi oppure richie­
dere al programmatore di inventare strutture più appropriate. L’insieme
di possibilità è limitato solo dall'immaginazione del programmatore.
Analogamente un numero di ben note tecniche di ricerca e classifica­
zione sono state sviluppate per accoppiarsi con le usuali strutture dati,
l.o scopo di questo libro è una descrizione concettuale. I contenuti di
questo libro sono intesi a sottolineare l'importanza del progetto di
strutture dati appropriale per la manipolazione dei dati e per fornire
strumenti appropriati a questo effetto.

CAPITOLO 9

STRUTTURE DEI DATI

PARTE II - E S E M P I D I P R O G E T T O

INTRODUZIONE

Verranno qui presentati degli esempi di progetto reali per strutture
dati tipiche: tabelle, linked list, alberi di classificazione. Si eseguiranno i
programmi per queste strutture, degli algoritmi reali di classificazione,
ricerca ed inserzione. Verranno inoltre descritte delle tecniche aggiuntive
avanzate quali hashing e merging.

Il lettore interessato a queste tecniche di programmazione avanzata
viene incoraggiato ad analizzare i dettagli dei programmi di seguito
presentati. Invece i programmatori meno esperti potranno inizialmente
tralasciare questo capitolo, per poi rivederlo in una fase successiva.

Una buona comprensione dei concetti presentati nella prima parte di
questo capitolo è indispensabile per seguire gli esempi di progetto.
Inoltre i programmi impiegano i modi di indirizzamento del 6502,
integrando molti dei concetti e delle tecniche presentate nei capitoli
precedenti.

Verranno ora introdotte quattro strutture: una lista semplice, una lista
alfabetica, una linked list con direttori ed un albero. Per ogni struttura
verranno sviluppati tre programmi: ricerca, ingresso e cancellazione.

Inoltre verranno descritti separatamente alla fine del capitolo tre
algoritmi specializzati: hashing, bubble-sort e merging.

RAPPRESENTAZIONE DEI DATI DI UNA LISTA

La lista semplice e la lista alfabetica utilizzano una rappresentazione
comune per ogni elemento della lista:

C C | C | D | D D D

label <?■ 3 tiy f*

BASE TABELLA j

/ w w \

NUMERO D'INORESSO

M BYTE

» INGRESSO NUOVO ELEMENTO

Figura 9.9: La struttura delle tabella

c n tle n

Ogni elemento, o “ ingresso" comprende una label di tre byte ed un
blocco i di n bye di dati con n tra 1 e 253. Quindi ogni ingresso impiega
almeno una pagina (256 byte). All'interno di ogni lista, tutti gli elementi
hanno la stessa lunghezza (Vedere Fig. 9-10). I programmi che operano
su queste due semplici liste impiegano alcune convenzioni comuni sulle
variabili:

ENTLEN è la lunghezza di un elemento. Per esempio, se ogni ele­
mento ha IO byte di dati, ENTLEN = 3 + 10 = 13 byte
TABASE è la base della lista o tabella nella memoria
POINTR è il puntatore all'elemento con-ente
OBJECT è l'ingresso corrente da inserire o cancellare
TABLEN è il numero dì ingressi

Si assume che tutte le label siano distinte.

UNA LISTA SEMPLICE

La lista semplice è organizzata come tabella di n elementi. Gli elementi
non sono classificati (vedere Fig. 9-11). Durante la ricerca occorre
esplorare la lista fino a trovare l'ingresso oppure arrivare alla fine della

RICERCA

I

lista. Durante l'inserzione vengono aggiunti n nuovi ingressi a quelli
esistenti. Quando viene cancellato un ingresso, gli ingressi contenuti in
lo c a z io n i di memoria che precedono, se presenti, verranno fatti scorrere
,n avanti per la continuità della tabella.

Ricerca

Viene utilizzata una tecnica di ricerca seriale. Ogni campo della label
dell’ingresso è confrontato passo a passo, con la label di OBJECT,
lettera per lettera.

I l puntatore corrente POINTR viene inizializzato al valore di
TABASE.

Il registro indice X viene inizializzato al numero di ingressi contenuti
nella lista (memorizzato in TABLEN).

La ricerca procede in modo ovvio ed il relativo diagramma di flusso
viene rappresentato in Fig. 9-12. La Fig. 9-16, alla fine del capitolo,
riporta il programma. (Programma “SEARCH”).

Inserzione di e lem en to

Inserendo un nuovo elemento, viene utilizzato il primo blocco di
memoria disponibile di (ENTLEN) byte alla fine della lista. (Vedere Fig.
9-11).

Inizialmente il programma controlla che il nuovo ingresso non sia già
nella lista (in questo esempio si assume che tutte le label siano distinte).
So non è già nella lista viene incrementata la lunghezza della lista
TABLEN e si trasferisce OBJECT alla fine della lista. La Fig. 9-13
mostra il diagramma di flusso corrispondente.

La Fig. 9-16, alla (ine del capitolo, riporta il programma. Esso si
chiama "NEW " e risiede alle locazioni di memoria da 0636 a 0659.

Cancellazione di elemento

Per cancellare un elemento dalla lista, è sufficiente trasferire di una
posizione lutti gli elementi che lo seguono ad un indirizzo più elevalo. La
lunghezza della lista viene decrementata. Oucsto procedimento viene
illustrato in Fig. 9-14.

Il programma corrispondente £ immediato ed è riportato in Fig. 9-16.
Esso è denominato "D ELETE" e risiede agli indirizzi di memoria da
0659 a 0686. La Fig. 9-15 riporta il diagramma di flusso.

La locazione di memoria TEMPTR viene utilizzata come puntatore
temporaneo all'elemento da trasferire.

F IN E

Figura 9. 13: Diagramma dJ (lusso di inserzione in tabella

Il registro indice Y contiene la lunghezza di un elemento della lista ed è
impiegato per i trasferimenti automatici di blocchi di dati. Si noti che

PRIMA DOPO

0 © .

© _ ©
© ©
© \ M U O V I ©
© J © _

© \ M U O V I

viene utilizzata la tecnica di indirizzamento indiretto indicizzato:

<0672) LOOPE DEY
LDA
STA
CPY
BNE

(TEMPTR), Y
(POINTR).Y
0
LOOPE

D u r a n te i tra sfer im en ti POINTR p u n ta se m p r e al “ b u c o ” d e lla lis ta ,
c io è a lla d e s t in a z io n e d e l tr a sfer im en to del b lo c c o su c c e ss iv o .

Il flag Z viene utilizzato per indicare una cancellazione sull’uscita.

LISTA ALFABETICA

La lista alfabetica, o “tabella” , rispetto a quella precedente, conserva
tutti i suoi elementi classificati in ordine alfabetico. Questo consente
all'utente una tecnica di ricerca più veloce rispetto alla tecnica lineare. In
questo caso viene utilizzata una ricerca binaria.

L'algoritmo di ricerca è quello classico della ricerca binaria. Si ricorda
che questa tecnica è essenzialmente analoga a quella impiegata per
trovare un nome in un elenco telefonico. Normalmente si parte a metà
del libro e quindi, in dipendenza dell'ingresso trovato, si procede in
avanti o indietro alla ricerca del valore desiderato. Questo metodo è
veloce e relativamente semplice da realizzare.

Il diagramma di flusso della ricerca binaria è riportato in Fig. 9-17 ed il
programma in Fig. 9-22. .

La lista conserva gli elementi in ordine alfabetico e li ricerca impie­
gando una ricerca binaria o “ logaritmica” . La Fig. 9-18 riporta un
esempio.

Ricerca

LINEA « L O C c o d i c e l i n e a

0002 OOOO TA BASE = $ 10
0003 0000 POINTR 12
000< OOOO TA BLEN - t 14
0003 OOOO O B JE C T = $ 15
0006 OOOO ENTLEN = $ 17
0007 OOOO TEM PTR = J 18
0008 OOOO
0006 OOOO *=J 600
0010 0600
COI 0600 AS 10 SEAR CH LDA TA BASE : INIZIALIZZA PUNTATORE.
0012 0602 05 12 STA POINTR
C013 0604 AS 11 LDA TA B A SE + 1
c o n 0606 BS 13 STA POINTR + 1
C01S 0606 A6 14 LBX TA BLEN : IMMAGAZZINA TABLEN

; C O M E VARIABILE.
C016 060A FO 29 BEO O U T ; CO NTR O LLA S E TABELLA £ 0.
«317 060C AO 00 ENTRY LBY BO ; CO NFRON TA LE PRIME

; L E T T E R E
0018 OBOE B1 15 LBA (OBJECT), Y
COIfl 0610 B1 12 CM P (POINTR), Y
0020 0612 BO OE BNE NO GO OD
0021 0614 CB INY ; CO NFRO N TA LE SECO N O E

: LETTERE.
CO 22 0615 01 15 LBA (06JECT), Y
C023 0617 B1 12 CM P (POINTR), Y
0024 0619 BO 07 BNE NO GO O D
C025 061B CB INY ; CO N FR O N TA LE TERZE

; LETTERE,
0026 061C B1 15 LBA (OBJECT], Y
0027 061E DI 12 CM P (POINTR), Y
C028 0620 FO 11 BEO FOUND
C029 0622 CA NO GO O D DEX : VEDI QUANTI INGRESSI

: RIMANGONO.
COSO 0623 FO 10 BEO OUT
0031 0625 A5 17 LDA ENTLEN . SOM MA ENTLEN A POINTER.
0032 0627 18 C LC
0033 0628 65 12 AD C POINTR
0034 062A 85 12 STA POINTR
0035 062C 90 DE B C C ENTRY
0036 062E A9 13 INC POINTR + 1
0037 0630 4C OC 06 JM P ENTRY
ooaa 0633 A9 FF FOUND LDA BSFF ; SE TR O VATO AZZERA

: IL FLAG 0.
0039 0635 60 O U T RTS
0040 0636
0041 0636
0042 636
0043 0636 20 00 06 NEW JSR SEAR CH ; VEDI SE L 'O G G ETTO É OUI.
0044 0639 DO 10 BNE O UTE
0045 063B A6 14 LDX TA BLEN ; CONTROLLA SE TABELLA g 0.
0O46 063D FO OB BEO INSERT
0047 063F AS 12 LDA POINTR ; POINTER É ALL'ULTIMO

0048
; INGRESSO.

0641 18 C L C ; DEVI TRASFERIRLO ALLA

C049
: FINE D ELLA TABELLA.

0642 65 17 AD C ENTLEN
OC 5o 0644 B5 12 STA POINTR
0051 0646 90 02 B C C INSERT
00S2 064B E6 13 INC POINTR -|- 1

p<gura 9- 16. Programmi della lista semplice: Ricerca. Inserzione. Cancellazione
(continua)

0053 064A E6 14 INSERT INC TA BLEN

0054 064C A0 00 LDY

0056 064 E A8 17 LDX
0056 0650 B1 15 LOOP LDA
0057 0652 91 12 STA
0058 0654 C8 INY
0059 0655 CA DEX
0060 0656 00 F8 BNE
0061 065B 60 O UTE RTS
0062 0659
0063 0859
0064 06S9
0065 0659 20 00 06 ’d e l e t e JSR
0066 066C F0 2D B EO
0067 065E c e 14 DEC

0068 0660 C A DEX

0069 0061 F0 26 BEO

0071 0063 A5 12 ADDEN LDA
0072 0065 18 C L C
0073 0666 65 17 AD C
0074 00666 65 16 STA
0075 066A A9 00 LDA

066C 65 13 AD C

0078 066E 65 19 STA
0077 0670 A4 17 LDY
0076 0672 88 LO OPE DEY
0079 0673 B1 16 LDA

0060 0675 91 12 STA
0061 0677 CO 00 CPY
0082 0679 DO F7 BNE
0083 067B CA DEX

0084 067C F0 OB BEQ
0085 067E AS 18 LDA

SEAR CH
O U TS
TABLEN

DONE

POINTR

ENTLEN
TEM PTR
NO
POINTR + 1

TEM PTR +- 1
ENTLEN

INCREM ENTA LA
LU N G H EZZA DELLA
TABELLA.
TRASFERISCI L’O G G E T TO
A LLA FINE D ELLA TABELLA

; Z AO 1 SE ERA FATTO

TR O VA D O V È L 'O G G ETTO
ESCI SE NON TROVATO.
INCREM ENTA LU N G H EZZA
TABELLA.
VEDI ORA QUANTI INGRESSI
SONO
.. DOPO AVERNE
C A N C ELLA TO UNO.
SOM M A ENTLEN A POINTER

E ... M EMORIZZA A TEM P.

SOM M A CARRY AL BYTE
ALTO.

(TEMPTR), Y; TRASFERISCI IN B ASSO DI
: UN INGRESSO DI MEMORIA.

(POINTR». Y
NO
LOO PE

0066 0660 85 12 STA
0067 0662 AS 19 LDA
0068 0664 65 13 STA
0069 0686 4C 63 06 JM P
0090 0689 A9 FF D ON E LDA
0091 066B 60 O U TS RTS
0092 O60C
0093 068C
0094 068C END

DONE
TEM PTR

POINTR
TEM PTR + 1
POINTR -|- 1
ADDEN
NSFF

; D ECREM ENTA
: IL CO N TA TO R E

DEGLI INGRESSI

; TRASFERISCI TEM P
: A POINTER.

AZZER A IL FLA G Z SE FATTO

ERRORS - o o o < o o o >
SYM BOL TABLE
SYM BOL VALUE
ADDEN 0663 O ELETE 0659 DONE 0689 ENTLEN 0017
ENTRY 060C FOUND 0833 INSERT 064A LOOP 0650
LOOPE 0672 NEW 0636 NO GO OD 0622 O B JE C T 0015
O UT 0635 O U TE 0658 O U TS 088B POINTR 0012
SEARCH 0600 TA B A SE 0010 TABLEN 0014 TEM PTR 0016

END OF ASSEM BLY

IALTRO t e s t i (ULTIMO!

IINOBESSOl

Figura 9-17: Diagramma di flusso della ricerca bianaria

Talvolta la ricerca è complicata dalla necessità di conservare la traccia di
Riverse condizioni. Il problema maggiore è quello di evitare la ricerca di
un oggetto cbe non c 'i. In tal caso l'ingresso entra con il valore alfabetico
immediatamente più alto e più basso che dovrebbero essere controllati
indefinitamente. Per evitare questo viene conservato un flag per il valore
del carry dopo un confronto senza successo. Con il valore INCMNT.
Quando il valore INCMNT, che mostra di quanto sarà incrementato il
puntatore, raggiunge il valore “ I", un altro flag “CLOSE” viene posto
uguale al valore del flag CMPRS. Poiché tutti gli incrementi successivi
saranno “ 1” , se questo puntatore va diretto al punto dove dovrebbe
essere l’oggetto, CMPRES non sarà più lungo o uguale di CLOSE e la
ricerca terminerà. Questo caratterizza anche le abilitazioni della routine
NEW per determinare se sono posizionati i puntatori logico e fisico,
relativi a dove andrà l'oggetto.

Quindi se OBJECT cercato non si trova nella tabella, ed il puntatore
corrente viene incrementato di uno, il flag CLOSE sarà posto uguale ad
uno. Al passo successivo della routine, il risultato del confronto sarà
opposto a quello precedente. I due flag non diventeranno uguali ed il
programma terminerà indicando “non trovato” ,

OGGETTO

T*8*SE

|AC

HI
(NO) INO)

MS

VfZ

PRIMO TENTATIVO SECONDO TENTATIVO
INTERVALLO R iC C flC * * INTERVALLO fl»CERCA 2

Un altro problema fondamentale 2 quello di evitare la possibilità di
uscire fuori dalla fine della tabella quando si aggiunge o si sottrae il
valore deH’incremcnto. Questo problema viene risolto eseguendo un test
di “addizione’1 o di “sottrazione'’ utilizzando il puntatore logico ed il
valore della lunghezza per determinare il numero effettivo di ingressi,
piuttosto che utilizzare i puntatori fisici per determinare la loro posi­
zione fisica effettiva.

Riassumendo, il programma impiega due flag per memorizzare l'in­
formazione: CMPRES e CLOSE. Il flag CMPRES viene utilizzato per
memorizzare il fatto che il carry era ancora “0” o “ 1" dopo l'ultimo
confronto. Questo determina se l'elemento sotto test era più grande o più
piccolo di quello a cui è confrontato. Ogni volta che il carry C è “ I",
l'ingresso è più piccolo dell’oggetto e CMPRES è posto ad “ 1". Ogni
volta che il c a rT y C è “0" l'ingresso è maggiore dell'oggetto e CMPRES
sarà posto ad “ F F ”.

Inoltre si noti che, quando il carry è I, il puntatore corrente, punterà
all’ingresso sotto OBJECT.

Il secondo flag impiegato dal programma è CLOSE. Questo flag è
posto uguale a CMPRES quando l’incremento della ricerca INCMNT
diviene uguale ad “ I” . Questo rivelerà il fatto che l’elemento non è stato
trovato se CMPRES non è uguale a CLOSE la volta successiva.

Altre variabili utilizzate dal programma sono:
LOGPOS, che indica la posizione logica nella tabella (numero dell’e­

lemento).
INCMNT, che rappresenta il valore di cui sarà incrementalo o decre-

mentato il puntatore corrente se non ha successo il confronto successivo.
TABLEN, come al solito, rappresenta la lunghezza totale della lista.

LOGPOS ed INCMNT saranno confrontati con TABLEN pur accertare
che non vengano superati i limiti della lista.

La Fig. 9-22 rappresenta il programma chiamato “SEARCH’. Esso
risiede alle locazioni di memoria da 0600 a 06E3 e merita di essere
studiato con cura, in quanto è più complesso dì quello del caso della
ricerca lineare.

Una complicazione addizionale è dovuta al fatto che l’intervallo di
ricerca può essere pari o dispari. Quando è pari occorre introdurre una
correzione. Infatti, per esempio, esso non può puntare a metà di una lista
di 4 elementi.

Quando questo è dispari, viene utilizzato un “artificio” per puntare
all'elemento intermedio: si esegue la divisione per 2 accompagnata da
uno scorrimento a destra. Il bit che va a cadere nel carry dopo l’istru­
zione LSR sarà “ I" se l'intervallo era dispari. Esso viene semplicemente

*06.15) D1V LSR A DIVIDE PER DUE
. ADC * 0 RIVELA IL CARRY

STA LOGPOS NUOVO PUNTATORE

OBJECT viene quindi confrontato con l'ingresso intermedio del
nuovo intervallo di ricerca. Se il confronto da esito positivo, si esce dal
programma, altrimenti (“NOGOOD”) il carry è posto a “0” se OBJECT
i minore dell’ingresso. Ogni volta che INCMNT diviene ‘T \ il flag
CLOSE (che è stato inizializzato a “0”) viene controllato per vedere se è
• T \ In caso contrario quest’ultimo viene posto ad “ I". Se era “ 1" si
esegue un controllo per determinare se si è superata la locazione dove
doveva essere OBJECT.

Inserzione di Elemento

Per inserire un nuovo elemento è necessario eseguire una ricerca
binaria. Se l’elemento in questione viene trovato nella tabella, non si
deve eseguire l'inserzione. (In questo caso si assume che tutti gli elementi
della tabella siano distinti). Se l’elemento non viene trovato nella tabella
occorre procedere dalla sua inserzione. Il valore del flagCMPRES dopo
la ricerca indica se questo elemento deve essere inserito immediatamente
prima o dopo l'ultimo elemento che è stato confrontato. Tutti gli ele­
menti successivi la nuova locazione dove deve essere posizionato l’ele­
mento, vengono quindi trasferiti in avanti, di una posizione del blocco,
consentendo l'inserzione del nuovo elemento.

I.a Fig. 9-19 illustra il processo di inserzione ed il programma corri­
spondente è riportato in Fig. 9-22.

Il programma £ chiamato “NEW” e risiede nelle locazioni di memoria
da 06E3 a 075E.

Si noti che, anche in questo caso, viene utilizzato l'indirizzamento
indiretto indicizzato per i trasferimenti di blocco:

(072A)
ANOTHR

LDY ENTLEN
DEY
LDA (POINTR), Y
STA (TEMP). Y
CPY * 0
BNE ANOTHR

Analogamente si procede alla locazione di memoria 0750.

Figura 9.19: Inserzione: "BAC"

Cancellazione di Elemento

Anche nel caso di canccllazionc di un elemento, occorre utilizzare la
tecnica di ricerca binaria per trovare l'oggetto. Se la ricerca da esito
negativo, ovviamente la cancellazione non ha senso. Se invece, l’ele­
mento viene trovato, tutti gli elementi successivi vengono mossi verso
l’alto, di una posizione di blocco. La Fig. 9-20 mostra un esempio
corrispondente e la Fig. 9-22 il programma relativo, mentre il dia­
gramma di flusso appare in Fig. 9-21.

Esso è denominato “ DELETE” e risiede agli indirizzi di memoria da
076F a 0799.

LINKED LIST

Si assume che una linked list sia formata da tre caratteri alfanumerici
per la label, seguiti da I a 2S6 byte di dati, seguiti da un puntatore a 2 byte
che contiene l’indirizzo di partenza del nuovo ingresso ed, infine, seguito
da un contrassegno di un byte. Ogni volta che questo contrassegno di un
byte è posto ad "1” , si previene che la routine di inserzione possa
sostituire un nuovo ingresso al posto di quello esistente.

Inoltre un direttorio contiene un puntatore al primo ingresso per ogni
lettera dell'alfabeto, in modo da facilitare la ricerca. Nel progrmma si
assume che le label siano caratteri alfabetici ASCII. Alla fine della lista
tutti i puntatori sono posti ad un valore NIL che i stato scelto, in questo
caso, uguale alla base della tabella, in quanto questo valore non
dovrebbe mai trovarsi all'interno della linked list.

Il programma di inserzione e di cancellazione esegue le manipolazioni
ovvie sui puntatori. Questo impiega il flag INDEX per indicare se un
puntatore sta puntando ad un oggetto proveniente da un ingresso prece­
dente della lista o dalla tabella dei direttori. La Fig. 9-27 riporta i
programmi corrispondenti, mentre la Fig. 9-23 mostra la struttura dati.

Un'applicazione di questa struttura dati potrebbe essere un elenco di
indirizzi computerizzati, dove ogni persona è rappresentala da un solo
codice di tre lettere (magari le comuni iniziali) ed il campo dei dati
contiene un indirizzo semplificato, più il numero di telefono (fino a 250
caratteri).

P R IM A D O P O

ATS

0002
0003
0004
OOOS
0006
0007
OOOS
0009
0010
0011
0012
0013
0014
0015
0016
0017
0010
C019
C020
0021
0022

C023
0024
0025
0026
0027

0028

0029

0030

0031
0032
0033
0034
0035
0036
0037
0038
0033
0040

0041
0042
0043
0044

0045
0046
0047
0048

0049
0050
0051

0000 CLO SE = $ 1 0
0000 CM PRES = $11
0000 TA B A SE = $ 1 2
0000 POINTR = $ 1 4
oooo TABLEN = $16
0000 LO GPO S = $17
0000 INCMNT = $18
oooo TEM P = $1B
oooo ENTLEN = $ 1B
oooo O B JE C T = $1C
oooo
oooo * — S 600
oeoo
oeoo A9 00 SEARCH LDA *0
0602 65 10 STA C LO SE
0604 85 11 STA CM PRES
0606 A5 12 LDA TABASE
0608 65 14 STA POINTR
060A AS 13 LDA TABASE4-1
060C 85 1S STA POINTR+1
060E A5 16 LDA TABLEN

0610 DO 03 BNE DIV
0612 4C EO 06 JM P o ir r
061S 4A DIV LSR A
0616 ee 00 ADC * 0
061B 85 17 STA LO GPO S

061A 65 18 STA INCMNT

061C A6 17 LDX LO GPO S

061E CA DEX

061F FO OE BEO ENTRY
0621 A5 18 LOOP LOA ENTLEN
0623 16 C L C
0624 65 14 A D C POINTR
0626 B5 14 STA POINTR
0626 90 02 B CC LO O P
062A E6 15 INC POINTR+1
062C CA LOOP DEX
0«20 DO F2 BNE LO OP
062 F A5 16 ENTRY LOA INCMNT

0631 4A LSR A
0632 69 00 AD C * 0
0634 45 16 s t a INCMNT
0636 AO 00 LDY * 0

0633 B1 1C LOA (OBJECT1.Y
063A DI 14 CM P |POINTR).Y
063C DO 11 BNE NO G O O D
063E CS INY

063F B1 1C LDA (OBJECT) ,Y
0841 DI 14 CM P |POINTR),Y
0843 DO OA BNE NO G O O D

; FLA G ZERO.

. INIZIALIZZA IL P U N TA TO R E

. A C C E T T A LUN GH EZZA
TA BELLA

DIVIDILA PER 2.
SOM M A AL PRIMO BIT.
M EMORIZZA CO M E
POSIZIONE LO GICA
MEMORIZZA C O M E VALORE
INCREMENTO.
MOLTIPLICA ENTLEN PER
LO G POS.
... AG GIUNG EN DO II
RISULTATO AL PUNTATORE.

; DIVIDI IL VALORE
; DELL'INCREM ENTO PER 2.

; CO N FR O N TA LE PRIME
; LETTERE.

; CO N FR O N TA LE SECON D E
; LETTERE.

Figura 9-22. Programma della Lisia Alfabetica: Ricerca Binarla.
Cancellazione. Inserzione (continua).

3052

0053
0 0 5 4

0055
0058
0057

oose

0050
ooeo
0061
0062
0043
0064

0066
0066
0067
ooea

0066
0070

0071
0072
0073
0 0 7 4

0075
0076
0077

0076
0 0 7 9

0080

0081
0082
0063
0 0 6 4

0065
0066
0087
0066
0069

0090
0091
0092
0093
0 0 9 4

OOSS

0096
0097
0098
0099

292

0645 CB INV CO N FR O N TA LE TER ZE
LETTER E

0648 B1 1C LDA (OBJECT).Y
0646 D i 14 CM P (POINTR).Y
064A DO 03 BNE NO G O O D
064C 4C E2 06 JM P FOUND
064F AO FF N O G O O D LDY #*FF PONI IL FLAG DI CONFRONTO

RISULTATO
06S1 90 02 B C C TESTS SE O G G ETTO < PUNTATORE;

C-0.
0653 AO 01 LDY * 1
0655 64 11 TESTS STY CM PRES
0657 A4 18 LDY INCMNT L'INCREMENTO HA VALORE 1?
0659 68 DEY
065A 00 10 BNE NEXT
065C A5 10 LDA CLO SE C O N TR O LLA SE IL FLAQ

-CLO SE" É 1.
D6SE FO 06 BEO M AKCLO SE NON É 1, VA A PORLO.
0660 36 SEC

VEDI SE SI É PASSATI DOVE0661 E5 11 SBC CM PRES
0663 FO 07 BEO NEXT ... DOVREBBE ESSERE

L 'O G G ETTO . MA NON C'È.
0665 4C EO 06 JMP O U T
0666 AS 11 M AKCLO LDA CM PRES POSIZIONA IL FLA G CLO SE

A CMPRES.
066A 85 fO STA C LO S E
066C 24 11 NEXT BIT CM PR ES
066E 30 35 BMI SUBIT
0670 AS 16 LDA TABLEN C O N TR O LLA CHE

L'AOOIZIONE DI INCMNT
0672 36 S EC .. VA OLTRE LA FINE TABELLA
0673 E5 17 SBC LO G PO S
0675 FO 69 BEQ OUT C O N TR O LLA SE SI £ GIÀ'

A FINE TA B ELLA
0677 ES 16 SBC INCMNT
0679 90 1A B C C TOOHI
067B A6 16 LDX INCMNT SE VA BENE INCREMENTA

IL PUNTATOR E DELLA
067D AS 18 ADDER LDA ENTLEN ...QUANTITÀ' CO RRETTA.
067F 16 C L C
0690 65 14 AD C POINTR
0662 65 14 STA POINTR
0664 90 02 B C C ADI
0686 E6 1S INC POINTR-M
0666 CA ADI DEX
0669 DO F2 BNE ADDER
066B A5 17 LDA LOGPOS INCREMENTA LA POSIZIONE

LOGICA
066D 16 C L C
06SE 65 16 A D C INCMNT
0690 65 17 STA LOGPOS
0692 4C 2F 06 JM P ENTRY
0605 E6 17 TOOHI INC LO GPO S INCREMENTA LA POSIZIONE

LOGICA
0687 AS 1B LDA ENTLEN TRASFERISCI AVANTI

IL PUNTATORE Gl UN
INGRESSO

0699 18 C L C
069A 65 14 AD C POINTR
069C 85 14 STA POINTR
069E 90 35 B C C S ETC LO

0100 06A0 E6 15 INC POINTR-j-1
0101 06A2 4C 05 06 JM P SETC LO
0102 06A6 AS 17 SUBIT LDA LOG PO S ; VEDI SE INC VA OLTRE

; IL FON DO
0103 06A7 38 S E C ... DELLA TABELLA.
0104 06AB E5 18 SBC INCfwNT
0105 06AA FO 17 BEO TO O LO W
0106 OOAC 90 15 BCC TO O LO W
0107 06AE 65 17 STA LOGPO S ; CO NSERVA LA NUOVA

; POSIZIONE LOGICA.
01 oa Q6B0 A6 18 LDX INCMNT
0109 CKB2 A5 14 SUBLOP LDA POINTR : SOTTRAI DAL CO N TA TO R E

; LA QUANTITÀ- CO RRETTA.
O lio 06B4 38 S E C
0111 06 B5 E5 16 SBC ENTLEN
D112 06B7 85 14 STA POINTR
0113 06B9 BO 02 BCS SUBO
0114 0666 ce 15 DEC POlNTR+1
0115 068D CA SUBO DEX
0116 068E 00 F2 BNE SU BLO P
0117 OSCO 4C 2F 06 JM P ENTRY

; VEDI SE POS é GIÀ' 1.0118 06C3 A6 17 TO O LO W LDX LO G PO S
0119 06C5 C A DEX
0120 oece FO 18 BEO O U T
0121 06C6 C$ 17 D EC LO G POS
0122 06CA AS 14 LDA POINTR ; SOTTRAI L'INGRESSO 1

; DAL PUNTATORE.
0123 06CC 38 SEC
0124 oeco E5 1B SBC ENTLEN
0125 06CF 65 14 STA POINTR
0126 06D1 BO 02 BCS SE TC LO
0127 06D3 C6 1S DEC POINTR-H
0128 OfiDS A9 01 SETO LO LDA 0 1
0129 0607 65 16 STA INCMNT
0130 06DB A5 11 LDA CM PRES
0131 06DB 85 10 STA C LO SE
0132 06D0 4C 2F 06 JMP ENTRY
0133 OBEO A2 FF O UT LDX #S FF . PONI Z AO 1 SE TROVATO.
0134 06E2 GO FOUND RTS
0135 06E3
0136 06E3
0137 06E3

: VEDI SE L 'O G G E TT O É GIÀ'
: OUI.

0138 06E3 20 00 06 NEW JSR SEAR CH

0139 0666 FO 76 BEO O UTE
: CO NTR O LLA SE TABELLA É 0.0140 06EB A5 16 LDA TABLEN

0141 06EA FO 62 BEQ INSERT
0142 06EC 24 11 BIT CM PRES : C O N TR O LLA RISULTATO

, ULTIMO CO NFRON TO .
0143 OBEE 10 OS BPL LOSIDE
0144 O6FO C6 17 D EC LO GPO S : PONI LA POSIZIONE LOGICA

; IN M O OO CHE
0146 06F2 4C 00 07 JMP SETU P :... SUB OPERI

; SUCCESSI VAMETE.
0146 06F5 AS 1B LOSIDE LDA ENTLEN : PONI PU NTATO R E PRIMA DI

: DOVE
0147 06F7 18 C L C ANDRA' L'O G G ETTO .
0148 O6F0 65 14 AD C POINTR
0149 06FA 65 14 STA POINTR
01 SO OEFC 90 02 B C C SETU P
0151 06FE E6 15 INC POINTR + 1
0152 0700 A5 16 SETUP LDA TABLEN ; VEDI QUANTI INGRESSI

0153

0154
0155
0156
0157
0158

0159
0160

0161
0162
0163
0164
0165
0166
0167
0168

0166
0170
0171
0172
0173
0174
0175
0176
0177
0178

017»
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
01 SO
Oidi
0192

0193
0194
0195
01B6
0197
01B8
0199

0200
0201
0202
0203
0204
0205

0206

294

0702 38 S EC :... SO N O DATI OOVE ANDRA'
: L’O G G ETTO .

0703 E5 17 S B C LOO PO S
0705 FO 47 BEO INSERT
0707 AA TAX
0708 A8 TAY
0709 88 DEY : GUARDA SE SI STA GIÀ'

: PUNTANDO
070A FO OE BEQ SETEM P : ... ALL'ULTIM O INGRESSO.
070C A5 1B U PLO O P LDA ENTLEN : MUOVI IL PU NTATOR E

. ALL'ULTIMO INGRESSO.
070e 18 C L C
070F 65 14 AD C POINTR
0711 85 14 STA POINTR
0713 90 02 B C C SETO
0715 E8 15 INC POINTR £1
0717 88 SETO DEY
0718 00 F2 BNE UPLO OP
071A A5 14 SETEM P LDA POINTR : SOM M A ENTLEN A

. PUNTATOHE E
071C 1B C L C ... MEMORIZZA A TEM P
071D 85 1B A D C ENTLEN
071F 85 19 STA TEM P
0721 90 01 B C C SETI
0723 C8 INY . Y ERA GIÀ' 0.
0724 96 S E T I TYA
0725 18 C L C
0726 65 15 AD C POIN TR* 1
0728 85 1A STA TEMP+1
072A A4 1B M OVER LOY ENTLEN : POSIZIONA Y PER LO

: SPOSTAM ENTO.
072C 88 ANOTHR DEY
0720 B1 14 LOA (POINTR).Y . MUOVI UN BYTE
072F 01 16 STA (TEMP).Y
0731 CO 00 CPY # 0
0733 DO F7 BNE ANOTHR
0735 A5 14 LDA POINTR ; DECR. PUNTATOR E E TEM P
0732 38 SEC : ...DI ENTLEN.
0738 E5 1B SBC ENTLEN
073A 85 14 STA POINTR
073C BO 02 BCS MI
073E C6 15 DEC POIN TR* 1
0740 CA MI DEX
0741 DO D7 BNE SETEM P
0743 A5 1B LOA ENTLEN : TRASFERISCI INOIETRO

, IL PU N TA TO R E A
0745 18 C LC ; DO VE AN DR A’ L 'O G G ETTO .
0748 65 14 ADC POINTR
074B 85 14 STA POINTR
074A 60 02 BCC INSERT
074C E6 15 INC POINTR+1
074E 40 00 INSERT LDY * 0
0750 A8 1B LDX ENTLEN ; TRASFERISCI L 'O G G ETTO

; NELLA TA BELLA
0752 01 1C INNER LOA (OBJECT).Y
0754 91 14 STA (POINTR).Y
0756 ce INY
0757 C A DEX
0753 00 FB BNE INNER
075A E6 16 INC TABLEN ; INCREMENTA LA LUNGHEZZA

: TABELLA
075C A2 FF LOX # S F F

0207 075E 60 O U TE RTS
0208 075F
0209 076F
0210 075F
0211 075F 20 00 06 D ELETE JSR SEARCH

0212 0782 DO 35 BNE O U TS
0213 0764 AS 16 LDA TABLEN
0214 0766 38 S E C

0215 0767 ES 17 SBC LO GPO S
0216 0769 F0 2A BEQ D ECER
0217 076B 85 17 STA LO G PO S

0218 076D A5 18 BIGLOP LDA ENTLEN

0219 078F 16 C LC
0220 0770 65 14 A D C POINTR
0221 0772 85 19 STA TEM P
0222 0774 A9 00 LDA * 0
0223 0776 65 1S AD C POINTR-f 1
0224 077B 85 1A STA TEMP+1
0225 077A A6 16 LDX ENTLEN
022$ 077C A0 00 LDY » 0
0227 077E B1 18 BYTE LDA (TEMP),Y
0228 0780 et 14 STA (POINTR) ,Y
0229 0782 ce INY

0230 0763 C A DEX
0231 0784 DO F8 BNE BYTE
0232 0788 AS 18 LDA ENTLEN
0233 0788 18 C L C
0234 0789 65 14 A D C POINTR
0235 076B 85 14 STA POINTR
0236 078D 90 02 B C C D2
0237 078F E6 1S INC POINTR-4-1
02 38 0791 C6 17 D2 D EC LO G PO S
0239 0793 DO DB BNE BIGLOP
0240 0795 C8 16 D ECER DEC TABLEN
0241 0797 A9 00 LOA # 0
0242 0799 60 O U TS RTS
0243 079A END
ERflORS = OOOO < 0000 >
SYM BOL TA B LE

: 2 = 1 S E NOM FATTO.

A C C E T T A ADDR
D ELL 'O G G ETTO NELLA
TABELLA.
VEDI SE C LA'
VEDI QUANTI INGRESSI
...SONO DOPO L 'O G G ETT O
N ELLA TABELLA.

M EMORIZZA IL RISULTATO
C O M E CO N TA TO R E.
PONI TEM P ED ENTRY UN
INGRESSO SOPRA
L 'O G G ETTO

; POSIZIONA I CONTATORI

MUOVI UN BYTE.

; IL B LO C C O £ A N C O R A
; M OSSO?

; Z = 1 SE FATTO.

SYM BOL VALUE

AD1 0668 AODER 067B ANOTHR 072C BIGLOP 078D
BYTE 077E C LO SE 0010 CM PRES 0011 D2 0791
DECER 0795 D ELETE 07SF DIV 0615 ENTLEN 001B
ENTRY 062F FOUND 06E2 INCMNT 0018 INNER 0752
INSERT 074E LO G PO S 0017 LOOP 0621 LOOP 062C
LOSIDE 06F5 M1 0740 M AKCLO 0666 M OVER 072A
NEW 06E3 NEXT 066C N O GO O D 064F O B JE C T 001C
OUT 06E0 O U T E 075E O UTS 0799 POINTR 0014
SEARCH 0600 SET0 0717 SETI 0724 S ETC LO 06D5
SETEM P 071A SETUP 0700 SUBO 06BD SUBIT 06A5
SU BLO P 06B2 TA BASE 0012 TABLEN 0018 TEM P 0019
TESTS 0655 TOOHI 0695 TO OLOW 06C3 U PLO OP 070C

ENO OF ASSEMBLY

Esaminiamo più dettagliatamente la struttura di Fig. 9-23. Il Formato
dell'ingresso è:

o c c u p a te

Come al solito le convenzioni sono:

ENTLEN: lunghezza totale dcU’elemento (in byte)
TABASE: indirizzo della base della lista
TABLEN: numero di ingressi (da I a 256)

Si assume sempre che l’indirizzo di OBJECT risieda nel registro Y,
prima dell’ingresso del programma.

In questo caso REFBASE punta all’indirizzo della base del direttorio,
o “ tabella di riferimento".

Ogni indirizzo a due byte all'interno del direttorio punta alla lettera
corrispondente della lista. Quindi ogni gruppo di ingressi aventi la prima
lettera uguale nella label, formano, in effetti, una lista separata all'in­
terno dell'intera struttura. Questo facilita la ricerca ed è analogo ad un
elenco indirizzi. Si noti che nessun dato viene mosso durante un’inser­
zione od una cancellazione. Solo i puntatori vengono variati, come
avviene in ogni linked lisi ben realizzata.

DIRETTORIO

Se non esiste nessun ingresso in corrispondenza ad una lettera partico­
lare oppure se non esistono ingressi alfabetici a partire da un certo
punto, i puntatori delle lettere corrispondenti punteranno all'inizio della
tabella (—‘NIL’’). Per convenzione, in fondo alla tabella viene memoriz­
zato un valore tale che il valore assoluto della differenza tra quest’ultimo
c “ Z" sia maggiore della differenza tra “A" e "Z ". Questo rappresenta il
contrassegno di fine tabella (EOT: End Of Table). Qui si assume che il
valore EOT occupi la stessa quantità di memoria di un ingresso normale
ma potrebbe essere proprio un byte, se richiesto.

Si assume inoltre che le lettere alfabetiche siano codificate in ASCII.
In caso contrario occorre variare la costante nella routine PRETAB.

Il contrassegno di fine tabella EOT è posto uguale al valore dell'inizio
della tabella (“ NIL"),

Per convenzione i “puntatori NIL" che si trovano alla fine di una
stringa o all'interno di una locazione di direttorio, e che non puntano ad
una stringa, vengono posti uguali al valore della base della tabella per
fornire un'identificazione unica. Si potrebbe utilizzare una convenzione
alternativa. In particolare, un diverso contrassegno per EOT potrebbe
far risparmiare dello spazio, se non è necessario nessun ingresso NIL per
ingressi non esistenti.

L'inserzione e la cancellazione vengono eseguite nel modo consueto
(vedere la parte I di questo capitolo) mediante la modifica diretta dei
puntatori richiesti. Il flag INDEXD viene utilizzato per indicare se il
puntatore all'oggetto si trova nella tabella di riferimento oppure in un
altro elemento della stringa.

Ricerca

11 programma di ricerca SEARCH risiede nelle locazioni di memoria
da 0600 a 0630. Inoltre esso utilizza la subroutine PRETAB che si trova
all’indirizzo 06F8.

Il principio di ricerca è immediato:

1 - accetta l'ingresso del direttorio corrispondente alla lettera dell'alfa-
beto nella prima posizione della label di OBJECT.

2 • accetta il puntatore di uscita del direttorio. Accetta l'elemento. Se
NIL l'ingresso non esiste.

3 - se non NIL, si confronta l’elemento con OBJECT. Se sono uguali,
la ricerca ha dato risultato positivo. Se sono diversi si accetta il puntatore
all'ingresso successivo nella lista.

4 • ritorna al passo 2.
La Fig. 9-24 mostra un esempio di questo algoritmo.

Figura 9 24: Linked List: una ricerca

Inserzione di Elemento

L’inserzione i semplicemente una ricerca seguita da un’inserzione se si
trova un "N IL". Un blocco di memoria per il nuovo ingresso viene
alloccato dopo il contrassegno EOT, purché sia disponibile un contras-
segno di posizione. Il programma si chiama “NEW” e risiede agli
indirizzi da 06S1 a 06BD. La Fig. 9-25 riporta un esempio.

oftiMA

PUNTATOLE A

PUNTATORE 6

PUNTATORE C

(- ► CAI

_ r
z z i

NH

• OGGETTO

DOPO

PUNTATORE A i - * 0 4

_ r
ctt

p u n t a t o r i e
p u n t a t o r ic

. . .

Un elemento viene cancellato ponendo il suo contrassegno di posi­
zione a “disponibile" e regolando il puntatore del testo dal direttorio o
dall'elemento precedente. Il programma si chiama “ DELETE" e risiede
agli indirizzi da 06BE a 06F7. La Fig. 9-26 riporta un esempio di
cancellazione.

CANCELLA

-

OOPO

PUWT. DOC eoe
NIL

| DAF 1

NOTA: DAF NON VIENE CANCELLATO MA £ INVISIBILE

Figura 9 26: Esempio di cancellazione (Linked List)

LINEA rLO C CODICE LINEA

0002 0000 INOEXB - *10
0003 0000 INBLOC = $11
0004 0000 POINTR = $13
0005 0000 OBJECT = $15
0006 0000 TEMP = S17
0007 oooo REF8AS = S19
0008 0000 OLD = S1B
0009 0000 TABASE = S1B
0010 0000 ENTLEN = $1F
0011 0000
0012 0000 •— $600
0013 0600
0014 0600 A9 01 SEARCH LDA 1
001S 0602 B5 10 STA INDEXB
0016 0604 20 F6 06 JSR PRETAB

0017 0607 81 11 LDA (INDLOC),Y
0018 0608 65 13 STA POINTR.
0019 060B ce INY
0020 060C B l 11 LDA (INO LO O .Y
0021 060E 85 14 STA POINTR-pi
0022 0610 A0 00 ENTRY LDY * 0

0023 0612 81 13 LDA (POINTR).Y
0024 0614 C9 7C CMP » $7C
0025 0616 F0 36 BEO NOTFNO
0026 0618 B1 15 LDA (OBJECT),Y

0027 061A D i 13 CM P (POINTRI, Y
0028 061C 90 30 B C C NOTFND
0029 061E DO 12 BNE NOGOOD
0030 0620 ce INY

0031 0621 Bl 15 LDA (OBJECT).Y
0032 0623 DI 13 CM P (POINTR),Y
0033 0625 90 27 B C C NOTFND
0034 0627 DO 09 BNE N O GO OD
0095 0629 ce INY

0036 062A B1 15 LDA (OBJECT),Y
0037 062C DI 13 CMP (POINTR),Y
0038 062E 90 1E B C C NOTFND
0039 0630 FO 1E BEQ FOUND
0040 0632 AS 14 NOQOOD LDA POINTR4-1

0041 0634 65 1C STA OLD-H
0042 0636 A5 13 LDA POINTR
0043 0638 85 1B STA OLD
0044 063A A4 1F LDY ENTLEN

0045 063C Bl 13 LDA (POINTR).Y
0046 063E AA TAX
0047 063F ce INY
0048 0640 B1 13 LDA (POINTR).Y
0049 0642 85 14 STA POINTR+1
0050 0644 8A TXA
0051 0645 85 13 STA POINTR
0052 0647 A9 00 LDA 0
0053 0649 65 10 STA INDEXD
0054 064B 4C 10 06 JMP ENTRY

; IN121 AL IZZA I FLAG.

: ACCETTA COME INIZIO REF
: PUNTATORE
. METTILO IN POINTH

: VEDI SE L'INGRESSO É IL
: VALORE EOT.

; CONFRONTA LE PRIME
: LETTERE

I CONFRONTA LE SECONDE
LETTERE.

CONFRONTA LE TERZE
LETTERE,

CONSERVA POINTR COME
RIFERIMENTO.

ACCETTA PUNTATORE DA
INGRESSO E
. CARICALO IN POINTH

: RESET FLAG.

0055
0056
0057
0058
0059
0060

0061
0082
0063
0064
0065
ooee
0067
0068
0069

0070

0071
0072

0073
0074
0075

0076
0077
0076
0079
0060
0061
0082
0063
0004
0085
0086

0067
0088

0089
0090
0091
0092
0093
0094

0095

0096
0097
0098
0099
0100

0101
0102

0103

064E A9 FF NOTFND LDA #%FF
0650 60 FOUND RTS Z = 1 SE TROVATO
0651
0651
0651
0651 20 00 06 NEW JSR SEARCH VEDI SE L'OGGETTO É GIÀ'

LA'
0654 FO 67 BEQ OUTE
0656 AS 1D LDA TABASE CERCA UN . , BLOCCO
06SS 18 CLC INGRESSO NON OCCUPATO
0659 69 01 ADC #1 ; SALTA DOPO IL VALORE EOT
065B 85 17 STA TEMP
065D A9 00 LDA * 1
065F 6S 1E ADC TABASE+1
0661 SS 18 STA TEM P-1
0663 A4 1F LDY ENTLEN POSIZIONA Y PER PUNTARE

AL
0695 CB INY MARKER DI OCCUPAZIONE

DI UN INGRESSO.
0666 ce INY
0667 A9 01 LOOPP LOA 1 TEST PER IL MARKER DI

OCCUPAZIONE
0669 DI 17 CMP (TEMPt.Y
0668 DO 16 BNE INSERT
0660 A5 17 LDA TEMP SE UTILIZZATO, MUOVI

TEMP AL SUCCESSIVO.
066F 18 CLC . BLOCCO D'INGRESSO.
0670 65 1F AOC ENTLEN
0672 90 02 BCC MORE
0674 E6 18 INC TEM P-rl
0676 69 oa MORE ADC 3
0678 85 17 STA TEMP
067A A9 00 LDA # 0
067C 65 18 ADC TEMP+1
067E 85 18 STA TEMP+1
O6BO 4C 67 06 JMP LOOP
0663 66 INSERT DEY PONI Y INDIETRO PER

PUNTARE
0664 ee DEY ... ALLA SOMMITÀ1 DEI DATI,
0685 60 LOPE DEY TRASFERISCI L’OGGETTO

NELLO SPAZIO.
0686 NI 15 LDA (OBJECT).Y
0666 91 17 STA (TEMP).Y
066A CO 00 CPV 0
068C DO F7 BNE LOPE
068 E A4 1F LOY ENTLEN METTI IL VALOHE DI POINTR.
0690 A5 13 LDA POINTR L'OGGETTO DOPO

L'INGRESSO.
0692 91 17 STA |TEMP>.Y NELL'AREA PUNTATORE

DELLOGGETTO.
0894 C8 INY
0695 AS 14 LDA POINTR+1
0697 91 17 STA (TEMP).Y
0699 ce INY
069A A9 01 LDA » 1 PONI AD 1 IL MARKER DI

OCCUPAZIONE.
069C 91 17 STA (TEMP).Y
069E AS 10 LDA INDEXO TEST PER VEDERE SE

TABELLA REF.
06AD DO OD BNE SETINX NECESSITA 01

RIAGGIUSTAMENTO
0AA2 86 DEY
06A3 A5 16 LDA TEMP+1 NO. CAMBIA IL PUNTATORE

0107
010B
0109
0110
Olii

0112

0113
0114
0115
0110
0117
0118
0119
0120
0121
0122

0123
0124

0125
0128
0127
0120
0129
0130
□131

0132
0133

0 1 3 4

0135
0136
0137

0138
0139
0140
0141
0142
0143
0 1 4 4

0145
0146
0147
0148
0149
0150
0151
0152
0163
0154
0155
0156

302

06 A5 91 1B STA (OLD),Y ;.. DELL'INGRESSO
; PRECEDENTE.

06A7 BB DEY
06A 8 AS 17 LDA TEM P
06AA 91 1B STA (OLD).Y
06AC 4C 88 06 JM P DONE
06AF 20 FB 06 SETINX JSR PRETAB : A C C E T TA L'INDIRIZZO DI

. CIO' CH E DEVE ESSERE
: CAMBIATO.

0602 AS 17 LOA TEM P : CARICA QUI L'INDIRIZZO
; DELL'O G GETTO .

0664 91 11 STA |INDLOC).Y
06B6 CB INY
06B7 A5 18 LDA TEMP-t-1
06B9 91 11 STA (INDLOC).Y
06B6 A9 FF DONE LDA *SFF
oeeo 60 O U TE RTS ; Z = 0 SE FATTO
06BE
06BE
06BE
06BE 20 00 06 D ELETE JSR SEARCH : A C C E T T A L'INDIRIZZO

; D ELL 'O G C ETTO .
OSCI BO 34 BNE O U TS
DSC3 A4 1F LDY ENTLEN ; MEMORIZZA IL PUNTATOR E

; A LLA FINE
06C5 B1 13 LDA (POINTR).Y ; D ELL 'O G G ETTO
06C7 85 17 STA TEM P
06C9 08 INY
06CA 61 13 LDA (POINTR).Y
06CC B5 18 STA TEM P-M
O0CE CB INY
06CF A9 00 LDA # 0 ; AZZER A IL M ARKER DI

; OCCUPAZIONE.
06D1 91 13 STA (POINTR),Y
□603 A5 10 LDA INDEXD ; VEDI SE TA B ELLA REF

: NECESSITA
06B5 FO 06 BEO PRE1NX ... 01 RIAGGIUSTAM ENTO.
06D7 20 F8 06 JSR PRETAB
060A 4C EA 06 JM P MOVEIT
06DD AS 1B PHEINX LOA OLD : PREDISPONITI PER

: CAMBIARE
080F 18 C LC : .. L'INGRESSO PRECEDENTE.
OSSO 85 IF AD C ENTLEN
06E2 BS 11 STA INDLOC
06E4 A9 00 LDA * 0
06E6 65 IC A D C OLD 41
06EB 85 12 STA INDLOC+1
OEEA A5 17 MOVEIT LDA TEM P CAM BIA CIO* CH E

: VA CAMBIATO.
06EC AO 00 LDY * 0
06EE 91 11 STA (INDLOC),Y
08FO C8 INY
06F1 A5 18 LDA TEMP+1
06F3 91 11 STA (INDLOC).Y
06F5 A9 00 LOA * 0
08F7 80 O U TS RTS : Z = 1 SE FATTO.
06F8
06F8
06FB
06F8 AO 00 PRETAB LDY V 0

06FA B1 15 LOA (OBJECT),Y

Fig. 0.27: Programma Llnkad Lisi (continua).

0157 06FC 36 SEC ; TOGLI LA TESTA TA
: ASCII DALLA

oi sa 06FD E9 41 SBC #$41 .. PRIMA LETTERA
; DELL'O G GETTO .

0159 06FF OA ASL A ; MOLTIPLICA PER 2.
0160 0700 10 C L C
DISI 0701 6S 19 ADC REFBAS : INOICE NELLA

; TA BELLA REF.
0162 0703 85 11 STA INDLOC
0163 0705 A9 00 LDA #0
0164 0707 65 1A A D C REFBAS+1
016S 0709 86 12 STA IND LOC-rl
0166 070B 60 RTS
0167 07 OC .END

ERRORS = 0000 < 0000 >

SYM BOL TA BLE

SYM BOL VALUE

D ELETE 06BE DOME 06BB ENTLEN 001F ENTRY 061D
FOUND 0650 INDEXD 0010 INDLOC 0011 INSERT 0663
LOOP 0667 LOPE OBB5 MORE 0676 MOVEIT 06EA
NEW 0651 N O G O O D 0632 NOTFNO 064E O B JEC T 0015
OLO 001B O U TE 06BD O UTS 06F7 POINTR 0013
PREINX oeoo PRETAB 06 F8 REFBAS 0010 SEARCH 0600
SETINX 06AF TA BASE 001D TEM P 0017
END O F ASSEM BLY

Figura 9.27: Programma Linked List.

A LBERO BIN A RIO

. Sj svilupperanno ora delle routine tipiche di manipolazione ad albero.
La Fig. 9-28 mostra una semplice struttura. I nomi verranno memoriz­
zati internamente mediante etichette formate dalle prime tre lettere di
ciascun nome. La rappresentazione di memoria di queste tre strutture
appare in Fig. 9-29. Sono noti i contenuti dei nodi e dei due collegamenti
di ciascuno di essi. Il primo collegamento, a sinistra del nome, è il
“sibling di sinistra" ed il collegamento successivo, a destra, è il “sibling
di destra*'. Per esempio, l’ingresso per Jones contiene due collegamenti:
“ 2” e *'4'’. Questo indica che il sibling di sinistra è l'ingresso numero 2
(Anderson) e quello di destra è il numero 4 (Smith). Uno zero, nel campo
del collegamento, indica nessun sibling. L’etichetta del sibling di sinistra
viene alfabeticamente prima di quello di destra.

JONES

CO
ANDERSON

(0 \
AL&EPT

co (0

ami in

/ W \
WJRHAY ZOAK

« / M
T IM O T H V

(8)
Figura 9.28: Albero binario

Le due routine principali per la manipolazione ad albero sono la
costruzione di albero e Vattraversamento di albero. L'elemento da inserire
verrà posizionalo in un buffer. La routine di costruzione di albero
inserirà i contenuti del buffer nell’albero in corrispondenza del nodo
appropriato. La routine di attraversamento di albero, percorre recursi-
vamente e stampa i contenuti di ogni nodo deH’afbcro, in ordine alfabe­
tico. La Fig. 9-30 mostra il diagramma di flusso per la costruzione
dell'albero e la Fig. 9-31 per l’attraversamento.

Poiché la routine per l’attraversamento è recursiva non si presta ad una
rappresentazione mediante diagramma di flusso. Quindi si fornisce.

OftDlNE
Di INSERZIONE

A B

Figura 9.31; Diagramma di flusso deirattraversamanlo di albero

PROGRAMMA PER ATTRAVERSAMENTO DI ALBERO
INIZIO
WORKPOINTER: = STARTPOINTER:

RICERCA: INIZIO
SE WORKPOINTER * 0 ALLORA INIZIA
INSERISCI WORKPTR:
WORKPOINTER: = LEFTPTR (WORKPOINTER);
PRELEVA WORKPOINTER:
STAMPA (ALBERO (WORKPOINTER)|:
WORKPOINTER: - RIGHTPTR (WORKPOINTER);
RICHIAMA RICERCA;
FINE;

RETURN:
END;

END

Figura 9.32: Algoritmo di attraversamento di albero

DATI "EN TLEN ' BYTE
SINISTRA PTR DESTRA PTR

L . H L . H
• 1

(n) (n + ENTLEN + 4)

Figura 9.33: Unità dati o "Nodi" dell’albero

nella Fig. 9-32, un'altra rappresentazione della routine in un formato ad
alto livello. La Fig. 9-33 mostra un nodo reale dell'albera. Essa contiene
dei dati di lunghezza ENTLEN e due puntatori a 16 bit (il puntatore di
destra e quello di sinistra). Per evitare confusione si noti che la rappre­
sentazione della Fig. 9-29 è semplificata e che il puntatore di destra
appare a sinistra nella memoria. La Fig. 9-34 mostra l’allocazione di
memoria impiegata da questo programma e la Fig. 9-37 riporta il
programma effettivo.

La routine INSERT risiede agli indirizzi da 02200 a 0282. L’etichetta
dell'oggetto da inserire viene confrontata con l’ingresso. Se è maggiore ci
si muove verso destra, se minore, a sinistra di una posizione. Il processo
viene quindi ripetuto finché non si trova un collegamento vuoto o si
trova un "aggancio” adatto per un nuovo nodo (cioè un nodo è mag­
giore del successivo e viceversa). II nuovo nodo viene quindi inserito con
i collegamenti corretti.

La routine TRAVERSE risiede agli indirizzi da 0285 a 02D6. Le
routine di servizio OUT, ADD e CLRPTR risiedono agli indirizzi da
0207 a 02FE (Vedere Fig. 9-37).

PAGINA 0 PAflTE ALTA DELLA MEMOHrA

Figura 9.34: Mappe di memoria

La Fig. 9-35 mostra un esempio di inserzione di albero e la Fig. 9-36
mostra un esempio di attraversamento di albero.

UN ALGORITMO HASH1NG

Un problema comune nella realizzazione di strutture dati è il posizio­
namento degli indicatori all'interno di un limitato spazio di memoria, in
un modo schematico tale che possano essere facilmente recuperati.
Sfortunatamente finché gli indicatori sono dei numeri sequenziali
distinti (senza vuoti) non si prestano al posizionamento in memoria.

JONES

\o
1 RICERCA ANDERSON

BROWN MURRAY 20PK

INSCP2rON£-

JONES 2 IN3EAZI0NE

Figura 9.35: Inserzione di un elemento nell'albero

In particolare, se i nomi devono essere posizionati nella memoria così
da poter essere recuperati più facilmente (cioè se essi sono posizionati
alfabeticamente) essi potrebbero richiedere un'enorme quantità di
memoria; per ogni nome possibile dovrebbe essere riservato un singolo
blocco di memoria. La funzione matematica utilizzata per eseguire
l'hashing dovrebbe essere semplice in modo da ottenere un algoritmo
veloce, ma abbastanza sofisticato da rendere casuale la distribuzione dei
nomi possibili sullo spazio di memoria disponibile. Il numero risultante
può essere quindi utilizzato come un indice per la locazione effettiva e
sarà possibile un recupero veloce. Questa è la ragione per cui l'hashing
viene comunemente impiegalo per le direttive dei nomi alfabetici.

Poiché nessun algoritmo può consentire di allocare due nomi nella
stessa locazione di memoria (una “collisione") occorre escogitare una
tecnica per risolvere il problema delle collisioni. Un buon algoritmo di

Figura 9.36: Listing dell'albero

hashing distribuirà i nomi eventualmente sullo spazio di memoria dispo­
nibile e consentirà una ricerca efficiente dei loro valori una volta che
sono stati memorizzati in una tabella. L'algoritmo di hashing utilizzato
in questa sede è molto semplice.
Esso esegue l’OR Esclusivo di tutti i byte della chiave. Per rendere
ulteriormente casuale l'operazione viene eseguita una rotazione dopo
ogni addizione.

La tecnica utilizzata per risolvere il problema delle collisioni è una
semplice tecnica sequenziale. Essa tecnicamente viene chiamata "tecnica
sequenziale di indirizzamento aperto"; il blocco disponibile sequenzial­
mente successivo viene allocato come ingresso. Questo può essere con­
frontato con un elenco di indirizzi tascabile. Si assume che si deve
introdurre un nuovo ingresso come SMITH. Comunque nel nostro
piccolo elenco di indirizzi la pagina “S” i piena. Si utilizzerà la pagina
sequenzialmente successiva. (In questo caso la “T ') . Si noli che necessa­
riamente non ci sarà un'altra collisione con un nuovo ingresso iniziante
con “T” , l'ingresso “ S" sarà rimosso prima che debba entrare una “T*\

Inoltre si noti che potrebbe sussistere una catena di collisioni. Se la
catena è lunga la tabella non è piena, l'algoritmo hashing è mal proget­
tato.

LINEA

0002
0003
00(M
0005
0006
0007
oooe
0009
0010
0011
0012
0013
0014

0015

0016

0017
0016
0019
0020
0021
0022

0023
0024
0025
0020

0027
0028
ooes
oooo
0031

0002

0003
0004
0095
0038

0037

0038

0039

0040
0041
0042
0043

0044

«LOC CODICE LINEA

0000 PROGRAMMA DI MANAGEMENT DI ALBERO.
0000 2 ROUTINE: UNA, QUANDO CHIAMATA. PONE
0000 NELL'ALBERO 1 CONTENUTI DEL
0000 BUFFER; LA SECONDA ATTRAVERSA L'ALBERO
OOOO RECURSIVAMENTE, STAMPANDO. IN ORDINE
OOOO ALFABETICO 1 CONTENUTI DEI SUOI NODI,
OOOO NOTA: 'ENTLEN' VA INIZIALIZZATO
OOOO E 'FREPTR' DEVE ESSERE UGUALE A
OOOO STRTPTR- PRIMA 01 IMPIEGARE ENTRAMBE LE ROUTINE.
OOOO
OOOO ’ = $ 10
0010 FREPTR m~ '+ 2 PUNTATORE SPAZIO LIBERO.
0012 ; PUNTA ALLA SUCCESSIVA LOCAZIONE DI

; MEMORIA LIBERA.
0012 WRKPTR ’= '+ 2 WORK POINTER PUNTA AL

NODO CORRENTE.
0014 ENTLEN * = V 1 LUNGHEZZA INGRESSI

ALBERO. IN BYTE.
0015 oo oe STRTPT WORD $600
0017 BUFFER • = ’ +20 BUFFER DI I/O.
002B
002B *=•5200
0200
0200 ROUTINE DI COSTRUZIONE ALBERO: AGGIUNGI UN'UNITA'

DATI,
0200 0 NODO ALL'ALBERO. DEVE ESSERE
0200 CHIAMATA CON L'UNITA DATI DA AGGIUNGERE IN BUFFER:.
0200
0200 AS 15 NSERT LDA STRTPT WORKPOINTER <=

FREEPOINTER).
0202 BS 12 STA WRKPTR
0204 A5 16 LDA STRTPT +1
0206 65 13 STA W RKPTRfl
02GB A5 10 LDA FREPTR SE FREEPOINTER

< >
020A C5 15 CMP STRTPT PUNTATORE DELLA

LOCAZIONE DI PARTENZA.
020C DO 00 BNE INLOOP ENTRA NEL CICLO DI

INSERZIONE.
020E A5 11 LDA FREPTR+1
0210 CS 16 CMP STRTFT+1
0212 DO 07 BNE INLOOP
0214 20 D7 02 JSR ADD CARICA BUFFER NELLA

POSIZIONE CORRENTE.
0217 20 E4 02 JSR CLRPTR PONI A 0 1 PUNTATORI DEL

NODO CORRENTE
021A 60 RTS FATTO AGGIUNGENDO IL

PRIMO NODO.
Q21B AO 00 INLOOP LDY »0 CONFRONTA L'ETICHETTA

DEL BUFFER A QUELLA
OELLA ...

021D B9 17 00 CMPLP LDA BUFFER.Y LOCAZIONE CORRENTE.
0220 DI 12 CMP (WRKPTR),Y
0222 90 33 BCC LESSTN ETICHETTA BFR PIÙ' BASSA:
0224 AGGIUNGI BUFFER A PARTE

SINISTRA ALBERO.
0224 FO 02 BEO NXT ETICHETTE UGUALI,

VERIFICA QUELLE DEL
CARATTERE SUCCESSIVO.

0226 BO 06 BCS GRTNEO ETICHETTA BFR MAGGIORE
AGGIUNGI BFR A

Figura 9-37. P rogram m i d i R icerca naH‘A lb«ro (continua).

0046 0226 . PARTE DESTRA ALBERO.
0047 0226 C8 NXT INY
0048 0229 C9 04 CMP #4 3 CARATTERI CONFRONTATI
0049 022B DO FO BNE CMPLP NO. CONTROLLA QUELLO

SUCCESSIVO.
0060 022D A4 14 GRTNEO LDY ENTLEN IL PUNTATORE DESTRO
0051 022F B1 12 LDA |WRKPTR).Y OEL NODO CORRENTE É = 0
005? 0231 DO 15 BNE NXRNOD SE NO, MUOVITI

NELL'ALBERO IN BASSO
A DESTRA.

0053 0233 08 INY
0054 0234 B1 12 LDA (WRKPTR |,Y
0065 0236 DO 10 BNE NXRNOD
0066 0238 AS 11 LDA FREPTR+1 PONI IL PUNTATORE DESTRO
0057 023A 91 12 STA (WRKPTR).Y DEL NODO CORRENTE -

FHEEPOINTER.
0058 023C 66 DEY
0059 023D A5 10 LDA FREPTR
0060 023F 91 12 STA (WRKPTR),Y
0061 0241 20 D7 02 JSR ADD AGGIUNGI BUFFER

ALL'ALBERO.
0062 0244 20 E4 02 JSR CLRPTR AZZERA I PUNTATORI DEL

NODO SUCCESSIVO.
0063 0(247 60 RTS FATTO. AGGIUNTO NUOVO

NODO.
0064 024B A4 14 NXRNOD LDY ENTLEN POSIZIONA WORK POINTER.
0065 024A B1 12 LDA (WRKPTR), Y; PUNTATORE A DESTRA DEL

NODO CORRENTE
0066 024C AA TAX
0067 0240 ce INY
0068 024E B1 12 LDA (WRKPTR),Y
0069 0250 B5 13 STA WHKPTR+1
0070 0252 86 12 STX WRKPTR
0071 0254 4C 18 02 JMP INLOOP PROVA IL NUOVO NODO

CORRENTE.
0072 0257 A4 14 LESSTN LDY ENTLEN IL PUNTATORE DI SINISTRA
0073 0259 C6 INY DEL NODO CORRENTE É = 0?
0074 Q2SA ce INY
0075 025B B1 12 LDA (WRKPTR),Y
0076 025D BO 15 BNE NXLNOD SE SI. MUOVITI IN BASSO A

SINISTRA NELL'ALBERO
0077 025F ce INY
0078 0260 B1 12 LDA <WRKPTR),Y
0079 0262 BO 10 BNE NXLNOD
OOBO 0064 A5 11 LDA FREPTR+1 POSIZIONA IL PUNTATORE

DI SINISTRA DAL NOOO
0061 0268 91 12 STA (WRKPTR). Y CORRENTE AL NUOVO NODO.
0062 0266 68 DEY
0083 0269 A5 10 LOA FREPTR
0064 026 B 91 12 STA (WRKPTR).Y
0005 026D 20 D7 02 JSR ADD AGGIUNGI ICONTENUTI DEL

NUOVO NODO.
0006 0270 20 E4 02 JSR CLRPTR AZZERA 1 PUNTATORI DEL

NUOVO NODO.
0087 0273 60 RTS FATTO, NUOVO NODO

AGGIUNTO.
0000 0274 A4 14 NXLNOD LDY ENTLEN PONI WORKPOINTER =

PUNTATORE DI
ooas 0276 C8 INY SINISTRA DEL NODO

CORRENTE.
oooo 0277 CB INY
0041 0270 B l 12 LDA (WRKPTR) ,Y .

Figura 9-37. Programmi di Ricerca nell'Albero (continua).

0093
0093
0094
0095
0096
0097

0098
0099
0100
0101
0102
0103
0104

0105
0106
0107
0100
0109
0110
Olii
0112
0113
0114
0115
0116
0117
0118

0119
0120
0121
0122
0123
0124
0125
0126

0127

0128
0129
0130
0131

0132
0133

0134
0135
0136
0137
0138
0139
0140
□141
□142
0143
0144
0145

027A AA TAX
027B C8 INY
027C Bl 12 LDA (WRKPTR) ,Y
027E 85 13 STA WRKPTR-fi
0280 86 12 STX WRKPTR
0282 4C 1B02 JMP INLOOP PROVA IL NUOVO NODO

CORRENTE.
0285
0285 ATTRAVERSAMENTO DI ALBERO: ELENCA I NODI
0285 DELL'ALBERO IN ORDINE ALFABETICO.
0285 È. RICHIESTA LA ROUTINE O'USCITA PER
0285 XFER BUFFER AL DISPOSITIVO D'USCITA.
0285
0285 A5 15 TRVRSE LDA STRTPT WORKING POINTER < =

START POINTER.
0287 85 12 STA WRKPTR
0289 AS 16 LDA STRTPT-(-1
028B 85 13 STA WRKPTR-fi
028D A5 13 SEARCH LDA WRKPTR+1
028F A6 12 LDX WRKPTR SE WORK POINTER < > 0.
0291 00 07 BNE OK CONTINUA:
0293 A4 13 LDY WRKPTR+1
0295 DO 03 BNE OK
0297 4C C6 02 JMP RETN ALTRIMENTI. RITORNO.
029A 48 OK PHA SPINGI WORK POINTER
0290 8A TXA NELLO STACK.
029C 48 PHA
0290 A4 14 LDY ENTLEN PONI WORKPONTER =
029F C8 INY PUNTATORE DI SINISTRA

OEL NODO CORRENTE.
02A0 C8 INY
02A1 B l 12 LDA (WRKPTR).Y
02A3 AA TAX
02A4 C8 INY
02A5 B l 12 LDA (WRKPTRJ.Y
02A7 85 13 STA WRKPTR+1
02A9 88 12 STX WRKPTR
02AB 20 80 02 JSR SEARCH RICERCA RECURSIV AMENTE

IL NUOVO NODO.
02AE 68 PLA PRELEVA IL VECCHIO NODO

CORRENTE E PONILO IN
WORK POINTER.

02AF 85 12 STA WRKPTR
02B1 68 PLA
02B2 85 13 STA WRKPTR+1
0284 20 C7 02 JSR OUT FA' USCIRE 1 CONTENUTI

OEL NOOO CORRENTE.
02B7 A4 14 LDY ENTLEN PONI WORK POINTER =
02B9 B l 12 LDA (WRKPTR).Y PUNTATORE DI DESTRA DEL

NODO CORRENTE.
02BB AA TAX
02BC CB INY
02BD 81 12 LDA (WRKPTR).Y
02BF 86 13 STA WRKPTR+1
02C1 88 12 STX WRKPTR
02 C3 20 80 02 JSR SEARCH RICERCA NUOVO NODO.
02C6 80 RETN RTS FATTO, RITORNO.
02C7
02C7 ROUTINE DI USCITA DEL BUFFER.
02C7
02C7 AO 00 OUT LDY #0
02C9 B l 12 X ff i LDA (WRKPTR).Y : ACCETTA CARATTERE DEL

: NODO CORRENTE.

0146 02CB SS 17 00 STA BUFFER.Y PONILO IN BUFFER.
0147 02CE CB INY RIPETI FINO ...
0148 02CF C4 14 CPY ENTLEN AL TRASFERIMENTO DI

TUTTI 1 CARATTERI.
0149 02D1 DO F6 BNE XFR
0150 02 D3 EA NOP INSERISCI LA CHIAMATA

ALLA
0151 0204 EA NOP SUBROUTINE CHE FA USCIRE

BUFFER.
0152 0205 EA NOP
0153 02D6 60 RTS FATTO
0154 02 D7
0155 02D7 ROUTINE CHE PONE 1 CONTENUTI
0156 02D7 DI BUFFER IN UN NUOVO NODO.
0157 02D7
0158 0207 AO 00 AOD LOY #0
0159 0209 B9 17 00 NOV LDA BUFFER.Y ACCETTA CARATTERE OA

BUFFER.
0160 02DC 01 10 STA (FREPTR),Y MEMORIZZALO IN UN NUOVO

NODO
0161 020E ca INY RIPETI FINO ...
0163 02OF C4 14 CPY ENTLEN AL TRASFERIMENTO 01

TUTTI 1 CARATTERI.
0163 02E1 DO F6 BNE MOV
0164 02E3 60 RTS FATTO.
0165 02E4
0168 02E4 ROUTINE PER AZZERARE 1 PUNTATORI DEL NUOVO NOOO.
0187 02E4 E PER AGGIORNARE IL PUNTATORE DELLO SPAZIO LIBERO.
0168 02E4
0169 02E4 A4 14 CLRPTR LDY ENTLEN POSIZIONA L'INDICE PER

PUNTARE
0170 OSEB ALLA SOMMITÀ' DELLE

LOCAZIONI DEL PUNTATORE.
0171 QSEfi A9 00 LDA #0
0172 0CE8 A2 04 LDX 04 ClCLA 4 VOLTE PER

AZZERARE 1 PUNTATORI.
0173 OSEA 91 10 CLRLP STA (FREPTR),Y. AZZERA LA LOCAZIONE DEL

PUNTATORE.
0174 02 EC CB INY PUNTA ALLA LOCAZIONE

SUCCESSIVA DEL
PUNTATORE.

0175 02ED CA DEX
0176 CC EE DO FA BNE CLRLP : RIRICLA SE NON FATTO.
0177 02 FO A5 14 LDA ENTLEN ; ACCETTA LA LUNGHEZZA

; DELL'INGRESSO
0178 02F2 18 CLC : ED AGGIUNGI 4 PER LO

; SPAZIO PUNTATORE.
0179 0BF3 69 04 ADC #4
0180 02F5 85 10 ADC FREPTR ; AGGIUNGI AL PUNTATORE
0181 02F7 90 02 BCC CC : DELLO SPAZIO UBERO PER

: AGGIORNARLO.
0182 02 FB E6 11 INC FREPTR+1 ; ATTENZIONE AGLI

; OVERFLOW
0163 02FB 85 10 CC STA FREPTR ; Rl-I MMAGAZZINA IL

; PUNTATORE DELLO SPAZIO
; UBERO AGGIORNATO

0164 02FD 60 RTS ; FATTO.
0185 02 FE END

ERRORS = 0000 < 0000 >
END OF ASSEMBLY

Nota sugli Alberi

Gli alberi binari possono essere costruiti ed attraversati in molti modi.
Per esempio, una rappresentazione alternativa per l’albero che si consi­
dera potrebbe essere:

A N D E R S O N

BROWN TlMOTKY

z

Figura 9 38: A lbero in p re -o rd ine

Esso potrebbe essere attraversato in “preordine” :

1 - elenca la radice
2 - attraversa il sub-albero di sinistra
3 - attraversa il sub-albero di destra

Esistono molte altre tecniche e convenzioni.

Poiché è conveniente utilizzare una potenza di due per il formato dei
dati, la lunghezza dei dati è di otto caratteri; sei sono allocati come
chiave e due come dati. Questa è una situazione tipica, per esempio, nella
creazione della tabella dei simboli di un assembler. Fino a sei simboli
esadecimali sono allocati come simbolo e due sono allocati per l’indi­
rizzo che esso rappresenta (2 byte).

Nella ricerca di elementi da una tabella hashing, il tempo richiesto per
la ricerca non dipende dalla dimensione della tabella ma dal grado di
riempimento della stessa. Tipicamente, mantenendo la tabella piena
meno dell’80%, si manterrà alto il tempo di accesso (uno o due tentativi).
È responsabilità della routine chiamante mantenere la traccia del grado
di riempimento della tabella e prevenire overflow.

L'aumento del tempo di accesso in funzione del riempimento della
tabella i riportato in Fig. 9-39. Le routine principali utilizzate dal
programma sono: quella di inizializzazione (INIT), mostrata in Fig.
9-40; la routine di memorizzazione, mostrata in Fig. 9-41; la routine di
recupero, mostrala in Fig. 9-42 e la routine di hash, mostrata in Fig.
9-43. L'allocazione di memoria appare in Fig. 9-44 ed il programma in
Fig. 9-45. Il programma ha lo scopo di mostrare tutti gli algoritmi
principali utilizzati in un meccanismo di hashing reale. Se questi pro­
grammi fanno parte di una realizzazione effettiva si suggerisce viva­
mente di aggiungere le usuali funzioni richieste per prevenire situazioni
particolari.

TEMPO
DI ACCESSO

Figura 9.39: Tem po di accesso In funz ione dal riem p im ento re la tivo

In particolare, occorre salvaguardarsi contro l'evento di tabella piena o
di una chiave non corretta poiché essi potrebbero causare dei cicli
indefiniti nel programma. Si raccomanda vivamente al lettore di studiare
questo programma. Infatti solo così si demistificherà l’algoritmo
hashing ed inoltre si risolverà un problema pratico importante incon­
trato nel progetto di un assembler, o in qualsiasi struttura nella quale si
debbano conservare delle tabelle di nomi con i loro equivalenti in un
modo efficiente.

Figura 9,40: S ub rou tine d i in iz la lizzazione

BUBBLE-SORT

Bubble-sort è una tecnica di classificazione utilizzata per ordinare gli
clementi in una tabella in ordine crecente o decrescente. La tecnica
bubble-sort deriva il suo nome dal fatto che l’elemento più piccolo
“ bubble-up" (gorgoglia) alla sommità della tabella. Ogni volta che esso
si scontra con un elemento “più pesante" esso lo scavalca.

La Fig. 9-46 mostra un esempio pratico di bubble-sort. La lista da
classificare contiene: 10, 5, 0, 2 e 100 e deve essere ordinata in ordine
crescente (“0’* in alto). L’algoritmo è semplice cd il diagramma di flusso
è mostrato in Fig. 9-47.

I due elementi alla sommità (o al fondo) vengono confrontati. Se
l’elemento sottostante è il minore (“più leggero”) allora questi vengono
scambiati, in caso contrario no. In pratica lo scambio, se si verifica, sarà

SIO
PARTE

BASSA TABELLA

.PARTE
ALTA TABELLA

INDICE

>

PTR LO

*TH HI

eufFep

>

PAJTTE ALTA
DELLA MEMORIA

PROGRAMMA SJW)

0002

0003
0004
0006
0006
0007
0008
OOOB
0010
0011
0012
0013
0014
0015

0016

0017

0018

0019
0020
0021
0022
0023
0024
0025
0026

0027

0028

0029
0030
0031

0032

0033
0034
0035

0036

0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047

OOOO
oooo
oooo
OOOO
oooo
oooo
oooo
oooo
oooo
oooo
oooo
oooo
0010
0012

0013

0015

0016

001E
001E
0200
0200
0200
0200
0200
0202

0204

0207

0209
0206
0200

D20F

0211
0213
0215

□217

0219
021B
0210
021F
0221
0222
0222
0222
0222
0222
0222
0222

00 06

PROG RAM M A PER MEMORIZZARE I SIMBOLI
D ELL'ASSEM BLATO RE IN UNA
TA BELLA. CUI SI A C C E D E MEOIANTE HASHING. ISIMBOLI
SO N O 6 CAR. 2 DATI. IL NUM ERO MASSIMO DI
UNITA' DI 8 BYTE DA MEMORIZZARE N ELLA TA BELLA
DO VREBBE ESSER E IN "ENTNUM" E L'INOIRIZZO
D'INIZIO D ELLA TA B ELLA IN 'TA B LE". SI NOTI CH E
PRIMA DELL'IMPIEGO. O C C O R R E INIZIALIZZARE
TA BLE CO N LA ROUTINE "INIT"
É RESPONSABILITA' DEL PROGRAM M A CHIAM ANTE
NON SUPERARE LA DIMENSIONE TABELLA.

TABLE
INDX

PTR

•=S 10
W ORD S 600
*=■+«

•=■+2
ENTNUM •=•+!

BUFFER ' - ' + 8

INDIRIZZO INIZIO TA BELLA.
NUM ERO UNITA'. DATI
DA A C C ED ER E
PU NTA TOR E ALL'UNITA'
DATI IN TABELLA.
NUMERI DI INGRESSI IN
TA B ELLA (256 MAX»
BUFFER D'INGRESSO/
USCITA

- S 200

ROUTINE -INIT": INIZIALIZZA A ZER O
LA TABELLA.

A5 15 INIT
85 13

20 72 02

A2 00

A9 00
A4 13
DO 02

C6 14

ce 13
81 13
AS 13

C5 10

DO EE
A5 14
C5 11
DO E8
60

A2 00

LDA ENTNUM
S TA PTR

JSR SHADD

LDX #0

LOA «0
LDY PTR
BNE DECR

D EC PTR+1

D EC PTR
STA (PTR.X(
LD A PTR

CM P TABLE

BNE CLRLP
LD A PTR+1
CM P TABLE+ 1
BNE CLRLP
RTS

ROUTINE -STORE": POSIZIONA IN TA BELLA I
CONTENUTI DI BUFFER USANDO IL PRIMO DI 8 CAR
DI BUFFER CO M E 'CHIAVE'' PER DETERMINARE
L'INDIRIZZO HASHED IN TABELLA.

CLR LP

DECR

CARICA NU M .JNG RESSl
IN PUNTATOR E
MOLTIPLICA P TR "8.
AGGIUNGI PU NTATO R E
TABELLA.
AZZER A X PER
INDIRIZZAMENTO
CARICA LA CO STAN TE ZERO.

S E PTR < > 0. NON
DECREM ENTARE BYTE ALTO
D ECR EM EN TA BYTE ALTO
DEL PUNTATORE.
D ECREM ENTA BYTE SASSO
AZZER A LOCAZIONE.
CONTROLLA SE PUNTATORE
= PUNTATORE TA BELLA
SE DIVERSI. AZZER A
LOCAZIONE SUCCESSIVA.

STO R E LDX * 0 AZZER A X PER
; INDIRIZZAMENTO
. INDICIZZATO

0049 0224 20 90 02 JSR HASH ACCETTA INDICE HASHED
0050 0227 20 62 02 CMPR1 JSR LIMIT ASSICURATI CHE L'INDICE

E ENTRO 1 LIMITI.
oasi 022A A l 13 LDA (PTR.X) CONTROLLA L’UNITA' DATI ...
0053 022C FO 05 BEO EMPTY SALTA SE VUOTA.
0053 022E E6 12 INC INDX PROVA L'UNITA'SUCCESSIVA.
0054 0230 4C 27 02 JMP CMPR1 CONTROLLA SE L'INDICE

DELL'UNITA’ SUCCESSIVA
É VALIDO.

0055 0233 AO 07 EMPTY LDY # 7 RICICLA 8 VOLTE PER
CARICARE L'UNITA’ DATI.

0056 0235 B9 16 00 FILL LDA BUFFER.Y ACCETTA CAR DAL BUFFER,
0057 0238 91 13 STA (PTR), Y POSIZIONALO NEL BUFFER.
0058 023A 68 DEY
0059 0238 10 F8 BPL FILL TRASFERISCI IL CAR.

SUCCESSIVO
0060 023D 60 RTS AGGIUNTA ESEGUITA.
0061 023E
0062 023E ROUTINE "FIND":
0063 023E CERCA L'INGRESSO LA CUI CHIAVE É NEL BUFFER
0064 023E L'INGRESSO, SE TROVATO. É COPIATO NEL BUFFER.
0065 023E CON 2 BYTE DATI.
0066 023E
0067 067E A2 00 FIND LDX * 0 AZZERA X PER

INDIRIZZAMENTO INDIRETTO
0068 0240 20 90 02 JSR HASH ACCETTA IL PRODOTTO

HASH
0069 0243 20 62 02 CMPR2 JSR LIMIT ASSICURATI CHE IL

RISULTATO É ENTRO
1 LIMITI.

0070 0246 AO 05 LDY N5 RICICLA 6 VOLTE PER
CONFRONTARE BUFFER
CON DATI.

0071 024B B l 13 CHIP LDA (PTR). Y ACCETTA CARATTERE DA
TABELLA

0072 024A D9 16 00 CMP BUFFER. Y É = CAR BUFFER?
0073 024D DO OE BNE BAD SE NO, PROVA CON L'UN ITA-

DATI SUCCESSIVA.
0074 024 F 68 DEY
0075 0250 10 F6 BPL CHKLP CONTROLLA 1 CARATTERI

SUCCESSIVI.
0076 0252 AO 07 HATCH LDY N7 CICICLA 6 VOLTE PER

TRASFERIRE 1 CARATTERI
DEL BUFFER.

0077 0254 B1 13 XFER LDA (PTR), Y ACCETTA CAR. DALLA
TABELLA.

0076 0256 99 16 00 STA BUFFER. Y MEMORIZZA NEL BUFFER.
0079 0259 88 DEY
0060 OSSA 10 FB BPL XFER RIRICLA 1 CARATTERI

TRASFERITI.
00B1 025C 60 RTS FATTO: UNITA' DATI

TROVATA NEL BUFFER.
0082 02SD E6 12 BAD INC INDX NON TROVATO. PROVA

L'UNITA- DATI SUCCESSIVA.
0083 025F 4C 43 02 JMP CMPR2 NON VALIDA L'INDICE DELLA

NUOVA UNITA' DATI.
0064 0262
0066 0262 ROUTINE PER ASSICURARSI CHE L'INDICE DATI
0066 0262 É ENTRO 1 LIMITI DI ENTNUM. OUINDI
0087 0262 MOLTIPLICA L'INDICE PER 8 E LO SOMMA AL PUNTATORE
0088 0262 DELLA TABELLA IL RISULTATO É POSIZIONATO IN "PTR"

COME INDIRIZZO UNITA' OATI
0089 0262

0090 0262 A5 12 LIMIT LOA INDX A C C E T T A INDICE.
0091 0264 C5 15 TEST CMP ENTNUM INDICE > NUM ERO DATI?
0092 0266 90 06 B C C OK SA LTA SE NO.
0090 028B 38 S EC SI.
0094 0269 E5 15 S B C ENTNUM SOTTRAI N. DATI FINCHÉ
0095 026B 4C 64 02 JM P TEST INDICE SEN ZA LIMITI.
0096 026E 85 13 OK STA PTR MEMORIZZA INDICE

C O R R ETTO IN PUNTATORE.
0097 0270 85 12 STA INDX SALVA L'INDICE

AGGIORNATO.
0098 0272 A9 00 SHAOD LDA # 0 AZZER A IL PU NTATOR E

SUPERIORE PER
SCORRIMENTI.

0099 0274 65 14 STA PTR+1
0100 0276 08 13 ASL PTR FA SCOR RERE PTR 3 VO LTE

A SINISTRA - MOLTIPLICA
PER 8.

0101 0278 26 14 ROL PTR+1
0102 027A 06 13 ASL PTR
0103 027C 26 14 ROL PTR+1
0104 027E 06 13 ASL PTR
0105 0260 26 14 ROL PTfi+1
0106 0282 18 C L C
0107 0283 A5 10 LDA TA B LE SOM M A PU NTATO R E ED

INDIRIZZO INIZIO TA B ELLA
0108 0285 65 13 A D C PTR E POSIZIONA IL RISULTATO

NEL PUNTATORE.
0109 0287 85 13 STA PTR
0110 0289 A5 11 LOA TABLE+ 1
0111 028B 65 14 AD C PTR+1
0112 0280 85 14 STA PTR+1
0113 026F 60 RTS
0114 0290
0115 0290 ; ROUTINE PER GEN ERARE L'INDICE UNITA' 0ATI

; IN TA BELLA
0116 0290 : MEDIANTE CHIAVE HASHING. O CAR. DI LABEL.
0117 0290
o i ia 0290 A9 00 HASH LDA # 0 AZZER A LOCAZIONE PER

INDICE.
0119 0292 18 C L C PREPARATI ALLA SOMMA.
0120 0293 A0 05 LOY # 5 RICICLA 6 VO LTE PER OR

ESCLUSIVO.
0121 0295 59 18 00 EXOR EOR BUFFER, Y OR ESCLUSIVO DI ACC. CON

CARATT. BUFFER.
0122 0298 2A ROL A MOLTIPLICA L 'ACC. PER 2
0123 0299 88 DEY C O N TA 1 CARATTERI.
0124 029A 10 F9 BPL EXOR A C C E T TA NUOVO

CARATTERE-
0125 029C 8S 12 STA INDX MEMORIZZA IL PRO DO TTO

HASH C O M E INDICE-
0126 029E 60 RTS FATTO
□127 029F END

EflRORS = 000 <000>
SYM BOL TABLE

BAD 0260 BUFFER 0016 CHKLP 0248 CLRLP 0209
CMPR1 0227 CMPR2 0243 DECR 0821 EMPTY 0233
ENTNUM 0015 EXOR 0295 FILL 0235 FINO 023 E
HASH 0290 INOX 0012 INIT 0200 LIMIT 0262
H A TCH 0252 OK 026E PTR 0013 SHAOD 0271
STORE 0222 TA BLE 0010 TEST 0264 XFER 0254

END OF ASSEM BLY

IO 10 »0

5 i 1

0 0 • * — . j 0

2 ^ 1 - 4 7 . J 2

100 100 'OC

»00>3 2 ^ 0
SION SCAMBIATO NON SCAMBIATO

'■U 1>
SCAMBIATO

© © ©

IO ■ 0 1 L'

0 n 0 io

5 * s

3 2 7

100 <00 100

SCAMBIATO

o
OC 10

SCAMBIATO

©
SCAMBIATO

FINE PASSO 1

0
FINE PASSO 1

100 -•?
NON SCAMBIATO

0
2 < S

SCAMBIATO

©

0 0 0

>0 IO IO

3 3 i - 3 2

2 7 .-=4 5

100 - * - 1 - 5 100 <00

SCAMBIATO

0

2 <10
SCAMBIATO

©

SCAMBIATO

©

0 0 0

10 1 - 2 2 " 1
3

2 1 = 3 ID IO

5 $ 1

ICO 100 100

i T I
■12

? > 0
NON 5CAMBIATO

©
FINE PASSO 2

0 0 0
1 2 2

10 10 1=3 5

5 ■*— 1=4 s ■*— l = J 10

100 ■*— l = i 100 100

ICO ---5
MON SCAMBIATO

S 10
SCAMBIATO SCAMBIATO

© © ©

0 0 "1 0

2 — 1*2 2 1 = 2 2

5 1=3 5 S

10 IO IO

100 100 100

5
NON SCAMBIATO

©

2 > 0
NON SCAMBIATO

©

\ - 4

I *=5

> >0
NON SCAW&iATO

0

FJNC PASSO 3

10 >5
NON SCAMBIATO

0

5 > 7
NON SCAMBIATO

©

0 0 0

2 2 •+— *=* 2

5 ■*— l = 3 S 1=3 5

10 ^ i 10 10

100 100 100

1 = 1
1*2

2 0
NON SCAMBIATO

©
Figura 9.46; Esempio di Bubble-Sort

ricordato sulla coppia di clementi successivi, e cosi via finché non sono
stati confrontati tutti gli elementi, a due a due.

La Fig. 9-47 illustra il primo passo con le fasi 1, 2, 3 ,4 ,5 c 6, andando
dal basso verso l’alto. (In modo equivalente si potrebbe andare dall'alto
al basso).

Se nessun elemento è stato scambiato, la classificazione è completa. Se
si è verificalo uno scambio, si riparte ancora.

Figura 9.47: Bubble-Sorl

In questo semplice esempio, come risulta dalla Fig. 9-47, sono neces­
sari quattro passi.

Il processo descritto è semplice ed impiegato in modo estensivo.

Un’ulteriore complicazione deriva dal meccanismo effettivo di scam­
bi 3. Scambiando A e B non si può scrìvere:

A = B
B = A

poiché ne potrebbe derivare una perdita del valore precedente di A. (Si
verifichi con un esempio).

La soluzione corretta è quella di utilizzare una variabile temporanea o
una locazione per conservare il valore di A:

TEMP = A
A = B
B = TEMP

Questo metodo è corretto. (Si verifichi con un esempio). Questa £ una
cosiddetta permutazione circolare cd è il modo impiegato in tutti i
programmi per realizzare gli scambi. La Fig. 9-47 mostra il diagramma
di flusso di questa tecnica.

La mappa di memoria corrispondente al programma di bubble-sort è
mostrata in Fig. 9-48. In questo programma ogni elemento è un numero

PTR
TABELLA

PROGRAMMA

NUMERO n

ELEMENTO I

ELEMENTO 7

ELEMENTO n

SCAMBIATO7

ELEMENTO CORRENTE

SO RT.....PAGE 0001

LINEA #LOC CODICE

0002 0000
0003 0000
0004 0000
0005 0000
0006 0000 00 06
0007 0002
0000 0002
0009 0200
0010 0200 A2 00
0011 0202 A l 00
0012 0204 AB

0013 020S Bl 00
0014 0207 68

0015 0208 F0 12

0016 020A D1 00
0017 020C B0 F7

0018 020E AA

0019 020F B1 00
0020 0211 CB
0021 0212 91 00
0022 0214 SA
0023 0215 86
0024 0216 91 00
0025 0216 A2 01

0026 021A 00 m co

0027 021C 8A

0028 021D DO E1
0029 021F 60

0030 0220

TAB

SORT

LOOP

EXCH

PROGRAMMA BUB0LE SORT

’ = $0
WORD $ eoo

• = $ 200
LDX # 0
LDA (TAB.)X
TAY

LDA (TABl.Y
DEY

BEQ FINISH

C M P (TAB),Y
B C S LO O P

TAX

LDA
INY
STA
TXA
DEY
STA
LDX

FINISH

(TAB|.Y

(TAB).Y

(TAB).Y.
N1

BNE LOOP

TXA

BNE SORT
RTS

.END

ERRORS - 0000 < 0000 >
SYMBOL TAB LE

SYMBOL VALUE

EXCH 020E FINISH 021C LOOP
TAB 0000.
END OF ASSEMBLY

PONI SCAMBIATO A 0.

IL NUMERO DI ELEMENTI É IN
INY.
LEQQI L'ELEMENTO E (I).
DECREMENTA ILNUMERODI
ELEMENTI OA LEGGERE.
FINE SE TERMINATI
ELEMENTI.
CONFRONTA CON E (I).
ACCETTA L’ELEMENTO
SUCCESSIVO SE E (I) > É (I).
SCAMBIARE GLI ELEMENTI.

SE É STATO FATTO QUALCHE
SCAMBIO. FA UN ALTRO
PASSO.
ACCETTA L'ELEMENTO
SUCCESSIVO.
SPOSTA SCAMBIATO NEL
REGISTRO A PER VEDERE ...
SE 6 STATO FATTO OUALCHE
SCAMBIO, FA UN ALTRO
PASSO.

0205 SORT 020D.

Figura 9.49: Programma Bubble-Sort

positivo di 8 bil. U programma risiede agli indirizzi 200 e successivi. Il
registro X viene utilizzato per memorizzare se si è verificato o no uno
scambio, mentre il registro Y viene utilizzalo come puntatore corrente
all’interno della tabella. Si assume che TAB sia l'indirizzo iniziale della
tabella. La Fig. 9-49 riporta il programma reale. Pcrun accesso efficiente

viene utilizzata una tecnica di indirizzamento indiretto indicizzato. Si
noti che il programma è molto breve, grazie aireflicienza del modo di
indirizzamento indiretto del 6502.

UN ALGORITMO MERGE

Un altro problema comune consiste nell'unione di due insiemi di dati
in un terzo. Si suppone di» dover classificare due tabelle di dati e di
fonderle in una terza. La lunghezza di ciascuna delle tabelle originali è
limitata ad un massimo di 256 byte (una pagina). Il primo ingresso di
ogni tabella contiene la lunghezza della stessa.

La Fig. 9-50 mostra l'algoritmo per l'unione di due tabelle. La Fig.
9-S1 riporta l’organizzazione di memoria corrispondente e la Fig. 9-52 il
programma. Prima di utilizzare il programma è indispensabile posizio­
nare le tabelle “TABLE 1", “TABLE2” E “ DESTRBL” .

L'algoritmo è immediato. Due puntatori correnti, PTR1 e PTR2
puntano alle due labelle sorgente. PTR3 punta alla tabella risultante.

PARTE
ALTA MEMORIA

PROGRAMMA

/ V W '

DATI TABLE 1

LifJ6WH7A

3AT1 TABLE 1

TABLE 3

kV'V'V'N

0002 0000 MERGE DI 2 PAGINE.
0003 0000 PRELEVA 2 TABELLE DATI PRECEDENTEMENTE
0004 0000 ORDINATE E LE FONOE IN UNA TERZA TABELLA.
0005 0000 OGNI TABELLA SORGENTE PUÒ' ARRIVARE
0006 0000 AD UNA PAGINA DI LUNGHEZZA (2S6 BYTE).
0007 0000 IL PRIMO ELEMENTO DELLE TABELLE SORGENTE
0008 0000 DEVE CONTENERE LA LUNGHEZZA TABELLA.
oooe 0000 •PTR3’ CONTIENE LA LUNGHEZZA DELLA
0010 0000 TABELLA DESTINAZIONE. AL RITORNO
0011 0000
0012 0000 •= S 10
0013 0010 DESTBL •= ■ + 2 PUNTATORE ALL'INIZIO

TABELLA DESTINAZIONE.
0014 0012 TABLE1 • = • + 2 PUNTATORE ALLA TABELLA

SORGENTE 1.
0015 0014 TABLE 2 2 PUNTATORE ALLA TABELLA

SORGENTE 2
0016 0016 PTRl '= • + 1 INDICE TABELLA 1.
0017 0017 PTR2 ■=■+ 1 INDICE TABELLA 2.
0018 0018 PTR3 - + 2 INDICE TABELLA

DESTINAZIONE.
001» 001A
0020 001A ■=• S 200.
0021 0200
0022 0200 A5 11 LDA DESTBL-f-1 PTR3= TABLE 3.
0023 0202 66 19 STA PTR3-1.
0024 0204 A5 10 LDA DESTBL
0025 0206 85 18 STA PTR3.
0026 0206 AS 01 LDA * 1 POSIZIONA ALL'INIZIO

I PUNTATORI TABELLE
SORGENTE.

0027 020A 85 16 STA PTR1 SALTANDO LE LUNGHEZZE
TABELLE.

0028 020C 85 17 STA PTR2
0029 020E A2 00 LDX # 0 AZZERA X PER

PER INDIRIZZAMENTO
INDIRETTO.

0030 0210 A l 14 COMPR LDA (TABLE2.X) LA TABELLA 2 HA
LUNGHEZZA <.

0031 0212 C5 17 CMP PTR2 PUNTATORE TABELLA 27
0032 0214 90 19 BCC TKTB1 SE SI. ACCETTA BYTE DA

TABELLA 1.
0003 0216 A l 12 LDA (TABLE 1.X) LA LUNGHEZZA TABELLA 1

É <
0034 0218 C5 16 CMP PTR1 PUNTATORE TABELLA 1?
0035 021A 90 0A BCC TKTB2 SE SI. ACCETTA BYTE DA

TABELLA 2.
0036 021C A4 16 LDY PTRl ACCETTA PUNTATORE

TABELLA 1.
0037 021E B1 12 LDA |TABLEl),Y UTILIZZALO PER PRELEVARE

BYTE.
0038 0220 A4 17 LDY PTR2 ACCETTA PUNTATORE

TABELLA 2.
0039 OZ22 Bl 14 CMP (TABLE2),Y UTILIZZALO PER TROVARE

BYTE DA.
0040 0224 : CONFRONTARE CON BYTE TABELLA 1.
0041 0224 90 09 BCC TKTB1 SE BYTE TABELLA 1 É MINORE

PRENDILO.
0042 0226 A4 17 TKTB2 LDY PTR2 ACCETTA PUNTATORE

: TABELLA 2.

Figura 9-52. Programma Merge (continua)

0043 0228 B l 14 LDA (TABLE2).Y

0044 022A E6 17 INC PTR2

0045 022C 4C 35 02 JMP STORE

l
i 022F

0231
A4
Bl

18
12

TKTB1 LDY
LDA

PTRl
(TABLE1J.Y

0048 0233 E6 16 INC PTR1

0049 0235 81 18 STORE STA (PTR3.X)

0050 0237 E6 18 INC PTR3

0051
0052

0239
023B

DO 02
E6 19

BNE
INC

CC
: PTR3+3

0053 0Z3D A1 12 CC LDA (TABLE 1,X)

0054 023F C5 16 CMP PTRl
0055 0241 B0 CD BCS COMPR

0056 0243 A1 14 LDA (TABLE2.X)

0057 0245 CS 17 CMP PTR2
0058 0247 B0 C7 BCS COMPR

0059 0249 A9 00 LDA a o
ooeo 024B 85 19 STA PTR3+1

0081 024D 18 CLC
0082 024E A1 12 LOA (TABLE1.X)

0063 02S0 61 14 ADC (TABLE2.X)
0064 0252 $5 18 STA PTR3

0065 0254 90 04 BCC CCC
0068 0256 Afi 01 LDA # 1
0067 0258 85 19 STA PTR3—1
0068 025A 80 CCC RTS
0069 025B END

ACCETTA BYTE SUCCESSIVO
DA TABELLA 2.
INCREMENTA PUNTATORE
TABELLA 2
MEMORIZZA IL BYTE NELLA
TABELLA DI DESTINAZIONE.
ACCETTA PUNTATORE 1.
ED UTILIZZALO PER
PRELEVARE BYTE DALLA
TABELLA.
INCREMENTA PUNTATORE
TABELLA 1.
MEMORIZZA IL BYTE ALLA
LOCAZIONE SUCCESSIVA IN
TABELLA 3
INCREMENTA IL PUNTATORE
DI BASSO ORDINE DELLA
TABELLA 3.
SE NON OVERFLOW. SALTA

INCREMENTA IL PUNATORE
DI ORDINE ELEVATO DELLA
TABELLA 2.
LA LUNGHEZZA DELLA
TABELLA 1 É MAGGIORE
O UGUALE A PUNTATORE 1?
SE SI ACCETTA BYTE
SUCCESSIVO,
LA LUNGHEZZA TABELLA 2 É
MAGGIORE.
0 UGUALE AL PUNTATORE 27
SE SI. ACCETTA BYTE
SUCCESSIVO.

AZZERA PTR3 DI OROINE
ELEVATO
MERGE ESEGUITO. ORA ...
SOMMA LE LUNGHEZZE
DELLE TABELLE 1 E 2.

MEMORIZZA LA SOMMA NEL
PUNTATORE TEMPORANEO
TABELLA 3
EO ...
OVERFLOW IN
BYTE DI OROINE ELEVATO.

ERRORS = 0000 < 0000 >
END OF ASSEMBLY

Figura 9-52. Programma Merge

Gli ingressi correnti di TABLE 1 eTABLE 2sonoconfrontati due alla
volta. Quello più piccolo viene copiato in TABLE3 ed il puntatore
corrente viene incrementato. Il processo viene ripetuto e termina quando
PTR1 e PTPR2 hanno raggiunto il fondo delle rispettive tabelle.

S O M M A R IO

Sono stati presentati gli esempi reali di realizzazione ed i concetti di
base relativi alle strutture dati pii comuni.

Il 6502, grazie ai suoi potenti modi di indirizzamento, consente la
manipolazione di struture dati complesse. La sua efficienza è dimostrata
dalla semplicità dei programmi mostrati.

Inoltre sono state presentate delle tecniche speciali per l’hashing,
sorting e merging, tipicamente utilizzate per la risoluzione di problemi
complessi relativi alle strutture dati.

Il programmatore principiante non deve preoccuparsi per i dettagli
della realizzazione e manipolazione di strutture dati. Comunque per una
programmazione efficiente di algoritmi non banali, è indispensabile una
buona conoscenza delle strutture dati. Gli esempi reali presentati in
questo capitolo possono aiutare tutti i problemi comuni che si incon­
trano nelle strutture dati reali.

SVILUPPO DEL PROGRAMMA

INTRODUZIONE

Tutti i programmi studiati e sviluppati finora sono siati sviluppati a
mano senza l’aiuto di qualsiasi risorsa software oppure hardware. Il solo
miglioramento che è stato utilizzato rispetto alla codifica binaria diretta
è stato l'impiego dei simboli mnemonici del linguaggio assembly. Per
l'effettivo sviluppo software è necessario capire la gamma di aiuti dello
sviluppo software ed hardware. Questo capitolo si propone di presentare
e valutare questi aiuti. /

SCELTE DI BASE DELLA PROGRAMMAZIONE

Esistono tre alternative di base: scrittura di un programma in binario
od esadecimale, scrittura in linguaggio di livello assembly oppure scrit­
tura in linguaggio ad alto livello. Si analizzeranno queste alternative.

1. Codifica Esadecimale

Il programma sarà normalmente scritto utilizzando i mnemonici in
linguaggio assembly. Comunque i sistemi calcolatori a scheda singola, di
costo più basso non sono forniti di un assemblatore. L’assemblatore è il
programmatore che opera la traduzione automatica dei mnemonici
utilizzati per il programma nei codici binari richiesti. Quando non è
disponibile un assemblatore questa traduzione da mnemonici in binario
deve essere eseguita a mano. II binario è spiacevole e genera facilmente
errori cosicché viene utilizzato normalmente resadecimale. È stato
mostrato al Capitolo 1 che un digit esadecimale rappresenta 4 bit binari.
Due digit esadecimali saranno perciò utilizzati per rappresentare i conte­
nuti di ciascun byte. Come esempio viene riportata in Appendice la
tabella che mostra l'equivalente esadecimale delle istruzioni del 6502.

In breve ogni volta che le risorse dell'utente sono limitate e non e
disponibile l'assemblatore occorrerà tradurre manualmente il pro­
gramma in esadecimale. Questo può essere fatto ragionevolmente per un

piccolo numero di istruzioni peresempioda IOa 100. Per programmi più
lunghi questo processo è tedioso e predisposto agli errori cosicché esso
tende a non essere utilizzato. Comunque quasi tutti i microcalcolatori su
scheda singola richiedono l’ingresso dei programmi in modo csadeci-
male. Essi non sono equipaggiati di un assemblatore e di un'intera
tastiera alfanumericca in modo da limitare il loro costo.

In conclusione la codifica esadecimale non è un modo desiderabile per
accedere in un calcolatore. Esso è semplicemente un modo economico. Il
costo di un assemblatore e della tastiera alfanumerica corrispondente è il
compromesso con l'aumento di lavoro per far entrare il programma
nella memoria. Comunque questo non cambia il modo in cui è scrìtto il
programma stesso. Il programma viene ancora scritto in linguaggio di
livello assembly cosicché esso possa essere ispezionato ed esaminato dal
programmatore umano ed essere significativo.

2. Programmazione in Linguaggio Assembly

La programmazione di livello assembly copre sia i programmi che
possono entrare nel sistema in forma esadecimale sia quelli che possono
entrare in forma simbolica di livello assembly. Si esaminerà ora l'in­
gresso di un programma direttamente nella sua rappresentazione in
linguaggio assembly. Deve essere disponibile un programma assembla­
tore. L'assemblatore leggerà ciascuna istruzione mnemonica del pro­
gramma e la tradurrà nello schema di bit richiesto utilizzando I, 2
oppure 3 byte, secondo quanto specificato dalla codifica delle istruzioni.
Inoltre un buon assemblatore offrirà un certo numero di possibilità
addizionali per la scrittura del programma. Questo sarà analizzato in
seguito nel paragrafo relativo all’assemblatore. In particolare sono
disponibili le direttive che modificheranno il valore dei simboli. Può
essere utilizzato l'indirizzamento simbolico e può esser? specificata una
diramazione dalla locazione simbolica. Durante la fase di collaudo, dove
un utente può rimuovere oppure aggiungere istruzioni, non sarà necessa­
rio riscrivere l'intero programma se un'ulteriore istruzione viene inserita
tra una diramazione ed il punto in cui essa opera la diramazione,
utilizzando label simboliche.
L’assemblatore si occuperà di aggiustare automaticamente tutte le label
durante il processo di traduzione. Inoltre un assemblatore consente
all’utente di collaudare il suo programma in forma simbolica. Un disas­
semblatore può essere utilizzato per esaminare i contenuti della loca­
zione di memoria e ricostruire l'istruzione di livello assembly che essa
rappresenta. Verranno analizzate di seguito le varie risorse software

normalmente disponibili su un sistema. Si esamini ora la terza alterna­
tiva.

POTENZA
OEL

L IN G U A O O IO

A

SIMBOLICO

C'UBZX
H«.-SrV.N
P. VFArCA,
6A'yl
V S *

ALTO LIVELLO

CONOIZ'ONAlE uveuo AS3CMBIY
u a c r oASSEMBLER |

«e*ADi'-'OC'A_
LIVELLO 01 MACCHINA

Figura 10.1: Livelli di programmazione

3. Linguaggio ad Alto Livello

Un programma può essere scritto in un programma ad allo livello
come BASIC, APL, PASCAL od altri. Le tecniche di programmazione
in questi vari linguaggi sono coperte da libri specifici e non saranno
analizzate in questa sede. Perciò si analizzerà soltanto questo modo di
programmazione. Un linguaggio ad alto livello offre istruzioni potenti
che rendono pù facile e veloce la programmazione. Queste istruzioni
devono essere tradotte da un programma complesso nella rappresenta­
zione binaria finale che un microcalcolatore può eseguire. Tipicamente
ciascuna istruzione ad alto livello sarà tradotta in un gran numero di
istruzioni binarie singole. Il programma che eseguirà questa traduzione
automatica è chiamato un compilatore ovvero un interprete. Un compila­
tore tradurrà tutte le istruzioni di un programma in sequenza in codice
oggetto. In una fase separata il codice risultante sarà quindi eseguilo. Per
contrasto un interprete interpreterà ed eseguirà una singola istruzione,
quindi “ tradurrà" quella successiva. Un interprete ha il vantaggio
responso interattivo, ma ha una bassa efficienza rispetto al compilatore.
In questa sede non si entrerà in ulteriori dettagli ma si considera la
programmazione in linguaggio di livello assembly di un microprocessore
reale.

SUPPORTO SOFTWARE

Si analizzeranno ora le principali caratteristiche software disponibili
(o che dovrebbero essere disponibili) in un sistema completo di sviluppo
software conveniente. Alcune definizioni sono già state introdotte. Que­
ste saranno riassunte c prima di procedere saranno definiti i rimanenti
programmi importanti.

L'assemblatore è il programma che traduce la rappresentazione mne­
monica delle istruzioni nel loro equivalente binario. Esso normalmente
traduce un’istruzione simbolica in un'istruzione binaria (che può occu­
pare 1, 2 oppure 3 byte). II codice binario risultante è chiamato codice
oggetto. Esso è direttamente eseguibile dal microcalcolatore. Come
effetto secondario l’assemblatore produrrà anche una lista simbolica
completa del programma come le tabelle di equivalenza da utilizzare da
parte del programmatore e la lista dei simboli occorrenti nel pro­
gramma. Gli esempi saranno presenti in seguito nel corso del capitolo.

Un compilatore è il programma che traduce le istruzioni ad alto livello
nella loro forma binaria.

Un interprete è il programma che traduce, analogamente al compila­
tore, le istruzioni ad alto livello nella loro forma binaria ma non con­
serva la rappresentazione intermedia e si ha l’esecuzione immediata.
Infatti spesso non si ha addirittura la generazione di qualsiasi codice
intermedio ma piuttosto esso esegue direttamente le istruzioni ad alto
livello.

Un monitor è il programma di base che è indispensabile per utilizzare
le risorse hardware di questo sistema. Esso osserva continuamente i
dispositivi d'ingresso per l’ingresso c dirige il resto dei dispositivi. Per
esempio un monitor minimo per un microcalcolatore su scheda singola,
equipaggiato di tastiera a LED, deve esplorare continuamente la tastiera
come ingresso utente e mostrare i contenuti specifici sui diodi-emettitori-
di-luce. Inoltre esso deve essere in grado di riconoscere un certo numero
di comandi limitati dalla tastiera, come START, STOP, CONTINUA,
CARICA MEMORIA, ESAMINA MEMORIA. Sui grossi sistemi il
monitor è spesso qualificato come programma esecutivo. In questo caso
è disponibile la direzione del file complesso ovvero la gestione di sche­
dari. Il sei globale delle caratteristiche è detto sistema operativo. Nel caso
in cui i file possono essere residenti su disco, il sistema operativo è
qualificalo come sistema operativo su disco ovvero DOS,

Un editor è il programma progettato per consentire l'ingresso e la
modifica del testo o dei programmi. Esso consente aU’utcnte di far
entrare convenientemente i caratteri, agganciarli, inserirli, aggiungere
righe, rimuovere righe, ricercare caratteri o stringhe. Questa è una
risorsa importante per ingresso covenicnte.

Un debugger è una caratteristica necessaria per collaudare i pro­
grammi. Ogni volta che un programma non lavora correttamente tipica­
mente può non esserci indicazione della causa, qualunque essa sia.

Il programmatore perciò desidera inserire dei punti di arresto nel suo
programma in modo da sospendere l'esecuzione del programma agli
indirizzi specificati ed essere in grado di esaminare i contenuti dei registri
e della memoria in questi punti. Il debugger consente la sospensione di
un programma, la ripresa dell'esecuzione, l'esame, l’osservazione e la
modifica dei contenuti dei registri o della memoria. Un buon debugger
sarà equipaggiato di un certo numero di caratteristiche addizionali come
la possibilità di esaminare i dati in Torma simbolica, esadecimale, binaria
od altre rappresentazioni usuali come pure l’ingresso dei dati in questo
formato.

Un caricatore, ovvero caricatore di collegamento posizionerà i vari
blocchi in codice oggetto alle posizioni specificate nella memoria ed
aggiusta i rispettivi puntatori simbolici cosicché si possa far loro riferi­
mento. Esso è utilizzato per la rilocazione di programmi o blocchi in
diverse aree della memoria.

Un programma simulatore od emulatore è utilizzato per simulare il
funzionamento di un dispositivo, normalmente il microprocessore, in
sua assenza, quando si sta sviluppando un programma su un processore
simulato prima di posizionarlo sulla scheda effettiva. Utilizzando questo
approccio diviene possibile sospendere il programma, modificarlo e
conservarlo in una memoria RAM. d isv an tag g i di un simulatore sono:

1.Esso normalmente simula soltanto il processore stesso e non i
dispositivi d'ingresso/uscita.

2. La velocità di esecuzione è bassa e si opera in tempo simulato. Non è
perciò possibile provare dispositivi in tempo reale e possono verifi­
carsi problemi di sincronizzazione anche se la logica del programma
può essere rilevata corretta.

Un emulatore è essenzialmente un simulatore in tempo reale. Esso
utilizza un processore per simularne un altro e lo simula completamente
sino ai dettagli.

Le Utility routines sono essenzialmente tutte le routine normalmente
necessarie nella maggior parte delle applicazioni e che l'utente desidera
gli vengano fornite dal costruttore! Esse possono comprendere la molti­
plicazione, la divisione ed altre operazioni aritmetiche, routine di movi­
mento di blocco, verifiche di carattere, manipolazioni di dispositivi
d ’ingresso/uscita (ovvero “driver”) ed altre.

LA SEQUENZA DI SVILUPPO DEL PROGRAMMA

Si esaminerà ora una sequenza tipica di sviluppo di un programma di
livello assembly. Si assumerà che tutte le caratteristiche software usuali
siano disponibili in modo da dimostrare il loro valore. Se queste doves­
sero non essere disponibili in un sistema particolare sarà ancora possi­
bile sviluppare i programmi ma la convenienza diminuirà e, conseguen­
temente, è probabile che il tempo necessario per il collaudo del pro­
gramma sia destinato ad aumentare.

L'approccio più comune consiste innanzitutto nel progetto dell'algo-
ritmo e nella definizione delle strutture dati appropriati al problema da
risolvere. Successivamente occorre sviluppare un insieme completo di
diagrammi di flusso che rappresentano il flusso del programma. Infine i
diagrammi di flusso sono tradotti nel linguaggio di livello assembly del
microprocessore: questa i la fase di codifica.

In seguito il programma viene fatto entrare nel calcolatore. Si esami­
neranno al paragrafo successivo le scelte hardware da utilizzare in questa
fase.

Il programma è fatto entrare nella memoria RAM del sistema sotto il
controllo dell'editor. Una volta che è entrata una sezione del pro­
gramma, per esempio una o più subroutine, essa sarà verificata.

Innanzitutto si userà l'assemblatore. Se l’assemblatore non risiede già
nel sistema esso verrà caricato da una memoria esterna, come un disco.
Quindi il programa sarà assemblalo, cioè tradotto in un codice binario.
Questo fa in modo che il programma oggetto sia pronto per essere
eseguito.

Normalmente non ci si deve aspettare che un programma lavori
correttamente la prima volta. Per verificare il suo funzionamento cor­
retto occorrerà posizionare in locazioni cruciali un certo numero di
punti di arresto dove è facile verificare se i risultati intermedi sono
corretti. Il debugger sarà utilizzato per questo scopo. I punti di arresto
saranno specificati in locazioni selezionate. Verrà quindi emesso un

comando “G o" cosicché venga iniziata l'esecuzione del programma. Il
programma si arresterà automaticamente ad ogni punto di arresto speci­
ficato. Il programmatore può quindi verificare, esaminando i contenuti
dei registri, o della memoria, che i dati ottenuti siano corretti. Se questo
si verifica si procede fino al punto di arresto successivo. Ogni volta che si
trova un dato non corretto è presente un errore nel programma. A
questo punto normalmente il programmatore fa riferimento alla lista del
programma e verifica se la sua codifica è stata eseguita correttamente. Se
non si riesce a trovare nessun errore nella programmazione, l’errore deve
essere logico e si deve fare riferimento al diagramma di flusso. Qui si
assumerà che i diagrammi di flusso siano stati controllati a mano e che si
riterranno ragionevolmente corretti. L’errore probabilmente può prove­
nire dalla codifica. Sarà perciò necessario modificare una parte del
programma. Se la rappresentazione simbolica del programma è ancora
nella memoria, si farà semplicemente rientrare l'editor e si modifiche­
ranno le linee richieste e quindi si ripeterà ancora la sequenza prece­
dente. In alcuni sistemi la memoria disponibile può non essere grande
abbastanza, cosicché è necessario far uscire la rappresentazione simbo­
lica del programma su un disco o cassetta prima dell’esecuzione del
codice oggetto, naturalmente in questo caso si dovrebbe ricaricare la
rappresentazione simbolica del programma dal suo mezzo di supporto
prima del rientro dell'editor.

La procedura precedente sarà ripetuta necessariamente finché i risul­
tati del programma sono corretti. Si sottolinea che la prevenzione è
molto più efficiente della cura. Un progetto corretto si risolverà tipica­
mente in un programma che opera correttamente c molto velocemente
una volta che gli errori più comuni ed ovvi di codifica sono stati rimossi.

Comunque un progetto confuso può risolversi in programmi che impie­
gheranno un tempo estremamente lungo per essere collaudato. Il tempo
di collaudo è generalmente considerato essere molto più lungo dell’effet­
tivo tempo di progetto. In breve vale sempre la pena impiegare più
tempo nel progetto in modo da abbreviare la fase di collaudo.

Comunque, impiegando questo approccio, è possibile verificare l’or­
ganizzazione globale del programma ma non verificarlo in tempo reale
con i dispositivi d’ingresso/uscila. Se devono essere verificati i disposi­
tivi d ’ingresso/uscita la soluzione diretta consiste nel trasferimento del
programma in EPROM nella sua installazione su scheda e quindi nell’os-
servazione se esso lavora.

Esiste una soluzione migliore. È l'impiego di un emulatore in circuito.
Un emulatore in circuito utilizza il microproccessore 6502 (o qualsiasi

altro) per simulare un 6502 (quasi) in tempo reale. Esso simula fisica­
mente il 6502. L’emulatore è equipaggiato con un cavo terminante in un
connettore a 40 pin esattamente identico ai pin di uscita del 6501 Questo
connettore può poi essere inserito sulla scheda di applicazione effettiva
che si sta sviluppando. I segnali generati dall'emulatore saranno esatta­
mente quelli del 6502, forse soltanto un pò più lenti. Il vantaggio
essenziale è che il programma che si sta verificando risiederà ancora nella
memoria RAM del sistema di sviluppo. Esso genererà i segnali effettivi
che comunicheranno con L dispositivi d'ingresso/uscita effettivi che si
desidera utilizzare. Ne risulta che diviene possibile eseguire lo sviluppo

RAM
ASSEMBLATORE
Q
COMPILATORE
□
»HTERPRETE

OOS

EDITO*
O
DEBUQQEH
0
SIWJIATQUE

SPAZIO
01 LAVORO
DI SINISTRA
|E STACK)

PROGRAMMA
UTENTE

SPAZIO
DI LAVORO
UTENTE

Figura 10.2: Una mappa di memoria tipica

del programma utilizzando tutte le risorse del sistema di sviluppo (edi­
tor, debugger, caratteristiche simboliche, sistema file) mentre si sta
verificando Pingresso/uscita in tempo reale.

ROM

BOOTSTRAP

DRIVER
TASTIERA

DRIVER
DISPLAY

DRIVER
TTY

DRIVER
CASSETTE

COUANOOINTERPRETE

UTILITY
ROLfTlNES

CO LLA UCATOBI
ELEMENTARE

EDITOR
ELEMENTARE

Inoltre un buon emulatore fornisce caratteristiche speciali, come un
trace. Un trace è una registrazione delle ultime istruzioni o dello stato dei
vari bus dati del sistema prima di un punto di arresto. In breve un trace
fornisce la sequenza di eventi che si verificano prima di un punto di
arresto o di un malfunzionamento. Esso può anche far scattare uno
scope all’indirizzo specificato oppure, all'occorrenza. ad una specificata
combinazione di bit. Una tale caratteristica è di grande valore poiché
quando si trova un errore è normalmente troppo tardi. L’istruzione, od il
dato, che ha causato l'errore si è verìncato prima della rilevazione. La
disponibilità di un trace consente all’utente di trovare quale segmento
del programma origina l'errore. Se il trace non è abbastanza lungo si '
porrà semplicemente prima un punto di arresto.

Questo completa la descrizione della sequenza usuale di eventi coin­
volti nello sviluppo di un programma. Si analizzeranno ora le alternative
hardware disponibili per sviluppare i programmi.

LE ALTERNATIVE HARDWARE

1. Microcomputer su Scheda Singola

Il microcomputer su scheda singola offre l’approccio di costo più
basso allo sviluppo del programma. Esso è normalmente equipaggiato di
una tastiera esadecimale. più alcuni tasti di funzione, più 6 LED che
possono mostrare indirizzi e dati. Poiché esso è equipaggiato di una
piccola quantità di memoria normalmente non è disponibile nessun
assembler. Al massimo esso ha un piccolo monitor e virtualmente non ha
caratteristiche di editing o debugging eccetto un numero mollo limitato
di comandi. Tutti i programmi devono entrare perciò in forma esadeci­
male. Quindi essi saranno mostrati sui LED in forma esadecimale. Un
microcomputer su scheda singola ha, in teoria, la stessa potenza hard­
ware di qualsiasi altro calcolatore. Semplicemente a causa della sua
dimensione ristretta di memoria e di tastiera esso non soddisfa tutte le
caratteristiche di un sistema più grosso e rende lo sviluppo del pro­
gramma molto più lungo. Poiché é tedioso sviluppare programmi in
formato esadecimale, un microcalcolatore su singola scheda è più adatto
per l’educazione ed il training dove devono essere sviluppati dei pro­
grammi di lunghezza limitata e la loro breve lunghezza non è un ostacolo
alla programmazione. Le singole schede costituiscono probabilmente il
modo più a buon mercato per imparare eseguendo la programmazione.
Comunque esse non possono essere utilizzate per lo sviluppo di p ro­
grammi complessi senza la connessione di schede di memoria e la
disponibilità degli usuali aiuti software.

Figura 10.3: Il SYM 6 una tipica scheda microcomputer

Figura 10.4: Il System 65 Hockwell/Mostek è un sistema di sviluppo

2. Il Sistema di Sviluppo

Un sistema di sviluppo è un sistema microcomputer equipaggiato con
una quantità significativa di memoria RAM (32K, 48K) come richiesto
dai dispositivi d'ingresso/uscita. come un display CRT, una stampante,
dischi e normalmente un programmatore PROM come pure, forse, un
emulatore in circuito. Un sistema di sviluppo è progettato specifica­
mente per facilitare lo sviluppo del programma in un ambiente indu­
striale.
Esso offre normalmente tutte o quasi tutte le caratteristiche software
considerate al paragrafo precedente. In linea di principio esso è lo
strumento ideale di sviluppo software.

La limitazione di un sistema di sviluppo di microcomputer è di non
essere in grado di sostenere un compilatore oppure un interprete.
Questo perchè un compilatore richiede una grande quantità di memoria,
spesso molta di più di quella disponibile sul sistema. Comunque per lo
sviluppo dei programmi in linguaggio di livello assembly esso offre tutte
le caratteristiche richieste. In ogni caso, poiché i sistemi di sviluppo
vengono venduti in numero relativamente piccolo rispetto ai computer
tipo hobby, il loro costo e significativamente più elevato.

3. Microcompuler Tipo Hobby

L’hardware del microcompuler tipo hobby è naturalmente esatta­
mente analogo a quello di un sistema di sviluppo. La principale diffe­
renza risiede nel fatto che questo non è normalmente equipaggiato con i
sofisticati aiuti di sviluppo software che sono disponibili su un sistema di
sviluppo industriale. Per esempio, molti microcomputer tipo hobby
offrono solo assemblatori elementari, editor minimi, sistemi di file
minimi, assenza di caratteristiche di connessione di un programmatore
PROM, assenza di emulatori in circuito, assenza di debugger potenti.
Essi rappresentano perciò una fase intermedia ira il microcomputer su
singola scheda ed un sistema di sviluppo a microprocessore completo.
Per un utente che desidera sviluppare programmi di modesta comples­
sità, essi sono probabilmente il miglior compromesso poiché essi offrono
il vantaggio di basso costo ed un ragionevole insieme di strumenti di
sviluppo software, anche se essi sono abbastanza limitati rispetto alla
loro convenienza.

4. Sistema a Divisione di Tempo (Time Sharing)

È possibile affittare terminali da diverse compagnie che li colleghe­

ranno a reti a divisione di tempo. Questi terminali dividono il tempo di
un computer più grosso e beneficiano di tutti i vantaggi di una grossa
installazione. Sono così disponibili assemblatori incrociati per tutti i
microcomputer su virtualmente tutti i sistemi commerciali a divisione di
tempo. Un assemblatore incrociato è semplicemente un assemblatore,
diciamo un 6502, che risiede per esempio su un IBM 370. Formalmente
un assemblatore incrociato è un assemblatore per il microprocessore X
che risiede sul microprocessore Y. La natura del computer utilizzato é
irrilevante. L’utente scrive ancora un programma in linguaggio di livello
assembly del 6502 c l’assemblatore incrociato lo traduce nell’appro­
priata struttura di bit binari. La differenza comunque è che questo
programma non può essere eseguito a questo punto. Esso può essere
eseguito da un processore simulato, se è disponibile, fornito il quale non
si utilizza nessuna risorsa d’ingrcsso/usrita. Questa soluzione viene
perciò utilizzata soltanto in ambienti industriali.

5. In-Hoose Computer

Ogni volta che è disponibile un grosso in-house computer, possono
essere disponibili anche assemblatori incrociati che facilitano lo svi­
luppo de) programma. Se tale computer offre il servizio di divisione di
tempo questa scelta diventa esattamente uguale a quella del paragrafo
precedente. Se esso offre solo servizio collettivo questo è probabilmente
uno dei metodi più sconvenienti di sviluppo del programma poiché la
sottoposizione di programmi in modo collettivo al livello assembly di un
microprocessore si risolve in un tempo di sviluppo molto lungo.

Pannello Frontale oppure Assenza dì Pannello Frontale?

Il pannello frontale è un accessorio hardware spesso utilizzato per
facilitare il collaudo del programma. Esso è stato uno strumento tradi­
zionale per mostrare i contenuti binari di un registro o della memoria, in
modo conveniente. Comunque tutte le funzioni del pannello di controllo
possono essere eseguite da un terminale e la predominanza di display
CRT ora offre un servizio pressoché equivalente al pannello di controllo
mostrando il valore binario dei bit. Il vantaggio ulteriore dell’impiego
del display CRT é che si può commutare a volontà dalla rappresenta­
zione binaria a quella esadecimale, simbolica, decimale (naturalmente se
sono disponibili le appropriate routine di conversione). Lo svantaggio di
un CRT é che si devono premere diversi tasti per ottenere il display
appropriato invece di commutare una manopola. Comunque, poiché il
costo della fornitura del pannello di controllo è abbastanza sostanziale,
la maggior parte dei microprocessori recenti ha abbandonato questo

strumento di collaudo. Il valore del pannello di controllo è spesso
valutato più in funzione di argomenti emozionali basati sulla precedente
esperienza piuttosto che da una scelta razionale. Questo non è indispen­
sabile.

SOMMARIO DELLE RISORSE HARDWARE

Si possono distinguere tre grandi casi: se si ha soltanto un budget
minimo e se si desidera imparare a programmare è il caso di acquistare
un microcomputer su scheda singola. Utilizzando questo si sarà in grado
di sviluppare tutti i semplici programmi di questo libro e molto di più.
Eventualmente, quando si vogliono sviluppare programmi di più di un
centinaio di istruzioni, si risentiranno le limitazioni di questo approccio.

Invece un utente industriale necessita di un sistema di sviluppo com­
pleto. Qualsiasi soluzione abbreviata di un sistema di sviluppo completo
causerà un tempo di sviluppo significativamente più lungo. Il compro­
messo è chiaro: risorse hardware rispetto al tempo di programmazione.
Naturalmente se i programmi da sviluppare sono abbastanza semplici
può essere utilizzato un approccio meno dispendioso. In ogni caso, se si
devono sviluppare programmi complessi è difficile giustificare qualsiasi
risparmio hardware nell'acquisto di un sistema di sviluppo poiché i costi
di programmazione saranno di gran lunga il costo dominante del pro­
getto.

Per impieghi personal computer un microcomputer tipo hobby offrirà
caratteristiche tipicamente sufficienti, anche se minime. La maggior
parte dei computer tipo hobby non è ancora dotala di un buon software
di sviluppo. L'utente dovrà valutare il suo sistema in relazione ai com­
menti presentati in questo capitolo.

Si analizzerà ora in maggior dettaglio la risorsa più indispensabile:
l’assemblatore.

L'ASSEMBLATORE

Nel corso di questo libro si è utilizzalo il linguaggio di livello assembly
senza presentare la sintassi formale ovvero la definizione del linguaggio
di livello assembly. È ora il momento di presentare queste definizioni.
Un assemblatore è progettato per consentire la rappresentazione simbo­
lica conveniente del programma utente rendendo semplice per il pro­
gramma assemblatore la conversione di questi mnemonici nella loro
rappresentazione.

O Dul»0
8«88 saÒtO

ssNO
Isxl in

Fi
gu

ra

10
5:

Fo

rm
at

o
di

pr

og
ra

m
m

az
io

ne

de
l

m
ic

ro
p

ro
ce

ss
o

re

Quando si sta rappresentando un programma per l’assemblatore, si è
visto che vengono utilizzati dei campi. Essi sono:

Il campo della label, opzionale, che può contenere un indirizzo simbo­
lico per l'istruzione che segue.

Il campo dell’istruzione, che comprende il codice operativo c gli ope­
randi. (Può essere distinguibile un campo operando separato).

Il campo del commento all'estrema destra, che è opzionale e serve per
chiarire il programma.

Una volta che il programma è stato Tornito all’assemblatore, quest'ul­
timo produrrà un suo listing. Nella generazione di un listing l'assembla­
tore fornirà tre campi addizionali, normalmente sulla sinistra della
pagina. Un esempio appare di seguilo: all'estrema sinistra vi è il numero
della riga. Ad ogni riga stampala dal programmatore viene assegnato un
numero di riga simbolico.

Il campo successivo a destra è il campo dell'indirizzo effettivo, che
mostra in esadecimale il valore del contatore di programma che punterà
a quell’istruzione.

Il campo successivo a destra è la rappresentazione esadecimale dell'i­
struzione.

Questo mostra uno dei possibili impieghi di un assemblatore. Anche
se si stanno progettando programmi per un microcomputer su scheda
singola che accetta soltanto l’esadecimale si scriverebbe ancora il pro­
gramma in linguaggio di livello assembly, supponendo di avere accesso
ad un sistema equipaggiato di un assemblatore. Si possono quindi
inserire i programmi sul sistema utilizzando l'assemblatore. L'assembla­
tore genererà automaticamente la codifica esadecimale corretta. Quindi
si rappresenterà semplicemente in codici esadecimali sul sistema dispo­
nibile. Questo mostra, come semplice esempio, il valore delle risorse
software addizionali.

Tabelle

Quando l'assemblatore traduce il programma simbolico nella sua
rappresentazione binaria, esso esegue due compiti essenziali:

1. Esso traduce le istruzioni mnemoniche nella loro codifica binaria.
2. Esso traduce i simboli utilizzati per le costanti e gli indirizzi nella

loro rappresentazione binaria.

Per facilitare il collaudo del programma, l'assemblatore indica alla
fine del listing l’equivalenza tra i simboli utilizzati ed il loro valore
esadecimale. Questo è chiamalo: tabella dei simboli.

0057
OOSB

0059
0060

0061

0062
0063
0064

0065
0066

0067
006B

0069

0070
0071
0072
0073
0074

0075

0076
0077
0078
0078
0078
0078
0079
0079
0079
0079
0080
OOSO
OOSO
0080
0081
0081
0081
oasi
0082
0082
0082
0082
0083
0083
0083
0083
0084
0084
0064
0064
0065

0342 A9 00 LDA *S 00
0344 BD OB AO STA ACRI COMMUTA OFF ENTRAMBI

TIMER.
0347 8D OB AC STA ACR2
034A A2 20 LDX » OFFDEL ACCETTA LA COSTANTE

DI RITARDO TONES-OFF
034C 20 55 03 OFF JSR OELAY RITARDO MENTRE TONE

É OFF.
034F CA OEX
OSSO DO FA BNE OFF
0352 4C 02 03 JMP DIGIT RrTORNA AL DIGIT

SUCCESSIVO DEL NUMERO
PHONE

0355
0355 QUESTA É UNA SEMPLICE ROUTINE 01 RITARDO

PER IL TONO ON EO OFF
03SS
0355 A9 FF DELAY LDA * OELCON ACCETTA LA COSTANTE

DI RITAAOO
0357 38 WAIT SEC RITARDO DI QUESTA

LUNGHEZZA
03SB E9 01 SBC «S 01
OSSA 00 FB BNE WAIT
035C 60 RTS
0350
0350 QUESTA É UNA TABELLA DELLE COSTANTI PER

LE FREQUENZE DI TONO
OSSO DI CIASCUNA CIFRA TELEFONICA. LE COSTANTI SONO

LUNGHE OUE BYTE
0350 IL PRIMO É IL BYTE DI BASSO ORDINE.
03SD
0350 13 TABLE 'BYTE $13, $2, *76, $ 01 ; OUE TONI PER "0
035E 02
035F 76
0360 01
0361 CD •BYTE SCO, 502, $9E, $ 01 : DUE TONI PER "1”
0S62 02
0383 9E
0364 01
0S6S CO •BYTE SCO. $02. $76. $ 01 '2'
0366 02
0367 76
0366 01
0369 CD •BYTE SCO. $02. $53. $01 '3
0S6A 02
0368 53
036C 01
0360 69 'BYTE S69. $02. S9E. $ 01 '4'
036E 02
036E 9E
0370 01
0371 69 •BYTE SB9. S02. S76, S01 'S'
0372 02
0373 76
0374 01
0375 69 •BYTE SB9. $02. S53, S01 '6‘
0376 02
0377 53
0378 01
0379 4B •BYTE $48, S02. S9E. S 01 7 '

Figura 10.6: Output deH'assemblatore: un esempio (continua)

0085 037A 02
0085 037 B 9E
0085 037C 01
0086 037D 4B ‘BYTE $46. *02. *76. $ 01 '8'
0086 037E 02

LINEA « L O C CO DICE LINEA

0066 037E 76
00B6 0380 01
0087 0381 4B "BYTE *4B, S02. 853. S 01 ‘V
0087 0382 02
0087 0383 53
0087 0384 01
0088 0385 END

SYM BOL TA BLE

SYM BOL VALUE

ACRI A0OB ACR2 ACOB DELAY 0353 D ELCO N OOFF
DIGIT 0302 NDEND 030A NUMPTR 0000 OFF 034C
DEFDEL 0020 DN 033C O N D EL 0040 PHONE 0300
T1CH A 005 T lL H A007 T1LL A004 T2CH AC05
T2LH AC07 T2LL AC04 TABLE 035D WAIT 0357

END OF ASSEM BLY

Figura 10.6: Output dell'assemblatore: un esemplo

Alcune (abelle dei simboli non solo elencheranno i simboli ed il loro
valore ma anche i numeri delle righe dove appaiono i simboli e questa è
una caratteristica addizionale.

Messaggi di Errore

Durame il processo assembly, l'assemblatore rileverà errori di sintassi
e li elencherà come parte del listing finale. Diagnostici tipici sono:
simboli indefiniti, label già definite, codici operativi non consentiti,
indirizzi e modi di indirizzamento non consentiti. Naturalmente sono
desiderabili diagnostici molto più dettagliati e normalmente vengono
forniti. Essi variano da assemblatore ad assemblatore.

Il Linguaggio Assembly

I codici operativi sono già stati definiti. Si definiranno qui i simboli, le
costanti e gli operatori che possono essere utilizzati come parte della
sintassi delPassemblatore.

Simboli

I simboli sono utilizzati per rappresentare valori numerici, sia dati che
indirizzi. Tradizionalmente i simboli comprendono 6 caratteri e devono
iniziare con un carattere alfabetico.
Esiste un'ulteriore restrizione: i 56 codici operativi utilizzati dal 6502
oppure i nomi dei registri A, X, Y, S, P possono non essere utilizzati
come simboli.

Assegnazione di un Valore ad un Simbolo

Le label sono simboli speciali i cui valori non necessitano di essere
definiti dal programmatore. Essi corrispondono automaticamente al
numero della riga dove esse appaiono. Comunque gli altri simboli
utilizzati come costanti od indirizzi di memoria devono essere definiti
dal programmatore prima del loro impiego. Il segno uguale è utilizzato
per questo scopo od anche come “direttiva” speciale. Esso è un'istru­
zione all'assemblatore che non sarà tradotto in uno statement eseguibile:
essa è chiamata una direttiva dell'assemblatore.

Per esempio la costante ALPHA sarà definita:

ALPHA = $AOOO

Questo assegna il valore “A000'* esadecimale alla variabile ALPHA.
Le direttive dell'assemblatore saranno esaminate in un paragrafo succes­
sivo.

Costanti o Letterali

Le costanti possono essere espresse tradizionalmente sia in decimale,
oppure in esadecimale, oppure in ottale o in binario.
Per differenziare la base utilizzata per rappresentare un numero viene
utilizzato un prefisso. Nel caso di un numero decimale non viene utiliz­
zato il prefisso. Per caricare 18 neH’accumulatore si scriverà semplice-
mente:

LDA # 18 (dove # denota un letterale)

Un numero esadecimale sarà preceduto dal simbolo S.
Un simbolo ottale sarà preceduto dal simbolo@.
Un simbolo binario sarà preceduto da %.

Per esempio per caricare il valore “ 11111111” nelPaccumulaiore si
scriverà:

LDA # % I l l l l l I I .

1 caratteri letterali ASCII possono anche essere utilizzati in un campo
letterale. Negli assemblatori più vecchi era tradizionale comprendere il
simbolo ASCII tra virgolette. Negli assemblatori più recenti, per avere
meno caratteri da stampare, il carattere alfanumerico è indicato da una
singola virgoletta che precede il simbolo.

Per esempio per caricare il simbolo “ S" nell’accumulatore (in ASCII)
si scriverà:

LDA # ’S

Per caricare il simbolo delle virgolette stesso la convenzione è:

LDA

Esercizio I H : Le due seguenti istruzioni caricheranno !o stesso valore
nell'accumulatore: LDA # '5 ed LDA #$5?

Operatori

Per facilitare ulteriormente la scrittura di programmi simbolici, gli
assemblatori consentono l'impiego di operatori, al minimo essi dovreb­
bero consentire l’impiego degli operatori più e meno cosicché si può
specificare per esempio

LDA ADRI, ed:
LDX ADRI + I

È importante capire che l’espressione ADRI +1 sarà calcolato dall’as­
semblatore per determinare qual’è l'indirizzo di memoria effettivo che
deve essere inserito come equivalente binario. Esso sarà calcolato nel
tempo-assembly e non nel tempo di esecuzione del programma.

Inoltre possono essere disponibili più operatori, come quello di molti­
plicazione e divisione, che sono convenienti nell’accesso di tabelle in
memoria. Possono essere disponibili anche operatori più specializzati
come, per esempio, maggiore o minore di, che troncano un valore di 2
byte rispettivamente nel suo byte di ordine elevato o basso.

Naturalmente un'espressione deve originare un valore positivo. I
numeri negativi normalmente possono essere utilizzati e dovrebbero
essere espressi in un formato esadecimale.

Infine un simbolo speciale viene tradizionalmente utilizzalo per rap­
presentare il valore attuale dell'indirizzo della riga: *. Questo simbolo
dovrebbe essere interpretato come “ locazione attuale". (Valore di PC).

Esercizio 10-2: Qua!'è la differenza tra ie istruzioni seguenti?
LDA % 10101010
LDA # % 10IÒI010

Esercizio 10-3: Qual'è l ’effetto della seguente istruzione?
BMI* — 2?

Direttive Deir Assemblatore

Le direttive sono ordini speciali dati dal programmatore all'assembla­
tore, che si risolve neH'immagazzinamcnto dei valori in simboli o nella
memoria ovvero che verranno utilizzate per controllare l'esecuzione dei
modi di stampa dell’assemblatore.

Per fornire un esempio specifico si analizzerà qui la nona direttiva
dell'assemblatore disponibile sul sistema di sviluppo Rockwell (“ System
65"). Questa è:, BYT, .WOR, GBY, .PAGE, .SKIP, OPT, .FILE e
END.

Direttiva di Uguaglianza

Un segno uguale viene utilizzato per assegnare un valore numerico ad
un simbolo. Per esempio:

BASE # $ l l l l
• # $ 1234

L'effetto della prima direttiva è di assegnare il valore l l l l esadecimale
a BASE.

L’effetto della seconda istruzione è di fonare l'indirizzo della riga al
valore esadecimale ‘*1234” . In altre parole la successiva istruzione ese­
guibile incontrala sarà immagazzinata alla locazione di memoria 1234.

Esercizio 10-4: Si scriva una direttiva che causi il trasferimento del pro­
gramma alla locazione di memoria 0 e successive.

Direttive per Inizializzare la Memoria

Sono disponibili tre direttive per questo scopo: .BYT, .WOR, .GBY.
.BYT assegnerà i caratteri o valori che seguono a byte di memoria
consecutivi.

Esempio: RESERV .BYT l*SYBEX"

Questo si risolverà nelfimmagazzinare gli indirizzi di 2 byte nella
memoria, il primo ì il byte di basso ordine.

Esempio: .WOR $1234, $2345

.GBY è identico a .WOR eccetto che esso immagazzinerà un valore a
16 bit dove il primo byte è quello di ordine elevato. Esso è normalmente
utilizzato per dati a 16 bit piuttosto che per indirizzi a 16 bil.

Le tre direttive successive sono utilizzate per controllare l’ingresso/u-
scita.

Direttive <f Ingresso/Uscita

Esse sono: .PAGE, .SKIP, .OPT.
.PAGE impone all'assemblatore di terminare la pagina, cioè muove

alla sommità della pagina successiva. Inoltre può essere specificato un
titolo per la pagina.
Esempio: .PAGE “titolo della pagina’'

.SKIP è utilizzato per inserire righe bianche nel listing.
Il numero di righe da saltare può essere specificato:
per esempio: .SKIP 3

.OPT specifica quattro scelte: lista, generazione, errori, simbolo. Lista
genererà una lista. Generazione è utilizzato per stampare il codice
oggetto di stringhe con la direttiva .BYT. Errore specifica se devono
essere stampati gli errori diagnostici. Simbolo specifica se deve essere
elencata la tabella di simbolo.

Le ultime direttive controllano il formato del listing dell’assembla-
tore.

Direttive .FILE ed .END.

Nello sviluppo di un grosso programma, diverse posizioni del pro­
gramma saranno tipicamente scritte c collaudate separatamente. Ad un
certo punto sarà necessario assemblare insieme questi file. L’ultimo
statement del primo file comprenderà quindi la direttiva .FILE
N A M E/I, dove I èil numero dell’unità disco e NAME è il nome del file
successivo. Il file successivo deve essere collegato, a sua volta, a più file.
Alla fine dell'ultimo file ci sarà la direttiva: .END NAME/1 che è un
puntatore al primo file.

Infine esiste la possibilità di inserzione di commenti addizionali con il
listing

può essere utilizzato per far entrare commenti aU'interno di una
riga piuttosto che far entrare un’islruzionc. Questa è una caratteristica
importante se i programmi devono essere correttamente documentati.

MACRO

La caratteristica macro è correttamente non disponibile sugli assem­
blatori esistenti del 6S02. Comunque si definirà qui cos'è una macro c

Figura 10.7: L'AIM 65 è una scheda con una Mini-stampante ed una tastiera
completa

quali sono i suoi vantaggi. Si spera che la possibilità macro sia presto
disponibile sulla maggior parte degli assemblatori del 6502.

Una macro & semplicemente un nome assegnato ad un gruppo di
istruzioni. Una macro è essenzialmente una convenienza per il program­
matore. Per esempio se un gruppo di cinque istruzioni è utilizzato diverse
volte in un programma, si potrebbe definire una macro invece di dover
sempre riscrìvere queste cinque istruzioni. Come esempio si potrebbe
scrìvere:

SAVREG MACRO PHA
TXA
PHA
TYA
PHA

ENDM

E quindi scrivere il nome: SAVREG invece delle precedenti istruzioni.

Ogni volta che si scrìve SAVREG le cinque righe corrispondenti
verranno sostituite al posto del nome. Un assemblatore equipaggiato
con una caratteristica macro è detto un macro assemblatore. Quando il
macro assemblatore incontrerà SAVREG esso eseguirà una vera sostitu­
zione fisica delle righe equivalenti.

Macro oppure Subroutine?

A questo punto una macro può essere vista operare in modo analogo
alla subroutine. Questo non è vero. Quando un assemblatore viene
impiegato per produrre il codice oggetto, ogni volta che viene incontrato
il nome di una macro, essa sarà sostituita dalle istruzioni effettive che
compaiono molte volte e che essa sostituisce. Per quanto riguarda il
tempo di esecuzione il gruppo di istruzioni apparirà altrettante volte del
nome della macro.

In contrapposizione una subroutine è definita soltanto una volta e
quindi essa può essere utilizzata ripetutamente: il programma salterà
alfindirizzo della subroutine. Una macro è detta una caratteristica di
tempo-assembly. Una subroutine i una caratteristica di tempo di esecu­
zione. Il loro funzionamento è abbastanza diverso.

Parametri della Macro

Ogni macro può essere equipaggiata di un certo numero di parametri.
Per esempio si consideri la macro seguente:

SWAP MACRO M, N. T
LDA M
STA T
LDA N
STA M
LDA T
STA N
ENDM

Questa macro originerà lo scambio dei contenuti delle locazioni di
memoria M ed N. Uno scambio tra due registri, oppure due locazioni di
memoria, è un’operazione non disponibile sul 6S02. Una macro può
essere utilizzata per realizzarla. ‘T ‘ in questo caso è semplicemente il
nome di una locazione di immagazzinamento temporaneo richiesta dal
programma. Per esempio si vogliono scambiare i contenuti delle loca­
zioni di memoria ALPHA e BETA. L’istruzione che fa questo appare di
seguito: SWAP ALPHA, BETA, TEMP.

In questa istruzione TEMP è il nome di qualche locazione di immagaz­
zinamento temporaneo che si conosce essere disponibile e che può essere
utilizzata dalla macro. L'espansione risultante della macro appare di
seguito:

LDA ALPHA
STA TEMP
LDA BETA
STA AI.PHA
I.DA TEMP
STA BETA

Dovrebbe essere così chiaro il valore di una macro: essa è conveniente
per il programmatore per utilizzare le pseudo-istruzioni che sono state
definite con macro. In questo modo il set di istruzione apparente del
6S02 può essere espanso. Sfortunatamente si deve ricordare che ogni
direttiva macro si espanderà in un numero qualsiasi di istruzioni utiliz­
zate. A causa della sua convenienza per lo sviluppo di qualsiasi pro­
gramma lungo una caratteristica macro è altamente desiderabile per tali
applicazioni.

Caratteristiche Addizionali deila Macro

Molte altre direttive c caratteristiche sintattiche possono essere
aggiunte ad una caratteristica macro semplice: le macro possono essere
annidate, cioè una chiamata macro può apparire airinterno di una
definizione macro. Utilizzando questa caratteristica una macro può
modificare sé stessa con una definizione annidata! Una prima chiamata
produrrà un'espansione mentre le chiamate successive produrranno
un’espansione modificata.

ASSEMBLY CONDIZIONALE

L’assembly condizionale è un'altra caraneristica dell’assemblatore
che fin'ora non è stala fornita sulla maggior pane degli assemblatori del
6502. Una caratteristica di assemblatore condizionale consente al pro­
grammatore di utilizzare le istruzioni speciali “ IF", seguito da una
espressione, quindi (a scelta) “ ELSE”, e terminata da "EN D IF". Ogni
volta che l'espressione seguente l'IF è vera allora verranno assemblale le
istruzioni tra l'IF ed LESE oppure IF ed ENDIF (se non c’è “ELSE").
Nel caso in cui sia utilizzalo IF seguito da ELSE solo uno dei due blocchi
di istruzioni sarà assemblato, dipendentemente dal valore dell'espres­
sione verificata.

Con una caratteristica di assembly condizionale il programma può
progettare i programmi per una grande varietà di casi e quindi assem­
blare condizionalmente i segmenti di codice richiesti da un’applicazione
specifica. Per esempio un utente industriale deve progettare programmi
che controllino qualsiasi numero di semafori ad un incrocio per una
certa varietà di algoritmi di controllo. Esso riceverà quindi le specifiche
dall’ingegnere del traffico locale che definiscono il numero di semafori
che vi dovrebbero essere e quali algoritmi di controllo. Il programma­
tore quindi porrà semplicemente i parametri nel suo programma e
quindi li assemblerà condizionalmente. L'assembly condizionale si risol­
verà in un programma “ a richiesta" che rivelerà salo quelle routine che
sono necessarie per la soluzione del problema.

L’assembly condizionale è perciò di valore specifico per la genera­
zione di programmi industriali in un ambiente dove esistono molte scelte
e dove il programmatore desidera assemblare velocemente ed automati­
camente porzioni del programma in relazione a parametri esterni.

SOMMARIO

Questo capitolo ha presentalo le tecniche e gli strumenti hardware e
software richiesti per sviluppare un programma, insieme ai vari compro­
messi ed alternative.

Questo a livello hardware va dal microcomputer su scheda singola al
sistema di sviluppo completo.
A livello software si va dalla codifica binaria alla programmazione ad
alto livello.

Si dovrà quindi operare una selezione in funzione dei traguardi e delle
risorse.

CONCLUSIONI

Sono stati trattati tutti gli aspetti più importanti della programma­
zione, dalla definizione e dai concetti di base alla manipolazione interna
dei registri del 6502, alla direzione dei dispositivi d'ingrcsso/uscita,
come pure le caratteristiche degli aiuti dello sviluppo software. Qual’è la
fase successiva? Si possono presentare due punti di vista, il primo collega
lo sviluppo alla tecnologia, il secondo collega lo sviluppo alla propria
conoscenza ed abilità. Si indirizzeranno questi due punti.

SVILUPPO TECNOLOGICO

Il progresso dell’integrazione della tecnologia MOS rende possibile la
realizzazione di chip molto più complessi. Il costo di realizzazione della
funzione processore stessa è costantemente decrescente. Il risultato è che
molti dei chip d’ingresso/uscita o dei chip di controllo di periferica
utilizzate in un sistema, ora incorporano un semplice processore. Questo
significa che la maggior parte dei chip LSI ora impiegati nel sistema sono
divenuti programmabili. Si sta sviluppando ora un interessante dilemma
concettuale: in modo da semplificare il compito del progetto software
come pure di ridurre il numero di componenti i nuovi chip I/O ora
comprendono sofisticate caratteristiche programmabili: molti algoritmi
programmati sono ora integrali aH’interno del chip. Comunque come
risultato, lo sviluppo dei programmi è complicato dal fatto che lutti
questi chip d'ingresso/uscita sono molto diversi e ncessitano di essere
studiati in dettaglio dal programmatore! La programmazione del sistema
non è più la programmazione del solo microprocessore, ma anche la
programmazione di tutti i vari chip connessi adesso, Il tempo di apprendi­
mento per ogni chip può essere significativo.

Naturalmente questo è un dilemma soltanto apparente. Se questi chip
non fossero disponibili, la complessità dell’interfacccia da realizzare,
come pure i programmi corrispondenti, sarebbe ancora maggiore. La
nuova complessità introdotta è che occorre programmare più di un
processore ed imparare le varie caratteristiche dei diversi chip di un
sistema per rendere effettivo il loro impiego. Comunque si spera che le

Figura 11.1: Il CBM è un sistema di gestione completo con floppy disk e stampante

Figura 11.2: L'APPLE II utilizza una TV convenzionale

tecniche ed i concetti presentati in questo libro possano rendere questo
compito ragionevolmente semplice.

LA FASE SUCCESSIVA

Si sono ora imparate le tecniche di base per programmare applicazioni
semplici su carta. Questo era il traguardo del libro. La fase successiva è di
praticare effettivamente. Non esiste un sostituto a questo. È impossibile
imparare completamente la programmazione sulla carta ed è richiesta
esperienza. Si dovrebbe quindi ora iniziare la scrittura di programmi
propri. Si spera che questa sia una cosa gradita.

Per coloro che desiderano beneficiare della guida di un libro addizio­
nale, il volume complementare a questo in questa serie è: “ Applicazioni
del 6502’' che presenta un insieme di applicazioni effettive che possono
essere eseguite su un microcomputer reale.

TABELLA DI CONVERSIONE ESADECIMALE

K X 9 1 z 3 4 6 7 I) A B c Q E f 00 000
0 0 1 2 3 4 6 7 8 9 10 il 12 13 14 15 0 0
1 itì 17 18 19 20 21 22 23 24 25 26 27 29 a 30 31 266 4096
2 32 33 34 35 36 37 38 29 40 41 42 43 44 45 .48 47 512 6192
3 48 49 60 51 52 53 54 55 56 57 58 59 60 61 82 63 766 12288
4 64 66 66 67 6B 69 70 71 72 73 74 76 76 77 78 79 1004 16364
5 M 81 62 83 84 65 86 87 ee 99 90 91 92 93 94 95 1260 20480
« 9* 97 «6 99 100 un 102 I t t 104 105 106 107 108 109 110 111 1536 24576
7 112 113 1t4 115 116 117 118 119 120 121 122 123 124 125 126 127 I7S2 26672
8 129 129 *30 131 132 t t) 134 136 136 137 136 139 u e 141 142 U3 2048 32766
9 144 1*5 1*8 147 146 W9 150 151 152 153 194 155 156 l$7 1S6 159 2304 36964
A 1(0 IBI 182 163 164 185 166 167 168 189 170 171 172 173 174 175 2560 40060
B 176 177 178 179 100 161 169 1 » 164 188 186 167 188 189 190 191 2816 4S0S6
C 192 193 184 196 198 107 196 199 200 201 200 203 204 206 206 207 3072 49152
D 208 20fl 219 211 212 213 3 * ut 216 217 216 219 220 221 222 223 3326 53248
E 224 225 2 » 227 228 229 230 231 232 233 234 235 236 237 238 239 3584 57344
P 240 241 242 243 244 245 246 247 248 249 250 251 252 2 » 254 266 3640 6*440

5 4 3 2 1 0

HEX | DEC HEX | DEC HEX DEC HEX DEC HEX DEC HEX DEC
0 0 0 0 0 0 0 0 0 0 0 0
1 1,048.576 1 65.536 1 4,096 1 256 1 16 1 1
2 2,097,152 2 I31.Q72 2 8,192 2 512 2 32 2 2
a 3.145.728 3 196,606 3 12,288 3 768 3 48 3 3
4 4,194,304 4 262,144 4 16.384 4 1,024 4 64 4 4
5 5.242.880 5 327.680 5 20.480 5 1,280 5 80 5 5
ó 6.291,456 6 393.216 6 24,576 6 1,536 6 96 6 6
7 7.340.032 7 458,752 7 28.672 7 1,792 7 112 7 7
8 8.388,008 8 524,288 8 32,768 8 2.048 8 128 8 8
9 9.437.184 9 589.824 9 36,864 9 2,304 9 144 9 9
A 10.485.760 A 655,360 A 40,960 A 2,560 A 160 A IO
0 11,534,336 B 720,096 B 45.056 B 2.816 e 176 B 11
C 12,562,912 C 766.432 C 49,152 C 3,072 C 192 C 12
D 13.631,488 D 851,968 D 53.248 D 3.326 D 208 0 13
E 14,680,064 E 917,504 E 57,344 E 3,584 E 224 E 14
F 15.728.640 F 983.040 F 61,440 F 3.840 F 240 F 15

ISTRUZIONI IN ORDINE ALFABETICO
DEL 6502

ADC Som m a con riporto
AND A N D Logica
ASL Spostam ento A ritm etico a

Sinistra
BCC Opera diramazione se carry

è zero
BCS Opera diramazione se curry

i uno
BEQ O pera d iram azione se

risu ltato = 0
BIT Verifica di bit
BMI O pera d iram azione se

negativo
BNE O pera d iram azione se

diverco da 0
BPL O pera diram azione se

positivo
BRK Break
BVC O pera d iram azione se

overflow i 0
BVS O pera diram azione se

overflow è 1
CLC Azzera carry
CLD Azzera il (lag decimale
CLI Azzera la disabililazione

interrupt
CLV Azzera overflow
C M P C onfron ta con l'accum u­

latore
CPX C onfronta con X
CPY C onfron ta con Y
D EC D ecrem enta la m em oria
DEX Decrem enta X
DEY Decrem enta Y
EOR O R Esclusivo

INC Increm enta X
INY Increm enta Y
JM P Salta
JSR Salta alla subroutine
LDA C arica l'accum ulatore
LDX C arica X
LDY C arica Y
LSR Spostam ento logico a

destra
NOT N on opera
ORA OR Logico
PHA Introduce A
PH P Introduce lo sta to P
PLA Esim e A
PLP Estrae lo sta to P
ROL Rotazione a sinistra
ROR R elaziona a destra
RTI R itorno da In terrupt
RTS R itorno da subroutine
SBC Sottrae con riporto
SEC Pone carry ad 1
SED Pone decim ale ad 1
SE! Pone disabilit&zionc

in terrup t ad 1
STA Im m agazzina l’accum u­

latore
STX Im m agazzina X
STY Im m agazzina Y
TAX Trasferisce A in X
TAY Trasferisce A in Y
TSX Trasferisce SP in X
TXA Trasferisce X in A
TXS Trasferisce X in SP
TYA Trasferisce Y in A

LISTING BINARIO DELLE ISTRUZIONI
DEL 6502

ADC 01 IbbbOl LDX lOlbbblO
AND 00IbbbOI LDY lOlbbbOO
ASL OOObbblO LSR OlbbbblO
BCC 10110000 NOP O lbbb l10
BEQ 11110000 ORA OOObbbOl
BIT OOlOblOO PHP 01001000
BMI 00110000 PHP 00001000
BNE 11010000 PLA 01101000
BPL 00010000 PLP 00101000
BRK 01010000 ROL OOlbbblO
CLC 00011000 ROR OlibbbIO
CLD 11011000 RTI OlOOOOOO
CLI 01011000 RTS 01100000
CMP 1lObbbOl SBC 11IbbbOl
CPX 1IlObbOO SEC 00111000
CPY 1lOObbOO SED 111I1000
DEC 1lO bbl10 SEI 01111000
DEX 11001010 STA lOObbbOI
DEY 10001000 STX lOObblIO
EDR lOlbbbOl STY lOObblOO
INC l l l bbl l O TAX 10101010
INX 11101000 TAY 10101000
INY 11001000 TSX 10111010
JM P OlbOI100 TXA 10001010
JSR 00100000 TXS 10011010
LDA 10IbbbOl TYA 10011000

Per la definizione del campo “bb” si faccia riferimento al Capitolo 4

SET DI ISTRUZIONI DEL 6502:
ESADECIMALE E TIMING

IM P L IC A T O A C C . A S S O L U T O P A G IN A 0 IM M E D IA T O A O S K A B S Y

W E M »
NI C O

C0 - « e x - • o r - » O* - V o r - # C* " » 0 * " 9

A 0 C (1 l i) « 1 0} i ! tr* S 3 fò 4 2 TV 4]
A H Ù 0 - » 4) « 1 i V* 7 i 30 4 3 19 « J
A & (. CWS 3 1 Ofc « 3 te J j il ; 1

B C C {71
B C S 17:
a i a 1*1
4 1 1 X 4 3 .'4 J ?
8 M l 12.
• M | i l
e i U*
S 9 c X ? i
S v C •71
6 V S 171
c c IB I i
C D 3» ? 1
C L i 9B ? 1
C . v M J 1
C M.P CD 3 C i 2 C ? 2 2 DD A 3 09 4 3
C * X fC 1 Ci 3 3
C * T CC 4 1 Z i ì CO 3 7
0 t c a 6 3 Ca ì 4j \ ì
0 i X CA ?
ù l V J
f 0 * r* > « 4 ì 4S) 7 49 2 7 XI 4 3 » 4 1
i IV C u « ì i t ! 3 r t t

i n x " r r »
3

T
1 N T CB '
/ ¥ f ! «c j J
J 5 9 3»1 • a 3 - -
l D A è* » 1 AD 4] A3 J 2 A9 2 7 » 4] B9 i
V D A d i j A l 4 J A« 1 3 A i 2 I M 4 J
1 0 * HI 1 *C 4] AJ 1 7 «a f m <)
1 & B 4A 7 ' l\ 4 4fk 1 ' 3 J
n o * t * ? i i
0 B A 00 4 3 » 7 09 ? J o 4 J >ì A i
r h a 4fi 1 ' i !
P H » oa 3 ‘ >
9 L A n* * 1 ------ — -
p l r » A 1

» rj i JA J l n « 3 » J 7 7)
B o a fili T * 3 è* 5 « ']
B 7 i
b : e
s c
Ì c
S Ci

£

J5
u

i

7

t r 4 3 n j »? 7 1 ►0 . 3
F) » J

i» ' * 2 i T

3 r a , • c « i ì 3 Ut) S 1 ;
S i < K 4 56 2
4 r * BL 4 Bl 2
? A A AA 2
i A r M 3
1 j * BA 2
! • i V i 2
r x s 9A ;
T i A 7

Hi Somma t ad n m tl SU attravtiundo I confir# * un»

lINDX) <MD|Y PAGINA Z.X RELATIVO iN O if tm o PAGINA Z.V i CODICE DI STATO
DEL PROCÈSSO»

C* MNEMON,

fr>
?»

a
a

7
J 3<

4
5

1
7

7ì
ìi
la

*
A
a

3
3
7

W
to

3
3

3
3

a i • •
• •
• • •

A 0 <
ANO
A i l
BCC
hC s

to
X
oo
IO

3

7
»
3

3

3
3
3

M /M * a
SI 0
B l 1
I M 1
B N 1
■ P 1

50
79

3
7

3
7

1 1

0
0

| V I
5 VC
a v i
c l c
C » fì

c« ♦ 2 Oi S 7 06 i 7
0

0
• • •
• • •
• a •

C < i
C 1 V
C VtP
C l
9 * Y

41 6 I } i » 7

Dò

ii
Fé

«a

4
*

3

3
7

+ •
• •
• •
• ♦
• a

0 E C
0 I X
0 1 V
(0 9
1 N C

A ' e } è» & 7 » 4 3

ÒC » J

• •
• •

• •

1 N X
1 N V
J M P
1 i R
l 0 A

C ’ a ì ii » 3

%*
S6

15

é

a

4

7
3

I

%ù « 7 • •
m •

0 • •

• •

l D »
l 0 v
1 S ■
N O P
O 0 A

16 6 ì

• ♦

• • •

• H A
N p
9 l A
* 1 P
» 0 I

l> à i 11 i 3

76

»»

a

* 3

« • •

• • • •
1

i

f t i5 *
9 1 i
0 1 J
b 6 C
5 t C
6 e a

a- a * « 3

«4

4

4

3

3
«a « 7

l

« •

* r »
i I A
1 r X
& » i
f A a

■ •
• •
• •

• •

V A T
i i «
1 Ji A
I ¥ s
r v a

(2) 9o*nma ? ad n sa si ha diramazione airtntemo della p agm i
Botnma 3 ad n sa » ha d iram acene ad un'aura (pagina

TABELLA DI CONVERSIONE ASCII

HEX MSD 0 1
001

2
010

3
011

4
100

5
101

6
110

7
111LSD BITS 000

0 0000 NUL DLE SPACE 0 @ P - P
1 0001 SOH DC1 { 1 A 0 a q
2 0010 STX DC2 m 2 B R b r
3 0011 ETX DC3 # 3 C S c s
4 0100 EOT DC4 $ 4 D T d l
S 0101 ENQ NAK % 5 E U e u
6 0110 ACK SYN & 6 F V 1 V
7 0111 BEL ETB 1 7 G w 9 w
8 1000 BS CAN (8 H X h X
9 1001 HT EM) 9 1 Y 1 y
A 1010 LF SUB • : J z j z
B 1011 VT ESC + i K [k {
C 1100 FF FS * < L \ 1
D 1101 CR GS - - M] m 7
E 1110 SO RS , > N A n p*
F 1111 SI US / 7 O 4— 0 DEL

I SIMBOLI ASCII

NHL — Nullo
SOH — Inllto d«ll* leelala
STX — Inizio del t«tio
ETX — Fin* dal TmIo
EOT — Fin* della Iraimli-

■lai»
ENQ — Domanda
ACK — Rlconoaclmento
BEL — Campani
BS — Spazio poiteriora
HT — Tabulazione orizzon­

tale
LF — incremento di riga
VT — Tabulazione verticale
FF — Alimentazione mo­

dulo
CH — Ritorno carrello
50 — Spoita fuori
51 — Spenta danlro

OLE — Perdila Colegamenlo
Dati

DC — Controllo dlipoillivo
NAK — Rleonoadmanlo

negative
SYN — Sincronilmo
ETB — Fina dal blocco di

IfBimlMlona
CAN — Cancella
EM — Fine del mazzo
SUB — Soalltulo
ESC — Pardi ta
FS — Separatore di file
GS — Separatore di gruppo
HS — Separatore di record
US — Separatore di uniti
SP — Spazio (Blanli)
DEL — Cancella eoeUiuando

TABELLA DELLE DIRAMAZIONI RELATIVE

DIRAMAZIONE RELATIVA DIRETTA

» c 1 7 3 4 J 6 7 8 9 A e C □ t F

0 o 1 2 3 4 A 4 7 B 9 IO n 17 53 14 l i
'0 17 1B 19 30 2» » 23 24 : s 76 77 » Ì9 30 31

i .'2 i i 34 Ì5 36 j r » 39 40 *■> 42 40 44 4£ 46 *7

2 Ad 19 SO SI M U 54 SS 56 57 u 59 60 6* 62 &3
à 64 45 66 67 66 69 ; i J2 73 74 73 76 77 78 79
i «0 é i » aa B-4 a s w 68 09 90 91 92 93 94 91
fi 96 97 « e 99 100 •01 107 103 104 iW 106 107 ! « tÒ9 i :0 111
; ' li ’ 13 114 US 116 U 7 118 119 120 171 177 123 174 175 '7 6 177

LISTING DEL CODICE OPERATIVO
ESADECIMALE

l o »
0 1 2 3 4 5 ó 7

« I I I
V i

OBAV •
0 * * *

c i O »
C « A £ » X

* h 9 >
*S i © »

i w ANO 1 t »C* <1 >
ì • v i A*iO • * A .N O $P ■
• t u *0 » • 1 I Ù # « »

I D I i V (CU f p « i l a * e- «
« n »ÒC i a ASC C * * 0 * 9 »
r

•
IVS «OC < r

i tA « a s?* C •
•CC © * •

ITA C • Sla d *
« te e V à i * « i l a 0 * * l ' a ^ i r
* O * ’MA» ISA i • l i * >V« .y * t a * C » s3» $ *
» K ì lC *» * ,11') ! a lZ A <t 9 ■ lD * 0 * *
f ’MM i • cr» f p scc

N W * r ^ * ; r • e i e * ’ a
: u «m » S K ■ .‘ Fa 9 1 u c t * i h C t P

HO UH - U C J M f i t t t a

6 9 A B C D E F

•ttP cu* A* * o u *U 0
rie OM V O a s A4, k 1

AKC INA* K>. A ** AM) •A 2
sk AfC * ASD * *CH i 3
**A [C* IU A JM» IO* 11» »
Ci* IOC < eoa a l tf a »
ha AfiC aw »CI A ìw* 1 A3C tot •
Mi AbC v A7C • r

et* *14 «1» S»A Jfi a
h i 1»A » ÌU ft «
«A* ,t)A IMV U t vO« iCA iOa *
C.v IDA V .Of < IO* B ipa • B
*rt MaM C4A CM» Mv C
CiO ZM* r : w b PfT a
(St UC ;>! tic WC 1
v e IftC v VK B r*C i(1

0 • P = paglni <«« o

CONVERSIONE DA DECIMALE A BCD

D E C I M A L E B C D D E C B C D D E C B C D

0 0000 (0 0001 OOOO 90 1001000C
1 0001 11 00010001 gì 10010001

2 0010 12 03010010 9? 10010010
3 0011 13 00010011 93 10010011
4 0100 14 00010100 94 10010100
5 0101 15 00010101 95 10010101
6 0110 16 00010110 06 10010110
ì 0111 17 00010)11 97 10010111

1 a 1000 ia 00011000 98 10011000

i
1001 19 c o o n o o t 99 10011001

L’A U T O R E

Ha insegnato microprocessori e programmazione a
più di 5000 persone in tutto il mondo. Laureatosi in
Fisica, in Scienza del Calcolatore, all'Università di
Berkeley, ha sviluppato una realizzazione APL mi­
croprogrammata ed ha lavorato neila Silicon Valley
sul sistemi industriali a microprocessore all’Inizio
della loro comparsa. Questo libro, come gli altri di * 0
questa serie, è basato sulla sua esperienza tecnica
ed educativa. i

GRUPPO
EDITORIALE

JACKSON

Rodnay
Z aks

ttC
o t
N fo l
E(
E
so>
ok-

Q_
■o

50

